linux/sound/pci/ymfpci/ymfpci_main.c

2458 lines
71 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Routines for control of YMF724/740/744/754 chips
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mutex.h>
#include <linux/module.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include "ymfpci.h"
#include <sound/asoundef.h>
#include <sound/mpu401.h>
#include <asm/byteorder.h>
/*
* common I/O routines
*/
static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);
static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
{
return readb(chip->reg_area_virt + offset);
}
static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
{
writeb(val, chip->reg_area_virt + offset);
}
static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
{
return readw(chip->reg_area_virt + offset);
}
static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
{
writew(val, chip->reg_area_virt + offset);
}
static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
{
return readl(chip->reg_area_virt + offset);
}
static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
{
writel(val, chip->reg_area_virt + offset);
}
static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
{
unsigned long end_time;
u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
end_time = jiffies + msecs_to_jiffies(750);
do {
if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
return 0;
schedule_timeout_uninterruptible(1);
} while (time_before(jiffies, end_time));
dev_err(chip->card->dev,
"codec_ready: codec %i is not ready [0x%x]\n",
secondary, snd_ymfpci_readw(chip, reg));
return -EBUSY;
}
static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
{
struct snd_ymfpci *chip = ac97->private_data;
u32 cmd;
snd_ymfpci_codec_ready(chip, 0);
cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
}
static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
{
struct snd_ymfpci *chip = ac97->private_data;
if (snd_ymfpci_codec_ready(chip, 0))
return ~0;
snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
if (snd_ymfpci_codec_ready(chip, 0))
return ~0;
if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
int i;
for (i = 0; i < 600; i++)
snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
}
return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
}
/*
* Misc routines
*/
static u32 snd_ymfpci_calc_delta(u32 rate)
{
switch (rate) {
case 8000: return 0x02aaab00;
case 11025: return 0x03accd00;
case 16000: return 0x05555500;
case 22050: return 0x07599a00;
case 32000: return 0x0aaaab00;
case 44100: return 0x0eb33300;
default: return ((rate << 16) / 375) << 5;
}
}
static u32 def_rate[8] = {
100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
};
static u32 snd_ymfpci_calc_lpfK(u32 rate)
{
u32 i;
static u32 val[8] = {
0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
};
if (rate == 44100)
return 0x40000000; /* FIXME: What's the right value? */
for (i = 0; i < 8; i++)
if (rate <= def_rate[i])
return val[i];
return val[0];
}
static u32 snd_ymfpci_calc_lpfQ(u32 rate)
{
u32 i;
static u32 val[8] = {
0x35280000, 0x34A70000, 0x32020000, 0x31770000,
0x31390000, 0x31C90000, 0x33D00000, 0x40000000
};
if (rate == 44100)
return 0x370A0000;
for (i = 0; i < 8; i++)
if (rate <= def_rate[i])
return val[i];
return val[0];
}
/*
* Hardware start management
*/
static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
{
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
if (chip->start_count++ > 0)
goto __end;
snd_ymfpci_writel(chip, YDSXGR_MODE,
snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
__end:
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
{
unsigned long flags;
long timeout = 1000;
spin_lock_irqsave(&chip->reg_lock, flags);
if (--chip->start_count > 0)
goto __end;
snd_ymfpci_writel(chip, YDSXGR_MODE,
snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
while (timeout-- > 0) {
if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
break;
}
if (atomic_read(&chip->interrupt_sleep_count)) {
atomic_set(&chip->interrupt_sleep_count, 0);
wake_up(&chip->interrupt_sleep);
}
__end:
spin_unlock_irqrestore(&chip->reg_lock, flags);
}
/*
* Playback voice management
*/
static int voice_alloc(struct snd_ymfpci *chip,
enum snd_ymfpci_voice_type type, int pair,
struct snd_ymfpci_voice **rvoice)
{
struct snd_ymfpci_voice *voice, *voice2;
int idx;
*rvoice = NULL;
for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
voice = &chip->voices[idx];
voice2 = pair ? &chip->voices[idx+1] : NULL;
if (voice->use || (voice2 && voice2->use))
continue;
voice->use = 1;
if (voice2)
voice2->use = 1;
switch (type) {
case YMFPCI_PCM:
voice->pcm = 1;
if (voice2)
voice2->pcm = 1;
break;
case YMFPCI_SYNTH:
voice->synth = 1;
break;
case YMFPCI_MIDI:
voice->midi = 1;
break;
}
snd_ymfpci_hw_start(chip);
if (voice2)
snd_ymfpci_hw_start(chip);
*rvoice = voice;
return 0;
}
return -ENOMEM;
}
static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
enum snd_ymfpci_voice_type type, int pair,
struct snd_ymfpci_voice **rvoice)
{
unsigned long flags;
int result;
if (snd_BUG_ON(!rvoice))
return -EINVAL;
if (snd_BUG_ON(pair && type != YMFPCI_PCM))
return -EINVAL;
spin_lock_irqsave(&chip->voice_lock, flags);
for (;;) {
result = voice_alloc(chip, type, pair, rvoice);
if (result == 0 || type != YMFPCI_PCM)
break;
/* TODO: synth/midi voice deallocation */
break;
}
spin_unlock_irqrestore(&chip->voice_lock, flags);
return result;
}
static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
{
unsigned long flags;
if (snd_BUG_ON(!pvoice))
return -EINVAL;
snd_ymfpci_hw_stop(chip);
spin_lock_irqsave(&chip->voice_lock, flags);
if (pvoice->number == chip->src441_used) {
chip->src441_used = -1;
pvoice->ypcm->use_441_slot = 0;
}
pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
pvoice->ypcm = NULL;
pvoice->interrupt = NULL;
spin_unlock_irqrestore(&chip->voice_lock, flags);
return 0;
}
/*
* PCM part
*/
static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
{
struct snd_ymfpci_pcm *ypcm;
u32 pos, delta;
if ((ypcm = voice->ypcm) == NULL)
return;
if (ypcm->substream == NULL)
return;
spin_lock(&chip->reg_lock);
if (ypcm->running) {
pos = le32_to_cpu(voice->bank[chip->active_bank].start);
if (pos < ypcm->last_pos)
delta = pos + (ypcm->buffer_size - ypcm->last_pos);
else
delta = pos - ypcm->last_pos;
ypcm->period_pos += delta;
ypcm->last_pos = pos;
if (ypcm->period_pos >= ypcm->period_size) {
/*
dev_dbg(chip->card->dev,
"done - active_bank = 0x%x, start = 0x%x\n",
chip->active_bank,
voice->bank[chip->active_bank].start);
*/
ypcm->period_pos %= ypcm->period_size;
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(ypcm->substream);
spin_lock(&chip->reg_lock);
}
if (unlikely(ypcm->update_pcm_vol)) {
unsigned int subs = ypcm->substream->number;
unsigned int next_bank = 1 - chip->active_bank;
struct snd_ymfpci_playback_bank *bank;
u32 volume;
bank = &voice->bank[next_bank];
volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
bank->left_gain_end = volume;
if (ypcm->output_rear)
bank->eff2_gain_end = volume;
if (ypcm->voices[1])
bank = &ypcm->voices[1]->bank[next_bank];
volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
bank->right_gain_end = volume;
if (ypcm->output_rear)
bank->eff3_gain_end = volume;
ypcm->update_pcm_vol--;
}
}
spin_unlock(&chip->reg_lock);
}
static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
struct snd_ymfpci *chip = ypcm->chip;
u32 pos, delta;
spin_lock(&chip->reg_lock);
if (ypcm->running) {
pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
if (pos < ypcm->last_pos)
delta = pos + (ypcm->buffer_size - ypcm->last_pos);
else
delta = pos - ypcm->last_pos;
ypcm->period_pos += delta;
ypcm->last_pos = pos;
if (ypcm->period_pos >= ypcm->period_size) {
ypcm->period_pos %= ypcm->period_size;
/*
dev_dbg(chip->card->dev,
"done - active_bank = 0x%x, start = 0x%x\n",
chip->active_bank,
voice->bank[chip->active_bank].start);
*/
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(substream);
spin_lock(&chip->reg_lock);
}
}
spin_unlock(&chip->reg_lock);
}
static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
struct snd_kcontrol *kctl = NULL;
int result = 0;
spin_lock(&chip->reg_lock);
if (ypcm->voices[0] == NULL) {
result = -EINVAL;
goto __unlock;
}
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
ypcm->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
kctl = chip->pcm_mixer[substream->number].ctl;
kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
}
/* fall through */
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
ypcm->running = 0;
break;
default:
result = -EINVAL;
break;
}
__unlock:
spin_unlock(&chip->reg_lock);
if (kctl)
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
return result;
}
static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
int result = 0;
u32 tmp;
spin_lock(&chip->reg_lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
ypcm->running = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
ypcm->running = 0;
break;
default:
result = -EINVAL;
break;
}
spin_unlock(&chip->reg_lock);
return result;
}
static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
{
int err;
if (ypcm->voices[1] != NULL && voices < 2) {
snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
ypcm->voices[1] = NULL;
}
if (voices == 1 && ypcm->voices[0] != NULL)
return 0; /* already allocated */
if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
return 0; /* already allocated */
if (voices > 1) {
if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
ypcm->voices[0] = NULL;
}
}
err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
if (err < 0)
return err;
ypcm->voices[0]->ypcm = ypcm;
ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
if (voices > 1) {
ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
ypcm->voices[1]->ypcm = ypcm;
}
return 0;
}
static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
struct snd_pcm_runtime *runtime,
int has_pcm_volume)
{
struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
u32 format;
u32 delta = snd_ymfpci_calc_delta(runtime->rate);
u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
struct snd_ymfpci_playback_bank *bank;
unsigned int nbank;
u32 vol_left, vol_right;
u8 use_left, use_right;
unsigned long flags;
if (snd_BUG_ON(!voice))
return;
if (runtime->channels == 1) {
use_left = 1;
use_right = 1;
} else {
use_left = (voiceidx & 1) == 0;
use_right = !use_left;
}
if (has_pcm_volume) {
vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
[ypcm->substream->number].left << 15);
vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
[ypcm->substream->number].right << 15);
} else {
vol_left = cpu_to_le32(0x40000000);
vol_right = cpu_to_le32(0x40000000);
}
spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
format = runtime->channels == 2 ? 0x00010000 : 0;
if (snd_pcm_format_width(runtime->format) == 8)
format |= 0x80000000;
else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
runtime->rate == 44100 && runtime->channels == 2 &&
voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
ypcm->chip->src441_used == voice->number)) {
ypcm->chip->src441_used = voice->number;
ypcm->use_441_slot = 1;
format |= 0x10000000;
}
if (ypcm->chip->src441_used == voice->number &&
(format & 0x10000000) == 0) {
ypcm->chip->src441_used = -1;
ypcm->use_441_slot = 0;
}
if (runtime->channels == 2 && (voiceidx & 1) != 0)
format |= 1;
spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
for (nbank = 0; nbank < 2; nbank++) {
bank = &voice->bank[nbank];
memset(bank, 0, sizeof(*bank));
bank->format = cpu_to_le32(format);
bank->base = cpu_to_le32(runtime->dma_addr);
bank->loop_end = cpu_to_le32(ypcm->buffer_size);
bank->lpfQ = cpu_to_le32(lpfQ);
bank->delta =
bank->delta_end = cpu_to_le32(delta);
bank->lpfK =
bank->lpfK_end = cpu_to_le32(lpfK);
bank->eg_gain =
bank->eg_gain_end = cpu_to_le32(0x40000000);
if (ypcm->output_front) {
if (use_left) {
bank->left_gain =
bank->left_gain_end = vol_left;
}
if (use_right) {
bank->right_gain =
bank->right_gain_end = vol_right;
}
}
if (ypcm->output_rear) {
if (!ypcm->swap_rear) {
if (use_left) {
bank->eff2_gain =
bank->eff2_gain_end = vol_left;
}
if (use_right) {
bank->eff3_gain =
bank->eff3_gain_end = vol_right;
}
} else {
/* The SPDIF out channels seem to be swapped, so we have
* to swap them here, too. The rear analog out channels
* will be wrong, but otherwise AC3 would not work.
*/
if (use_left) {
bank->eff3_gain =
bank->eff3_gain_end = vol_left;
}
if (use_right) {
bank->eff2_gain =
bank->eff2_gain_end = vol_right;
}
}
}
}
}
static int snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
{
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
4096, &chip->ac3_tmp_base) < 0)
return -ENOMEM;
chip->bank_effect[3][0]->base =
chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
chip->bank_effect[3][0]->loop_end =
chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
chip->bank_effect[4][0]->base =
chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
chip->bank_effect[4][0]->loop_end =
chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);
spin_lock_irq(&chip->reg_lock);
snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
{
spin_lock_irq(&chip->reg_lock);
snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
spin_unlock_irq(&chip->reg_lock);
// snd_ymfpci_irq_wait(chip);
if (chip->ac3_tmp_base.area) {
snd_dma_free_pages(&chip->ac3_tmp_base);
chip->ac3_tmp_base.area = NULL;
}
return 0;
}
static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
int err;
if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
return err;
if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
return err;
return 0;
}
static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
if (runtime->private_data == NULL)
return 0;
ypcm = runtime->private_data;
/* wait, until the PCI operations are not finished */
snd_ymfpci_irq_wait(chip);
snd_pcm_lib_free_pages(substream);
if (ypcm->voices[1]) {
snd_ymfpci_voice_free(chip, ypcm->voices[1]);
ypcm->voices[1] = NULL;
}
if (ypcm->voices[0]) {
snd_ymfpci_voice_free(chip, ypcm->voices[0]);
ypcm->voices[0] = NULL;
}
return 0;
}
static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
struct snd_kcontrol *kctl;
unsigned int nvoice;
ypcm->period_size = runtime->period_size;
ypcm->buffer_size = runtime->buffer_size;
ypcm->period_pos = 0;
ypcm->last_pos = 0;
for (nvoice = 0; nvoice < runtime->channels; nvoice++)
snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
substream->pcm == chip->pcm);
if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
kctl = chip->pcm_mixer[substream->number].ctl;
kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
}
return 0;
}
static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
/* wait, until the PCI operations are not finished */
snd_ymfpci_irq_wait(chip);
return snd_pcm_lib_free_pages(substream);
}
static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
struct snd_ymfpci_capture_bank * bank;
int nbank;
u32 rate, format;
ypcm->period_size = runtime->period_size;
ypcm->buffer_size = runtime->buffer_size;
ypcm->period_pos = 0;
ypcm->last_pos = 0;
ypcm->shift = 0;
rate = ((48000 * 4096) / runtime->rate) - 1;
format = 0;
if (runtime->channels == 2) {
format |= 2;
ypcm->shift++;
}
if (snd_pcm_format_width(runtime->format) == 8)
format |= 1;
else
ypcm->shift++;
switch (ypcm->capture_bank_number) {
case 0:
snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
break;
case 1:
snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
break;
}
for (nbank = 0; nbank < 2; nbank++) {
bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
bank->base = cpu_to_le32(runtime->dma_addr);
bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
bank->start = 0;
bank->num_of_loops = 0;
}
return 0;
}
static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
struct snd_ymfpci_voice *voice = ypcm->voices[0];
if (!(ypcm->running && voice))
return 0;
return le32_to_cpu(voice->bank[chip->active_bank].start);
}
static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
if (!ypcm->running)
return 0;
return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
}
static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
{
wait_queue_entry_t wait;
int loops = 4;
while (loops-- > 0) {
if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
continue;
init_waitqueue_entry(&wait, current);
add_wait_queue(&chip->interrupt_sleep, &wait);
atomic_inc(&chip->interrupt_sleep_count);
schedule_timeout_uninterruptible(msecs_to_jiffies(50));
remove_wait_queue(&chip->interrupt_sleep, &wait);
}
}
static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
{
struct snd_ymfpci *chip = dev_id;
u32 status, nvoice, mode;
struct snd_ymfpci_voice *voice;
status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
if (status & 0x80000000) {
chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
spin_lock(&chip->voice_lock);
for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
voice = &chip->voices[nvoice];
if (voice->interrupt)
voice->interrupt(chip, voice);
}
for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
if (chip->capture_substream[nvoice])
snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
}
#if 0
for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
if (chip->effect_substream[nvoice])
snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
}
#endif
spin_unlock(&chip->voice_lock);
spin_lock(&chip->reg_lock);
snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
spin_unlock(&chip->reg_lock);
if (atomic_read(&chip->interrupt_sleep_count)) {
atomic_set(&chip->interrupt_sleep_count, 0);
wake_up(&chip->interrupt_sleep);
}
}
status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
if (status & 1) {
if (chip->timer)
snd_timer_interrupt(chip->timer, chip->timer_ticks);
}
snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);
if (chip->rawmidi)
snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
return IRQ_HANDLED;
}
static struct snd_pcm_hardware snd_ymfpci_playback =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
.period_bytes_min = 64,
.period_bytes_max = 256 * 1024, /* FIXME: enough? */
.periods_min = 3,
.periods_max = 1024,
.fifo_size = 0,
};
static struct snd_pcm_hardware snd_ymfpci_capture =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
.rate_min = 8000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = 256 * 1024, /* FIXME: enough? */
.period_bytes_min = 64,
.period_bytes_max = 256 * 1024, /* FIXME: enough? */
.periods_min = 3,
.periods_max = 1024,
.fifo_size = 0,
};
static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
kfree(runtime->private_data);
}
static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
int err;
runtime->hw = snd_ymfpci_playback;
/* FIXME? True value is 256/48 = 5.33333 ms */
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5334, UINT_MAX);
if (err < 0)
return err;
err = snd_pcm_hw_rule_noresample(runtime, 48000);
if (err < 0)
return err;
ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
if (ypcm == NULL)
return -ENOMEM;
ypcm->chip = chip;
ypcm->type = PLAYBACK_VOICE;
ypcm->substream = substream;
runtime->private_data = ypcm;
runtime->private_free = snd_ymfpci_pcm_free_substream;
return 0;
}
/* call with spinlock held */
static void ymfpci_open_extension(struct snd_ymfpci *chip)
{
if (! chip->rear_opened) {
if (! chip->spdif_opened) /* set AC3 */
snd_ymfpci_writel(chip, YDSXGR_MODE,
snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
/* enable second codec (4CHEN) */
snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
(snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
}
}
/* call with spinlock held */
static void ymfpci_close_extension(struct snd_ymfpci *chip)
{
if (! chip->rear_opened) {
if (! chip->spdif_opened)
snd_ymfpci_writel(chip, YDSXGR_MODE,
snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
(snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
}
}
static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
int err;
if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
return err;
ypcm = runtime->private_data;
ypcm->output_front = 1;
ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
ypcm->swap_rear = 0;
spin_lock_irq(&chip->reg_lock);
if (ypcm->output_rear) {
ymfpci_open_extension(chip);
chip->rear_opened++;
}
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
int err;
if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
return err;
ypcm = runtime->private_data;
ypcm->output_front = 0;
ypcm->output_rear = 1;
ypcm->swap_rear = 1;
spin_lock_irq(&chip->reg_lock);
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
ymfpci_open_extension(chip);
chip->spdif_pcm_bits = chip->spdif_bits;
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
chip->spdif_opened++;
spin_unlock_irq(&chip->reg_lock);
chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
return 0;
}
static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
int err;
if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
return err;
ypcm = runtime->private_data;
ypcm->output_front = 0;
ypcm->output_rear = 1;
ypcm->swap_rear = 0;
spin_lock_irq(&chip->reg_lock);
ymfpci_open_extension(chip);
chip->rear_opened++;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
u32 capture_bank_number)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm;
int err;
runtime->hw = snd_ymfpci_capture;
/* FIXME? True value is 256/48 = 5.33333 ms */
err = snd_pcm_hw_constraint_minmax(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_TIME,
5334, UINT_MAX);
if (err < 0)
return err;
err = snd_pcm_hw_rule_noresample(runtime, 48000);
if (err < 0)
return err;
ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
if (ypcm == NULL)
return -ENOMEM;
ypcm->chip = chip;
ypcm->type = capture_bank_number + CAPTURE_REC;
ypcm->substream = substream;
ypcm->capture_bank_number = capture_bank_number;
chip->capture_substream[capture_bank_number] = substream;
runtime->private_data = ypcm;
runtime->private_free = snd_ymfpci_pcm_free_substream;
snd_ymfpci_hw_start(chip);
return 0;
}
static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
{
return snd_ymfpci_capture_open(substream, 0);
}
static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
{
return snd_ymfpci_capture_open(substream, 1);
}
static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
{
return 0;
}
static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
spin_lock_irq(&chip->reg_lock);
if (ypcm->output_rear && chip->rear_opened > 0) {
chip->rear_opened--;
ymfpci_close_extension(chip);
}
spin_unlock_irq(&chip->reg_lock);
return snd_ymfpci_playback_close_1(substream);
}
static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
chip->spdif_opened = 0;
ymfpci_close_extension(chip);
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
spin_unlock_irq(&chip->reg_lock);
chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
return snd_ymfpci_playback_close_1(substream);
}
static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
spin_lock_irq(&chip->reg_lock);
if (chip->rear_opened > 0) {
chip->rear_opened--;
ymfpci_close_extension(chip);
}
spin_unlock_irq(&chip->reg_lock);
return snd_ymfpci_playback_close_1(substream);
}
static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
{
struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct snd_ymfpci_pcm *ypcm = runtime->private_data;
if (ypcm != NULL) {
chip->capture_substream[ypcm->capture_bank_number] = NULL;
snd_ymfpci_hw_stop(chip);
}
return 0;
}
static const struct snd_pcm_ops snd_ymfpci_playback_ops = {
.open = snd_ymfpci_playback_open,
.close = snd_ymfpci_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ymfpci_playback_hw_params,
.hw_free = snd_ymfpci_playback_hw_free,
.prepare = snd_ymfpci_playback_prepare,
.trigger = snd_ymfpci_playback_trigger,
.pointer = snd_ymfpci_playback_pointer,
};
static const struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
.open = snd_ymfpci_capture_rec_open,
.close = snd_ymfpci_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ymfpci_capture_hw_params,
.hw_free = snd_ymfpci_capture_hw_free,
.prepare = snd_ymfpci_capture_prepare,
.trigger = snd_ymfpci_capture_trigger,
.pointer = snd_ymfpci_capture_pointer,
};
int snd_ymfpci_pcm(struct snd_ymfpci *chip, int device)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
return err;
pcm->private_data = chip;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);
/* global setup */
pcm->info_flags = 0;
strcpy(pcm->name, "YMFPCI");
chip->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
snd_pcm_std_chmaps, 2, 0, NULL);
}
static const struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
.open = snd_ymfpci_capture_ac97_open,
.close = snd_ymfpci_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ymfpci_capture_hw_params,
.hw_free = snd_ymfpci_capture_hw_free,
.prepare = snd_ymfpci_capture_prepare,
.trigger = snd_ymfpci_capture_trigger,
.pointer = snd_ymfpci_capture_pointer,
};
int snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
return err;
pcm->private_data = chip;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);
/* global setup */
pcm->info_flags = 0;
sprintf(pcm->name, "YMFPCI - %s",
chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
chip->pcm2 = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
return 0;
}
static const struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
.open = snd_ymfpci_playback_spdif_open,
.close = snd_ymfpci_playback_spdif_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ymfpci_playback_hw_params,
.hw_free = snd_ymfpci_playback_hw_free,
.prepare = snd_ymfpci_playback_prepare,
.trigger = snd_ymfpci_playback_trigger,
.pointer = snd_ymfpci_playback_pointer,
};
int snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
return err;
pcm->private_data = chip;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);
/* global setup */
pcm->info_flags = 0;
strcpy(pcm->name, "YMFPCI - IEC958");
chip->pcm_spdif = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
return 0;
}
static const struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
.open = snd_ymfpci_playback_4ch_open,
.close = snd_ymfpci_playback_4ch_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_ymfpci_playback_hw_params,
.hw_free = snd_ymfpci_playback_hw_free,
.prepare = snd_ymfpci_playback_prepare,
.trigger = snd_ymfpci_playback_trigger,
.pointer = snd_ymfpci_playback_pointer,
};
static const struct snd_pcm_chmap_elem surround_map[] = {
{ .channels = 1,
.map = { SNDRV_CHMAP_MONO } },
{ .channels = 2,
.map = { SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
{ }
};
int snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
return err;
pcm->private_data = chip;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);
/* global setup */
pcm->info_flags = 0;
strcpy(pcm->name, "YMFPCI - Rear PCM");
chip->pcm_4ch = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(chip->pci), 64*1024, 256*1024);
return snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
surround_map, 2, 0, NULL);
}
static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&chip->reg_lock);
ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
(ucontrol->value.iec958.status[1] << 8);
spin_lock_irq(&chip->reg_lock);
change = chip->spdif_bits != val;
chip->spdif_bits = val;
if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
spin_unlock_irq(&chip->reg_lock);
return change;
}
static const struct snd_kcontrol_new snd_ymfpci_spdif_default =
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_ymfpci_spdif_default_info,
.get = snd_ymfpci_spdif_default_get,
.put = snd_ymfpci_spdif_default_put
};
static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&chip->reg_lock);
ucontrol->value.iec958.status[0] = 0x3e;
ucontrol->value.iec958.status[1] = 0xff;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static const struct snd_kcontrol_new snd_ymfpci_spdif_mask =
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_ymfpci_spdif_mask_info,
.get = snd_ymfpci_spdif_mask_get,
};
static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&chip->reg_lock);
ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
spin_unlock_irq(&chip->reg_lock);
return 0;
}
static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
(ucontrol->value.iec958.status[1] << 8);
spin_lock_irq(&chip->reg_lock);
change = chip->spdif_pcm_bits != val;
chip->spdif_pcm_bits = val;
if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
spin_unlock_irq(&chip->reg_lock);
return change;
}
static const struct snd_kcontrol_new snd_ymfpci_spdif_stream =
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_ymfpci_spdif_stream_info,
.get = snd_ymfpci_spdif_stream_get,
.put = snd_ymfpci_spdif_stream_put
};
static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
{
static const char *const texts[3] = {"AC'97", "IEC958", "ZV Port"};
return snd_ctl_enum_info(info, 1, 3, texts);
}
static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
u16 reg;
spin_lock_irq(&chip->reg_lock);
reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
spin_unlock_irq(&chip->reg_lock);
if (!(reg & 0x100))
value->value.enumerated.item[0] = 0;
else
value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
return 0;
}
static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
u16 reg, old_reg;
spin_lock_irq(&chip->reg_lock);
old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
if (value->value.enumerated.item[0] == 0)
reg = old_reg & ~0x100;
else
reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
spin_unlock_irq(&chip->reg_lock);
return reg != old_reg;
}
static const struct snd_kcontrol_new snd_ymfpci_drec_source = {
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Direct Recording Source",
.info = snd_ymfpci_drec_source_info,
.get = snd_ymfpci_drec_source_get,
.put = snd_ymfpci_drec_source_put
};
/*
* Mixer controls
*/
#define YMFPCI_SINGLE(xname, xindex, reg, shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.info = snd_ymfpci_info_single, \
.get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
.private_value = ((reg) | ((shift) << 16)) }
#define snd_ymfpci_info_single snd_ctl_boolean_mono_info
static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xffff;
unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
unsigned int mask = 1;
switch (reg) {
case YDSXGR_SPDIFOUTCTRL: break;
case YDSXGR_SPDIFINCTRL: break;
default: return -EINVAL;
}
ucontrol->value.integer.value[0] =
(snd_ymfpci_readl(chip, reg) >> shift) & mask;
return 0;
}
static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
int reg = kcontrol->private_value & 0xffff;
unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
unsigned int mask = 1;
int change;
unsigned int val, oval;
switch (reg) {
case YDSXGR_SPDIFOUTCTRL: break;
case YDSXGR_SPDIFINCTRL: break;
default: return -EINVAL;
}
val = (ucontrol->value.integer.value[0] & mask);
val <<= shift;
spin_lock_irq(&chip->reg_lock);
oval = snd_ymfpci_readl(chip, reg);
val = (oval & ~(mask << shift)) | val;
change = val != oval;
snd_ymfpci_writel(chip, reg, val);
spin_unlock_irq(&chip->reg_lock);
return change;
}
static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);
#define YMFPCI_DOUBLE(xname, xindex, reg) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.info = snd_ymfpci_info_double, \
.get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
.private_value = reg, \
.tlv = { .p = db_scale_native } }
static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
unsigned int reg = kcontrol->private_value;
if (reg < 0x80 || reg >= 0xc0)
return -EINVAL;
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 16383;
return 0;
}
static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int reg = kcontrol->private_value;
unsigned int shift_left = 0, shift_right = 16, mask = 16383;
unsigned int val;
if (reg < 0x80 || reg >= 0xc0)
return -EINVAL;
spin_lock_irq(&chip->reg_lock);
val = snd_ymfpci_readl(chip, reg);
spin_unlock_irq(&chip->reg_lock);
ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
return 0;
}
static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int reg = kcontrol->private_value;
unsigned int shift_left = 0, shift_right = 16, mask = 16383;
int change;
unsigned int val1, val2, oval;
if (reg < 0x80 || reg >= 0xc0)
return -EINVAL;
val1 = ucontrol->value.integer.value[0] & mask;
val2 = ucontrol->value.integer.value[1] & mask;
val1 <<= shift_left;
val2 <<= shift_right;
spin_lock_irq(&chip->reg_lock);
oval = snd_ymfpci_readl(chip, reg);
val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
change = val1 != oval;
snd_ymfpci_writel(chip, reg, val1);
spin_unlock_irq(&chip->reg_lock);
return change;
}
static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
unsigned int reg2 = YDSXGR_BUF441OUTVOL;
int change;
unsigned int value, oval;
value = ucontrol->value.integer.value[0] & 0x3fff;
value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
spin_lock_irq(&chip->reg_lock);
oval = snd_ymfpci_readl(chip, reg);
change = value != oval;
snd_ymfpci_writel(chip, reg, value);
snd_ymfpci_writel(chip, reg2, value);
spin_unlock_irq(&chip->reg_lock);
return change;
}
/*
* 4ch duplication
*/
#define snd_ymfpci_info_dup4ch snd_ctl_boolean_mono_info
static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = chip->mode_dup4ch;
return 0;
}
static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
int change;
change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
if (change)
chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
return change;
}
static const struct snd_kcontrol_new snd_ymfpci_dup4ch = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "4ch Duplication",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_ymfpci_info_dup4ch,
.get = snd_ymfpci_get_dup4ch,
.put = snd_ymfpci_put_dup4ch,
};
static struct snd_kcontrol_new snd_ymfpci_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Wave Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = snd_ymfpci_info_double,
.get = snd_ymfpci_get_double,
.put = snd_ymfpci_put_nativedacvol,
.private_value = YDSXGR_NATIVEDACOUTVOL,
.tlv = { .p = db_scale_native },
},
YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
YMFPCI_DOUBLE("FM Legacy Playback Volume", 0, YDSXGR_LEGACYOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
};
/*
* GPIO
*/
static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
{
u16 reg, mode;
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
reg &= ~(1 << (pin + 8));
reg |= (1 << pin);
snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
/* set the level mode for input line */
mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
mode &= ~(3 << (pin * 2));
snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return (mode >> pin) & 1;
}
static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
{
u16 reg;
unsigned long flags;
spin_lock_irqsave(&chip->reg_lock, flags);
reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
reg &= ~(1 << pin);
reg &= ~(1 << (pin + 8));
snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
#define snd_ymfpci_gpio_sw_info snd_ctl_boolean_mono_info
static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
int pin = (int)kcontrol->private_value;
ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
return 0;
}
static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
int pin = (int)kcontrol->private_value;
if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
return 1;
}
return 0;
}
static const struct snd_kcontrol_new snd_ymfpci_rear_shared = {
.name = "Shared Rear/Line-In Switch",
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.info = snd_ymfpci_gpio_sw_info,
.get = snd_ymfpci_gpio_sw_get,
.put = snd_ymfpci_gpio_sw_put,
.private_value = 2,
};
/*
* PCM voice volume
*/
static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 0x8000;
return 0;
}
static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int subs = kcontrol->id.subdevice;
ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
return 0;
}
static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
unsigned int subs = kcontrol->id.subdevice;
struct snd_pcm_substream *substream;
unsigned long flags;
if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
if (chip->pcm_mixer[subs].left > 0x8000)
chip->pcm_mixer[subs].left = 0x8000;
if (chip->pcm_mixer[subs].right > 0x8000)
chip->pcm_mixer[subs].right = 0x8000;
substream = (struct snd_pcm_substream *)kcontrol->private_value;
spin_lock_irqsave(&chip->voice_lock, flags);
if (substream->runtime && substream->runtime->private_data) {
struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
if (!ypcm->use_441_slot)
ypcm->update_pcm_vol = 2;
}
spin_unlock_irqrestore(&chip->voice_lock, flags);
return 1;
}
return 0;
}
static const struct snd_kcontrol_new snd_ymfpci_pcm_volume = {
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = "PCM Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.info = snd_ymfpci_pcm_vol_info,
.get = snd_ymfpci_pcm_vol_get,
.put = snd_ymfpci_pcm_vol_put,
};
/*
* Mixer routines
*/
static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
struct snd_ymfpci *chip = bus->private_data;
chip->ac97_bus = NULL;
}
static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
{
struct snd_ymfpci *chip = ac97->private_data;
chip->ac97 = NULL;
}
int snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
{
struct snd_ac97_template ac97;
struct snd_kcontrol *kctl;
struct snd_pcm_substream *substream;
unsigned int idx;
int err;
static struct snd_ac97_bus_ops ops = {
.write = snd_ymfpci_codec_write,
.read = snd_ymfpci_codec_read,
};
if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
return err;
chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = chip;
ac97.private_free = snd_ymfpci_mixer_free_ac97;
if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
return err;
/* to be sure */
snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
AC97_EA_VRA|AC97_EA_VRM, 0);
for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
return err;
}
if (chip->ac97->ext_id & AC97_EI_SDAC) {
kctl = snd_ctl_new1(&snd_ymfpci_dup4ch, chip);
err = snd_ctl_add(chip->card, kctl);
if (err < 0)
return err;
}
/* add S/PDIF control */
if (snd_BUG_ON(!chip->pcm_spdif))
return -ENXIO;
if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
return err;
kctl->id.device = chip->pcm_spdif->device;
if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
return err;
kctl->id.device = chip->pcm_spdif->device;
if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
return err;
kctl->id.device = chip->pcm_spdif->device;
chip->spdif_pcm_ctl = kctl;
/* direct recording source */
if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
(err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
return err;
/*
* shared rear/line-in
*/
if (rear_switch) {
if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
return err;
}
/* per-voice volume */
substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
for (idx = 0; idx < 32; ++idx) {
kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
if (!kctl)
return -ENOMEM;
kctl->id.device = chip->pcm->device;
kctl->id.subdevice = idx;
kctl->private_value = (unsigned long)substream;
if ((err = snd_ctl_add(chip->card, kctl)) < 0)
return err;
chip->pcm_mixer[idx].left = 0x8000;
chip->pcm_mixer[idx].right = 0x8000;
chip->pcm_mixer[idx].ctl = kctl;
substream = substream->next;
}
return 0;
}
/*
* timer
*/
static int snd_ymfpci_timer_start(struct snd_timer *timer)
{
struct snd_ymfpci *chip;
unsigned long flags;
unsigned int count;
chip = snd_timer_chip(timer);
spin_lock_irqsave(&chip->reg_lock, flags);
if (timer->sticks > 1) {
chip->timer_ticks = timer->sticks;
count = timer->sticks - 1;
} else {
/*
* Divisor 1 is not allowed; fake it by using divisor 2 and
* counting two ticks for each interrupt.
*/
chip->timer_ticks = 2;
count = 2 - 1;
}
snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
static int snd_ymfpci_timer_stop(struct snd_timer *timer)
{
struct snd_ymfpci *chip;
unsigned long flags;
chip = snd_timer_chip(timer);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
spin_unlock_irqrestore(&chip->reg_lock, flags);
return 0;
}
static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
unsigned long *num, unsigned long *den)
{
*num = 1;
*den = 96000;
return 0;
}
static struct snd_timer_hardware snd_ymfpci_timer_hw = {
.flags = SNDRV_TIMER_HW_AUTO,
.resolution = 10417, /* 1 / 96 kHz = 10.41666...us */
.ticks = 0x10000,
.start = snd_ymfpci_timer_start,
.stop = snd_ymfpci_timer_stop,
.precise_resolution = snd_ymfpci_timer_precise_resolution,
};
int snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
{
struct snd_timer *timer = NULL;
struct snd_timer_id tid;
int err;
tid.dev_class = SNDRV_TIMER_CLASS_CARD;
tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
tid.card = chip->card->number;
tid.device = device;
tid.subdevice = 0;
if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
strcpy(timer->name, "YMFPCI timer");
timer->private_data = chip;
timer->hw = snd_ymfpci_timer_hw;
}
chip->timer = timer;
return err;
}
/*
* proc interface
*/
static void snd_ymfpci_proc_read(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct snd_ymfpci *chip = entry->private_data;
int i;
snd_iprintf(buffer, "YMFPCI\n\n");
for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
}
static int snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(card, "ymfpci", &entry))
snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
return 0;
}
/*
* initialization routines
*/
static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
{
u8 cmd;
pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
#if 0 // force to reset
if (cmd & 0x03) {
#endif
pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
#if 0
}
#endif
}
static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
{
snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
}
static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
{
u32 val;
int timeout = 1000;
val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
if (val)
snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
while (timeout-- > 0) {
val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
if ((val & 0x00000002) == 0)
break;
}
}
static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
{
int err, is_1e;
const char *name;
err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
&chip->pci->dev);
if (err >= 0) {
if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
dev_err(chip->card->dev,
"DSP microcode has wrong size\n");
err = -EINVAL;
}
}
if (err < 0)
return err;
is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
err = request_firmware(&chip->controller_microcode, name,
&chip->pci->dev);
if (err >= 0) {
if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
dev_err(chip->card->dev,
"controller microcode has wrong size\n");
err = -EINVAL;
}
}
if (err < 0)
return err;
return 0;
}
MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");
static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
{
int i;
u16 ctrl;
const __le32 *inst;
snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
snd_ymfpci_disable_dsp(chip);
snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
/* setup DSP instruction code */
inst = (const __le32 *)chip->dsp_microcode->data;
for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
le32_to_cpu(inst[i]));
/* setup control instruction code */
inst = (const __le32 *)chip->controller_microcode->data;
for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
le32_to_cpu(inst[i]));
snd_ymfpci_enable_dsp(chip);
}
static int snd_ymfpci_memalloc(struct snd_ymfpci *chip)
{
long size, playback_ctrl_size;
int voice, bank, reg;
u8 *ptr;
dma_addr_t ptr_addr;
playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
size = ALIGN(playback_ctrl_size, 0x100) +
ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
chip->work_size;
/* work_ptr must be aligned to 256 bytes, but it's already
covered with the kernel page allocation mechanism */
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
size, &chip->work_ptr) < 0)
return -ENOMEM;
ptr = chip->work_ptr.area;
ptr_addr = chip->work_ptr.addr;
memset(ptr, 0, size); /* for sure */
chip->bank_base_playback = ptr;
chip->bank_base_playback_addr = ptr_addr;
chip->ctrl_playback = (u32 *)ptr;
chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
ptr += ALIGN(playback_ctrl_size, 0x100);
ptr_addr += ALIGN(playback_ctrl_size, 0x100);
for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
chip->voices[voice].number = voice;
chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
chip->voices[voice].bank_addr = ptr_addr;
for (bank = 0; bank < 2; bank++) {
chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
ptr += chip->bank_size_playback;
ptr_addr += chip->bank_size_playback;
}
}
ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
ptr_addr = ALIGN(ptr_addr, 0x100);
chip->bank_base_capture = ptr;
chip->bank_base_capture_addr = ptr_addr;
for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
for (bank = 0; bank < 2; bank++) {
chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
ptr += chip->bank_size_capture;
ptr_addr += chip->bank_size_capture;
}
ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
ptr_addr = ALIGN(ptr_addr, 0x100);
chip->bank_base_effect = ptr;
chip->bank_base_effect_addr = ptr_addr;
for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
for (bank = 0; bank < 2; bank++) {
chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
ptr += chip->bank_size_effect;
ptr_addr += chip->bank_size_effect;
}
ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
ptr_addr = ALIGN(ptr_addr, 0x100);
chip->work_base = ptr;
chip->work_base_addr = ptr_addr;
snd_BUG_ON(ptr + chip->work_size !=
chip->work_ptr.area + chip->work_ptr.bytes);
snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);
/* S/PDIF output initialization */
chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
/* S/PDIF input initialization */
snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);
/* digital mixer setup */
for (reg = 0x80; reg < 0xc0; reg += 4)
snd_ymfpci_writel(chip, reg, 0);
snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
return 0;
}
static int snd_ymfpci_free(struct snd_ymfpci *chip)
{
u16 ctrl;
if (snd_BUG_ON(!chip))
return -EINVAL;
if (chip->res_reg_area) { /* don't touch busy hardware */
snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
snd_ymfpci_disable_dsp(chip);
snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
}
snd_ymfpci_ac3_done(chip);
/* Set PCI device to D3 state */
#if 0
/* FIXME: temporarily disabled, otherwise we cannot fire up
* the chip again unless reboot. ACPI bug?
*/
pci_set_power_state(chip->pci, PCI_D3hot);
#endif
#ifdef CONFIG_PM_SLEEP
kfree(chip->saved_regs);
#endif
if (chip->irq >= 0)
free_irq(chip->irq, chip);
release_and_free_resource(chip->mpu_res);
release_and_free_resource(chip->fm_res);
snd_ymfpci_free_gameport(chip);
iounmap(chip->reg_area_virt);
if (chip->work_ptr.area)
snd_dma_free_pages(&chip->work_ptr);
release_and_free_resource(chip->res_reg_area);
pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
pci_disable_device(chip->pci);
release_firmware(chip->dsp_microcode);
release_firmware(chip->controller_microcode);
kfree(chip);
return 0;
}
static int snd_ymfpci_dev_free(struct snd_device *device)
{
struct snd_ymfpci *chip = device->device_data;
return snd_ymfpci_free(chip);
}
#ifdef CONFIG_PM_SLEEP
static int saved_regs_index[] = {
/* spdif */
YDSXGR_SPDIFOUTCTRL,
YDSXGR_SPDIFOUTSTATUS,
YDSXGR_SPDIFINCTRL,
/* volumes */
YDSXGR_PRIADCLOOPVOL,
YDSXGR_NATIVEDACINVOL,
YDSXGR_NATIVEDACOUTVOL,
YDSXGR_BUF441OUTVOL,
YDSXGR_NATIVEADCINVOL,
YDSXGR_SPDIFLOOPVOL,
YDSXGR_SPDIFOUTVOL,
YDSXGR_ZVOUTVOL,
YDSXGR_LEGACYOUTVOL,
/* address bases */
YDSXGR_PLAYCTRLBASE,
YDSXGR_RECCTRLBASE,
YDSXGR_EFFCTRLBASE,
YDSXGR_WORKBASE,
/* capture set up */
YDSXGR_MAPOFREC,
YDSXGR_RECFORMAT,
YDSXGR_RECSLOTSR,
YDSXGR_ADCFORMAT,
YDSXGR_ADCSLOTSR,
};
#define YDSXGR_NUM_SAVED_REGS ARRAY_SIZE(saved_regs_index)
static int snd_ymfpci_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct snd_ymfpci *chip = card->private_data;
unsigned int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(chip->pcm);
snd_pcm_suspend_all(chip->pcm2);
snd_pcm_suspend_all(chip->pcm_spdif);
snd_pcm_suspend_all(chip->pcm_4ch);
snd_ac97_suspend(chip->ac97);
for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
pci_read_config_word(chip->pci, PCIR_DSXG_LEGACY,
&chip->saved_dsxg_legacy);
pci_read_config_word(chip->pci, PCIR_DSXG_ELEGACY,
&chip->saved_dsxg_elegacy);
snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
snd_ymfpci_disable_dsp(chip);
return 0;
}
static int snd_ymfpci_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct snd_ymfpci *chip = card->private_data;
unsigned int i;
snd_ymfpci_aclink_reset(pci);
snd_ymfpci_codec_ready(chip, 0);
snd_ymfpci_download_image(chip);
udelay(100);
for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);
snd_ac97_resume(chip->ac97);
pci_write_config_word(chip->pci, PCIR_DSXG_LEGACY,
chip->saved_dsxg_legacy);
pci_write_config_word(chip->pci, PCIR_DSXG_ELEGACY,
chip->saved_dsxg_elegacy);
/* start hw again */
if (chip->start_count > 0) {
spin_lock_irq(&chip->reg_lock);
snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
spin_unlock_irq(&chip->reg_lock);
}
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
SIMPLE_DEV_PM_OPS(snd_ymfpci_pm, snd_ymfpci_suspend, snd_ymfpci_resume);
#endif /* CONFIG_PM_SLEEP */
int snd_ymfpci_create(struct snd_card *card,
struct pci_dev *pci,
unsigned short old_legacy_ctrl,
struct snd_ymfpci **rchip)
{
struct snd_ymfpci *chip;
int err;
static struct snd_device_ops ops = {
.dev_free = snd_ymfpci_dev_free,
};
*rchip = NULL;
/* enable PCI device */
if ((err = pci_enable_device(pci)) < 0)
return err;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL) {
pci_disable_device(pci);
return -ENOMEM;
}
chip->old_legacy_ctrl = old_legacy_ctrl;
spin_lock_init(&chip->reg_lock);
spin_lock_init(&chip->voice_lock);
init_waitqueue_head(&chip->interrupt_sleep);
atomic_set(&chip->interrupt_sleep_count, 0);
chip->card = card;
chip->pci = pci;
chip->irq = -1;
chip->device_id = pci->device;
chip->rev = pci->revision;
chip->reg_area_phys = pci_resource_start(pci, 0);
chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
pci_set_master(pci);
chip->src441_used = -1;
if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
dev_err(chip->card->dev,
"unable to grab memory region 0x%lx-0x%lx\n",
chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
snd_ymfpci_free(chip);
return -EBUSY;
}
if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
KBUILD_MODNAME, chip)) {
dev_err(chip->card->dev, "unable to grab IRQ %d\n", pci->irq);
snd_ymfpci_free(chip);
return -EBUSY;
}
chip->irq = pci->irq;
snd_ymfpci_aclink_reset(pci);
if (snd_ymfpci_codec_ready(chip, 0) < 0) {
snd_ymfpci_free(chip);
return -EIO;
}
err = snd_ymfpci_request_firmware(chip);
if (err < 0) {
dev_err(chip->card->dev, "firmware request failed: %d\n", err);
snd_ymfpci_free(chip);
return err;
}
snd_ymfpci_download_image(chip);
udelay(100); /* seems we need a delay after downloading image.. */
if (snd_ymfpci_memalloc(chip) < 0) {
snd_ymfpci_free(chip);
return -EIO;
}
if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
snd_ymfpci_free(chip);
return err;
}
#ifdef CONFIG_PM_SLEEP
chip->saved_regs = kmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32),
GFP_KERNEL);
if (chip->saved_regs == NULL) {
snd_ymfpci_free(chip);
return -ENOMEM;
}
#endif
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
snd_ymfpci_free(chip);
return err;
}
snd_ymfpci_proc_init(card, chip);
*rchip = chip;
return 0;
}