linux/drivers/net/wireless/ath/ath10k/snoc.c

1709 lines
40 KiB
C

/*
* Copyright (c) 2018 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include "ce.h"
#include "debug.h"
#include "hif.h"
#include "htc.h"
#include "snoc.h"
#define ATH10K_SNOC_RX_POST_RETRY_MS 50
#define CE_POLL_PIPE 4
static char *const ce_name[] = {
"WLAN_CE_0",
"WLAN_CE_1",
"WLAN_CE_2",
"WLAN_CE_3",
"WLAN_CE_4",
"WLAN_CE_5",
"WLAN_CE_6",
"WLAN_CE_7",
"WLAN_CE_8",
"WLAN_CE_9",
"WLAN_CE_10",
"WLAN_CE_11",
};
static struct ath10k_vreg_info vreg_cfg[] = {
{NULL, "vdd-0.8-cx-mx", 800000, 850000, 0, 0, false},
{NULL, "vdd-1.8-xo", 1800000, 1850000, 0, 0, false},
{NULL, "vdd-1.3-rfa", 1300000, 1350000, 0, 0, false},
{NULL, "vdd-3.3-ch0", 3300000, 3350000, 0, 0, false},
};
static struct ath10k_clk_info clk_cfg[] = {
{NULL, "cxo_ref_clk_pin", 0, false},
};
static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
static const struct ath10k_snoc_drv_priv drv_priv = {
.hw_rev = ATH10K_HW_WCN3990,
.dma_mask = DMA_BIT_MASK(37),
.msa_size = 0x100000,
};
#define WCN3990_SRC_WR_IDX_OFFSET 0x3C
#define WCN3990_DST_WR_IDX_OFFSET 0x40
static struct ath10k_shadow_reg_cfg target_shadow_reg_cfg_map[] = {
{
.ce_id = __cpu_to_le16(0),
.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(3),
.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(4),
.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(5),
.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(7),
.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(1),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(2),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(7),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(8),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(9),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(10),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
{
.ce_id = __cpu_to_le16(11),
.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
},
};
static struct ce_attr host_ce_config_wlan[] = {
/* CE0: host->target HTC control streams */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 16,
.src_sz_max = 2048,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htc_tx_cb,
},
/* CE1: target->host HTT + HTC control */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE2: target->host WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 64,
.recv_cb = ath10k_snoc_htc_rx_cb,
},
/* CE3: host->target WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htc_tx_cb,
},
/* CE4: host->target HTT */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = 256,
.src_sz_max = 256,
.dest_nentries = 0,
.send_cb = ath10k_snoc_htt_tx_cb,
},
/* CE5: target->host HTT (ipa_uc->target ) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 512,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_rx_cb,
},
/* CE6: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE7: ce_diag, the Diagnostic Window */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 2,
.src_sz_max = 2048,
.dest_nentries = 2,
},
/* CE8: Target to uMC */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 128,
},
/* CE9 target->host HTT */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE10: target->host HTT */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_htt_htc_rx_cb,
},
/* CE11: target -> host PKTLOG */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_snoc_pktlog_rx_cb,
},
};
static struct ce_pipe_config target_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.pipenum = __cpu_to_le32(0),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE1: target->host HTT + HTC control */
{
.pipenum = __cpu_to_le32(1),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE2: target->host WMI */
{
.pipenum = __cpu_to_le32(2),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(64),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE3: host->target WMI */
{
.pipenum = __cpu_to_le32(3),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE4: host->target HTT */
{
.pipenum = __cpu_to_le32(4),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(256),
.nbytes_max = __cpu_to_le32(256),
.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
.reserved = __cpu_to_le32(0),
},
/* CE5: target->host HTT (HIF->HTT) */
{
.pipenum = __cpu_to_le32(5),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(1024),
.nbytes_max = __cpu_to_le32(64),
.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
.reserved = __cpu_to_le32(0),
},
/* CE6: Reserved for target autonomous hif_memcpy */
{
.pipenum = __cpu_to_le32(6),
.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(16384),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE7 used only by Host */
{
.pipenum = __cpu_to_le32(7),
.pipedir = __cpu_to_le32(4),
.nentries = __cpu_to_le32(0),
.nbytes_max = __cpu_to_le32(0),
.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
.reserved = __cpu_to_le32(0),
},
/* CE8 Target to uMC */
{
.pipenum = __cpu_to_le32(8),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(0),
.reserved = __cpu_to_le32(0),
},
/* CE9 target->host HTT */
{
.pipenum = __cpu_to_le32(9),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE10 target->host HTT */
{
.pipenum = __cpu_to_le32(10),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE11 target autonomous qcache memcpy */
{
.pipenum = __cpu_to_le32(11),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
};
static struct service_to_pipe target_service_to_ce_map_wlan[] = {
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(4),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT),
__cpu_to_le32(5),
},
{ /* in = DL = target -> host */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(9),
},
{ /* in = DL = target -> host */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(10),
},
{ /* in = DL = target -> host pktlog */
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(11),
},
/* (Additions here) */
{ /* must be last */
__cpu_to_le32(0),
__cpu_to_le32(0),
__cpu_to_le32(0),
},
};
static void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
iowrite32(value, ar_snoc->mem + offset);
}
static u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
u32 val;
val = ioread32(ar_snoc->mem + offset);
return val;
}
static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe)
{
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
skb = dev_alloc_skb(pipe->buf_sz);
if (!skb)
return -ENOMEM;
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
paddr = dma_map_single(ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ar->dev, paddr))) {
ath10k_warn(ar, "failed to dma map snoc rx buf\n");
dev_kfree_skb_any(skb);
return -EIO;
}
ATH10K_SKB_RXCB(skb)->paddr = paddr;
spin_lock_bh(&ce->ce_lock);
ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
spin_unlock_bh(&ce->ce_lock);
if (ret) {
dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
int ret, num;
if (pipe->buf_sz == 0)
return;
if (!ce_pipe->dest_ring)
return;
spin_lock_bh(&ce->ce_lock);
num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
while (num--) {
ret = __ath10k_snoc_rx_post_buf(pipe);
if (ret) {
if (ret == -ENOSPC)
break;
ath10k_warn(ar, "failed to post rx buf: %d\n", ret);
mod_timer(&ar_snoc->rx_post_retry, jiffies +
ATH10K_SNOC_RX_POST_RETRY_MS);
break;
}
}
}
static void ath10k_snoc_rx_post(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]);
}
static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state,
void (*callback)(struct ath10k *ar,
struct sk_buff *skb))
{
struct ath10k *ar = ce_state->ar;
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_snoc_pipe *pipe_info = &ar_snoc->pipe_info[ce_state->id];
struct sk_buff *skb;
struct sk_buff_head list;
void *transfer_context;
unsigned int nbytes, max_nbytes;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
&nbytes) == 0) {
skb = transfer_context;
max_nbytes = skb->len + skb_tailroom(skb);
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
if (unlikely(max_nbytes < nbytes)) {
ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
dev_kfree_skb_any(skb);
continue;
}
skb_put(skb, nbytes);
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list))) {
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n",
ce_state->id, skb->len);
callback(ar, skb);
}
ath10k_snoc_rx_post_pipe(pipe_info);
}
static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
/* CE4 polling needs to be done whenever CE pipe which transports
* HTT Rx (target->host) is processed.
*/
ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
/* Called by lower (CE) layer when data is received from the Target.
* WCN3990 firmware uses separate CE(CE11) to transfer pktlog data.
*/
static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
{
skb_pull(skb, sizeof(struct ath10k_htc_hdr));
ath10k_htt_t2h_msg_handler(ar, skb);
}
static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver);
}
static void ath10k_snoc_rx_replenish_retry(struct timer_list *t)
{
struct ath10k_snoc *ar_snoc = from_timer(ar_snoc, t, rx_post_retry);
struct ath10k *ar = ar_snoc->ar;
ath10k_snoc_rx_post(ar);
}
static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff_head list;
struct sk_buff *skb;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
if (!skb)
continue;
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list)))
ath10k_htc_tx_completion_handler(ar, skb);
}
static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff *skb;
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
if (!skb)
continue;
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
skb->len, DMA_TO_DEVICE);
ath10k_htt_hif_tx_complete(ar, skb);
}
}
static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
struct ath10k_hif_sg_item *items, int n_items)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc_pipe *snoc_pipe;
struct ath10k_ce_pipe *ce_pipe;
int err, i = 0;
snoc_pipe = &ar_snoc->pipe_info[pipe_id];
ce_pipe = snoc_pipe->ce_hdl;
spin_lock_bh(&ce->ce_lock);
for (i = 0; i < n_items - 1; i++) {
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snoc tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
CE_SEND_FLAG_GATHER);
if (err)
goto err;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snoc tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
0);
if (err)
goto err;
spin_unlock_bh(&ce->ce_lock);
return 0;
err:
for (; i > 0; i--)
__ath10k_ce_send_revert(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
return err;
}
static int ath10k_snoc_hif_get_target_info(struct ath10k *ar,
struct bmi_target_info *target_info)
{
target_info->version = ATH10K_HW_WCN3990;
target_info->type = ATH10K_HW_WCN3990;
return 0;
}
static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n");
return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl);
}
static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe,
int force)
{
int resources;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n");
if (!force) {
resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe);
if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
return;
}
ath10k_ce_per_engine_service(ar, pipe);
}
static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar,
u16 service_id,
u8 *ul_pipe, u8 *dl_pipe)
{
const struct service_to_pipe *entry;
bool ul_set = false, dl_set = false;
int i;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n");
for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
entry = &target_service_to_ce_map_wlan[i];
if (__le32_to_cpu(entry->service_id) != service_id)
continue;
switch (__le32_to_cpu(entry->pipedir)) {
case PIPEDIR_NONE:
break;
case PIPEDIR_IN:
WARN_ON(dl_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
break;
case PIPEDIR_OUT:
WARN_ON(ul_set);
*ul_pipe = __le32_to_cpu(entry->pipenum);
ul_set = true;
break;
case PIPEDIR_INOUT:
WARN_ON(dl_set);
WARN_ON(ul_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
*ul_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
ul_set = true;
break;
}
}
if (!ul_set || !dl_set)
return -ENOENT;
return 0;
}
static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n");
(void)ath10k_snoc_hif_map_service_to_pipe(ar,
ATH10K_HTC_SVC_ID_RSVD_CTRL,
ul_pipe, dl_pipe);
}
static inline void ath10k_snoc_irq_disable(struct ath10k *ar)
{
ath10k_ce_disable_interrupts(ar);
}
static inline void ath10k_snoc_irq_enable(struct ath10k *ar)
{
ath10k_ce_enable_interrupts(ar);
}
static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
{
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct sk_buff *skb;
struct ath10k *ar;
int i;
ar = snoc_pipe->hif_ce_state;
ce_pipe = snoc_pipe->ce_hdl;
ce_ring = ce_pipe->dest_ring;
if (!ce_ring)
return;
if (!snoc_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
{
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct ath10k_snoc *ar_snoc;
struct sk_buff *skb;
struct ath10k *ar;
int i;
ar = snoc_pipe->hif_ce_state;
ar_snoc = ath10k_snoc_priv(ar);
ce_pipe = snoc_pipe->ce_hdl;
ce_ring = ce_pipe->src_ring;
if (!ce_ring)
return;
if (!snoc_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
ath10k_htc_tx_completion_handler(ar, skb);
}
}
static void ath10k_snoc_buffer_cleanup(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_snoc_pipe *pipe_info;
int pipe_num;
del_timer_sync(&ar_snoc->rx_post_retry);
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
pipe_info = &ar_snoc->pipe_info[pipe_num];
ath10k_snoc_rx_pipe_cleanup(pipe_info);
ath10k_snoc_tx_pipe_cleanup(pipe_info);
}
}
static void ath10k_snoc_hif_stop(struct ath10k *ar)
{
if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
ath10k_snoc_irq_disable(ar);
napi_synchronize(&ar->napi);
napi_disable(&ar->napi);
ath10k_snoc_buffer_cleanup(ar);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
}
static int ath10k_snoc_hif_start(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
napi_enable(&ar->napi);
ath10k_snoc_irq_enable(ar);
ath10k_snoc_rx_post(ar);
clear_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
return 0;
}
static int ath10k_snoc_init_pipes(struct ath10k *ar)
{
int i, ret;
for (i = 0; i < CE_COUNT; i++) {
ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
if (ret) {
ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
i, ret);
return ret;
}
}
return 0;
}
static int ath10k_snoc_wlan_enable(struct ath10k *ar)
{
struct ath10k_tgt_pipe_cfg tgt_cfg[CE_COUNT_MAX];
struct ath10k_qmi_wlan_enable_cfg cfg;
enum wlfw_driver_mode_enum_v01 mode;
int pipe_num;
for (pipe_num = 0; pipe_num < CE_COUNT_MAX; pipe_num++) {
tgt_cfg[pipe_num].pipe_num =
target_ce_config_wlan[pipe_num].pipenum;
tgt_cfg[pipe_num].pipe_dir =
target_ce_config_wlan[pipe_num].pipedir;
tgt_cfg[pipe_num].nentries =
target_ce_config_wlan[pipe_num].nentries;
tgt_cfg[pipe_num].nbytes_max =
target_ce_config_wlan[pipe_num].nbytes_max;
tgt_cfg[pipe_num].flags =
target_ce_config_wlan[pipe_num].flags;
tgt_cfg[pipe_num].reserved = 0;
}
cfg.num_ce_tgt_cfg = sizeof(target_ce_config_wlan) /
sizeof(struct ath10k_tgt_pipe_cfg);
cfg.ce_tgt_cfg = (struct ath10k_tgt_pipe_cfg *)
&tgt_cfg;
cfg.num_ce_svc_pipe_cfg = sizeof(target_service_to_ce_map_wlan) /
sizeof(struct ath10k_svc_pipe_cfg);
cfg.ce_svc_cfg = (struct ath10k_svc_pipe_cfg *)
&target_service_to_ce_map_wlan;
cfg.num_shadow_reg_cfg = sizeof(target_shadow_reg_cfg_map) /
sizeof(struct ath10k_shadow_reg_cfg);
cfg.shadow_reg_cfg = (struct ath10k_shadow_reg_cfg *)
&target_shadow_reg_cfg_map;
mode = QMI_WLFW_MISSION_V01;
return ath10k_qmi_wlan_enable(ar, &cfg, mode,
NULL);
}
static void ath10k_snoc_wlan_disable(struct ath10k *ar)
{
if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
ath10k_qmi_wlan_disable(ar);
}
static void ath10k_snoc_hif_power_down(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
ath10k_snoc_wlan_disable(ar);
ath10k_ce_free_rri(ar);
}
static int ath10k_snoc_hif_power_up(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n",
__func__, ar->state);
ret = ath10k_snoc_wlan_enable(ar);
if (ret) {
ath10k_err(ar, "failed to enable wcn3990: %d\n", ret);
return ret;
}
ath10k_ce_alloc_rri(ar);
ret = ath10k_snoc_init_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto err_wlan_enable;
}
return 0;
err_wlan_enable:
ath10k_snoc_wlan_disable(ar);
return ret;
}
static const struct ath10k_hif_ops ath10k_snoc_hif_ops = {
.read32 = ath10k_snoc_read32,
.write32 = ath10k_snoc_write32,
.start = ath10k_snoc_hif_start,
.stop = ath10k_snoc_hif_stop,
.map_service_to_pipe = ath10k_snoc_hif_map_service_to_pipe,
.get_default_pipe = ath10k_snoc_hif_get_default_pipe,
.power_up = ath10k_snoc_hif_power_up,
.power_down = ath10k_snoc_hif_power_down,
.tx_sg = ath10k_snoc_hif_tx_sg,
.send_complete_check = ath10k_snoc_hif_send_complete_check,
.get_free_queue_number = ath10k_snoc_hif_get_free_queue_number,
.get_target_info = ath10k_snoc_hif_get_target_info,
};
static const struct ath10k_bus_ops ath10k_snoc_bus_ops = {
.read32 = ath10k_snoc_read32,
.write32 = ath10k_snoc_write32,
};
static int ath10k_snoc_get_ce_id_from_irq(struct ath10k *ar, int irq)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int i;
for (i = 0; i < CE_COUNT_MAX; i++) {
if (ar_snoc->ce_irqs[i].irq_line == irq)
return i;
}
ath10k_err(ar, "No matching CE id for irq %d\n", irq);
return -EINVAL;
}
static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int ce_id = ath10k_snoc_get_ce_id_from_irq(ar, irq);
if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) {
ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
ce_id);
return IRQ_HANDLED;
}
ath10k_snoc_irq_disable(ar);
napi_schedule(&ar->napi);
return IRQ_HANDLED;
}
static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget)
{
struct ath10k *ar = container_of(ctx, struct ath10k, napi);
int done = 0;
if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) {
napi_complete(ctx);
return done;
}
ath10k_ce_per_engine_service_any(ar);
done = ath10k_htt_txrx_compl_task(ar, budget);
if (done < budget) {
napi_complete(ctx);
ath10k_snoc_irq_enable(ar);
}
return done;
}
static void ath10k_snoc_init_napi(struct ath10k *ar)
{
netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll,
ATH10K_NAPI_BUDGET);
}
static int ath10k_snoc_request_irq(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int irqflags = IRQF_TRIGGER_RISING;
int ret, id;
for (id = 0; id < CE_COUNT_MAX; id++) {
ret = request_irq(ar_snoc->ce_irqs[id].irq_line,
ath10k_snoc_per_engine_handler,
irqflags, ce_name[id], ar);
if (ret) {
ath10k_err(ar,
"failed to register IRQ handler for CE %d: %d",
id, ret);
goto err_irq;
}
}
return 0;
err_irq:
for (id -= 1; id >= 0; id--)
free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
return ret;
}
static void ath10k_snoc_free_irq(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
int id;
for (id = 0; id < CE_COUNT_MAX; id++)
free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
}
static int ath10k_snoc_resource_init(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct platform_device *pdev;
struct resource *res;
int i, ret = 0;
pdev = ar_snoc->dev;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase");
if (!res) {
ath10k_err(ar, "Memory base not found in DT\n");
return -EINVAL;
}
ar_snoc->mem_pa = res->start;
ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa,
resource_size(res));
if (!ar_snoc->mem) {
ath10k_err(ar, "Memory base ioremap failed with physical address %pa\n",
&ar_snoc->mem_pa);
return -EINVAL;
}
for (i = 0; i < CE_COUNT; i++) {
res = platform_get_resource(ar_snoc->dev, IORESOURCE_IRQ, i);
if (!res) {
ath10k_err(ar, "failed to get IRQ%d\n", i);
ret = -ENODEV;
goto out;
}
ar_snoc->ce_irqs[i].irq_line = res->start;
}
out:
return ret;
}
int ath10k_snoc_fw_indication(struct ath10k *ar, u64 type)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_bus_params bus_params;
int ret;
if (test_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags))
return 0;
switch (type) {
case ATH10K_QMI_EVENT_FW_READY_IND:
if (test_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags)) {
queue_work(ar->workqueue, &ar->restart_work);
break;
}
bus_params.dev_type = ATH10K_DEV_TYPE_LL;
bus_params.chip_id = ar_snoc->target_info.soc_version;
ret = ath10k_core_register(ar, &bus_params);
if (ret) {
ath10k_err(ar, "Failed to register driver core: %d\n",
ret);
return ret;
}
set_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags);
break;
case ATH10K_QMI_EVENT_FW_DOWN_IND:
set_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
set_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags);
break;
default:
ath10k_err(ar, "invalid fw indication: %llx\n", type);
return -EINVAL;
}
return 0;
}
static int ath10k_snoc_setup_resource(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_snoc_pipe *pipe;
int i, ret;
timer_setup(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, 0);
spin_lock_init(&ce->ce_lock);
for (i = 0; i < CE_COUNT; i++) {
pipe = &ar_snoc->pipe_info[i];
pipe->ce_hdl = &ce->ce_states[i];
pipe->pipe_num = i;
pipe->hif_ce_state = ar;
ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
i, ret);
return ret;
}
pipe->buf_sz = host_ce_config_wlan[i].src_sz_max;
}
ath10k_snoc_init_napi(ar);
return 0;
}
static void ath10k_snoc_release_resource(struct ath10k *ar)
{
int i;
netif_napi_del(&ar->napi);
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_free_pipe(ar, i);
}
static int ath10k_get_vreg_info(struct ath10k *ar, struct device *dev,
struct ath10k_vreg_info *vreg_info)
{
struct regulator *reg;
int ret = 0;
reg = devm_regulator_get_optional(dev, vreg_info->name);
if (IS_ERR(reg)) {
ret = PTR_ERR(reg);
if (ret == -EPROBE_DEFER) {
ath10k_err(ar, "EPROBE_DEFER for regulator: %s\n",
vreg_info->name);
return ret;
}
if (vreg_info->required) {
ath10k_err(ar, "Regulator %s doesn't exist: %d\n",
vreg_info->name, ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"Optional regulator %s doesn't exist: %d\n",
vreg_info->name, ret);
goto done;
}
vreg_info->reg = reg;
done:
ath10k_dbg(ar, ATH10K_DBG_SNOC,
"snog vreg %s min_v %u max_v %u load_ua %u settle_delay %lu\n",
vreg_info->name, vreg_info->min_v, vreg_info->max_v,
vreg_info->load_ua, vreg_info->settle_delay);
return 0;
}
static int ath10k_get_clk_info(struct ath10k *ar, struct device *dev,
struct ath10k_clk_info *clk_info)
{
struct clk *handle;
int ret = 0;
handle = devm_clk_get(dev, clk_info->name);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
if (clk_info->required) {
ath10k_err(ar, "snoc clock %s isn't available: %d\n",
clk_info->name, ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc ignoring clock %s: %d\n",
clk_info->name,
ret);
return 0;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s freq %u\n",
clk_info->name, clk_info->freq);
clk_info->handle = handle;
return ret;
}
static int __ath10k_snoc_vreg_on(struct ath10k *ar,
struct ath10k_vreg_info *vreg_info)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc regulator %s being enabled\n",
vreg_info->name);
ret = regulator_set_voltage(vreg_info->reg, vreg_info->min_v,
vreg_info->max_v);
if (ret) {
ath10k_err(ar,
"failed to set regulator %s voltage-min: %d voltage-max: %d\n",
vreg_info->name, vreg_info->min_v, vreg_info->max_v);
return ret;
}
if (vreg_info->load_ua) {
ret = regulator_set_load(vreg_info->reg, vreg_info->load_ua);
if (ret < 0) {
ath10k_err(ar, "failed to set regulator %s load: %d\n",
vreg_info->name, vreg_info->load_ua);
goto err_set_load;
}
}
ret = regulator_enable(vreg_info->reg);
if (ret) {
ath10k_err(ar, "failed to enable regulator %s\n",
vreg_info->name);
goto err_enable;
}
if (vreg_info->settle_delay)
udelay(vreg_info->settle_delay);
return 0;
err_enable:
regulator_set_load(vreg_info->reg, 0);
err_set_load:
regulator_set_voltage(vreg_info->reg, 0, vreg_info->max_v);
return ret;
}
static int __ath10k_snoc_vreg_off(struct ath10k *ar,
struct ath10k_vreg_info *vreg_info)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc regulator %s being disabled\n",
vreg_info->name);
ret = regulator_disable(vreg_info->reg);
if (ret)
ath10k_err(ar, "failed to disable regulator %s\n",
vreg_info->name);
ret = regulator_set_load(vreg_info->reg, 0);
if (ret < 0)
ath10k_err(ar, "failed to set load %s\n", vreg_info->name);
ret = regulator_set_voltage(vreg_info->reg, 0, vreg_info->max_v);
if (ret)
ath10k_err(ar, "failed to set voltage %s\n", vreg_info->name);
return ret;
}
static int ath10k_snoc_vreg_on(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_vreg_info *vreg_info;
int ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(vreg_cfg); i++) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
ret = __ath10k_snoc_vreg_on(ar, vreg_info);
if (ret)
goto err_reg_config;
}
return 0;
err_reg_config:
for (i = i - 1; i >= 0; i--) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
__ath10k_snoc_vreg_off(ar, vreg_info);
}
return ret;
}
static int ath10k_snoc_vreg_off(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_vreg_info *vreg_info;
int ret = 0;
int i;
for (i = ARRAY_SIZE(vreg_cfg) - 1; i >= 0; i--) {
vreg_info = &ar_snoc->vreg[i];
if (!vreg_info->reg)
continue;
ret = __ath10k_snoc_vreg_off(ar, vreg_info);
}
return ret;
}
static int ath10k_snoc_clk_init(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_clk_info *clk_info;
int ret = 0;
int i;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s being enabled\n",
clk_info->name);
if (clk_info->freq) {
ret = clk_set_rate(clk_info->handle, clk_info->freq);
if (ret) {
ath10k_err(ar, "failed to set clock %s freq %u\n",
clk_info->name, clk_info->freq);
goto err_clock_config;
}
}
ret = clk_prepare_enable(clk_info->handle);
if (ret) {
ath10k_err(ar, "failed to enable clock %s\n",
clk_info->name);
goto err_clock_config;
}
}
return 0;
err_clock_config:
for (i = i - 1; i >= 0; i--) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
clk_disable_unprepare(clk_info->handle);
}
return ret;
}
static int ath10k_snoc_clk_deinit(struct ath10k *ar)
{
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
struct ath10k_clk_info *clk_info;
int i;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
clk_info = &ar_snoc->clk[i];
if (!clk_info->handle)
continue;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc clock %s being disabled\n",
clk_info->name);
clk_disable_unprepare(clk_info->handle);
}
return 0;
}
static int ath10k_hw_power_on(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power on\n");
ret = ath10k_snoc_vreg_on(ar);
if (ret)
return ret;
ret = ath10k_snoc_clk_init(ar);
if (ret)
goto vreg_off;
return ret;
vreg_off:
ath10k_snoc_vreg_off(ar);
return ret;
}
static int ath10k_hw_power_off(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power off\n");
ath10k_snoc_clk_deinit(ar);
ret = ath10k_snoc_vreg_off(ar);
return ret;
}
static const struct of_device_id ath10k_snoc_dt_match[] = {
{ .compatible = "qcom,wcn3990-wifi",
.data = &drv_priv,
},
{ }
};
MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match);
static int ath10k_snoc_probe(struct platform_device *pdev)
{
const struct ath10k_snoc_drv_priv *drv_data;
const struct of_device_id *of_id;
struct ath10k_snoc *ar_snoc;
struct device *dev;
struct ath10k *ar;
u32 msa_size;
int ret;
u32 i;
of_id = of_match_device(ath10k_snoc_dt_match, &pdev->dev);
if (!of_id) {
dev_err(&pdev->dev, "failed to find matching device tree id\n");
return -EINVAL;
}
drv_data = of_id->data;
dev = &pdev->dev;
ret = dma_set_mask_and_coherent(dev, drv_data->dma_mask);
if (ret) {
dev_err(dev, "failed to set dma mask: %d", ret);
return ret;
}
ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC,
drv_data->hw_rev, &ath10k_snoc_hif_ops);
if (!ar) {
dev_err(dev, "failed to allocate core\n");
return -ENOMEM;
}
ar_snoc = ath10k_snoc_priv(ar);
ar_snoc->dev = pdev;
platform_set_drvdata(pdev, ar);
ar_snoc->ar = ar;
ar_snoc->ce.bus_ops = &ath10k_snoc_bus_ops;
ar->ce_priv = &ar_snoc->ce;
msa_size = drv_data->msa_size;
ret = ath10k_snoc_resource_init(ar);
if (ret) {
ath10k_warn(ar, "failed to initialize resource: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_snoc_setup_resource(ar);
if (ret) {
ath10k_warn(ar, "failed to setup resource: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_snoc_request_irq(ar);
if (ret) {
ath10k_warn(ar, "failed to request irqs: %d\n", ret);
goto err_release_resource;
}
ar_snoc->vreg = vreg_cfg;
for (i = 0; i < ARRAY_SIZE(vreg_cfg); i++) {
ret = ath10k_get_vreg_info(ar, dev, &ar_snoc->vreg[i]);
if (ret)
goto err_free_irq;
}
ar_snoc->clk = clk_cfg;
for (i = 0; i < ARRAY_SIZE(clk_cfg); i++) {
ret = ath10k_get_clk_info(ar, dev, &ar_snoc->clk[i]);
if (ret)
goto err_free_irq;
}
ret = ath10k_hw_power_on(ar);
if (ret) {
ath10k_err(ar, "failed to power on device: %d\n", ret);
goto err_free_irq;
}
ret = ath10k_qmi_init(ar, msa_size);
if (ret) {
ath10k_warn(ar, "failed to register wlfw qmi client: %d\n", ret);
goto err_core_destroy;
}
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc probe\n");
return 0;
err_free_irq:
ath10k_snoc_free_irq(ar);
err_release_resource:
ath10k_snoc_release_resource(ar);
err_core_destroy:
ath10k_core_destroy(ar);
return ret;
}
static int ath10k_snoc_remove(struct platform_device *pdev)
{
struct ath10k *ar = platform_get_drvdata(pdev);
struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc remove\n");
reinit_completion(&ar->driver_recovery);
if (test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags))
wait_for_completion_timeout(&ar->driver_recovery, 3 * HZ);
set_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags);
ath10k_core_unregister(ar);
ath10k_hw_power_off(ar);
ath10k_snoc_free_irq(ar);
ath10k_snoc_release_resource(ar);
ath10k_qmi_deinit(ar);
ath10k_core_destroy(ar);
return 0;
}
static struct platform_driver ath10k_snoc_driver = {
.probe = ath10k_snoc_probe,
.remove = ath10k_snoc_remove,
.driver = {
.name = "ath10k_snoc",
.of_match_table = ath10k_snoc_dt_match,
},
};
module_platform_driver(ath10k_snoc_driver);
MODULE_AUTHOR("Qualcomm");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");