mirror of https://gitee.com/openkylin/linux.git
1348 lines
38 KiB
C
1348 lines
38 KiB
C
/*
|
|
* Copyright (c) 2008-2011 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "hw.h"
|
|
#include "ar9002_phy.h"
|
|
|
|
static void ath9k_get_txgain_index(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
struct calDataPerFreqOpLoop *rawDatasetOpLoop,
|
|
u8 *calChans, u16 availPiers, u8 *pwr, u8 *pcdacIdx)
|
|
{
|
|
u8 pcdac, i = 0;
|
|
u16 idxL = 0, idxR = 0, numPiers;
|
|
bool match;
|
|
struct chan_centers centers;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
for (numPiers = 0; numPiers < availPiers; numPiers++)
|
|
if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
|
|
break;
|
|
|
|
match = ath9k_hw_get_lower_upper_index(
|
|
(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
|
|
calChans, numPiers, &idxL, &idxR);
|
|
if (match) {
|
|
pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
|
|
*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
|
|
} else {
|
|
pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
|
|
*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
|
|
rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
|
|
}
|
|
|
|
while (pcdac > ah->originalGain[i] &&
|
|
i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
|
|
i++;
|
|
|
|
*pcdacIdx = i;
|
|
}
|
|
|
|
static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
|
|
u32 initTxGain,
|
|
int txPower,
|
|
u8 *pPDADCValues)
|
|
{
|
|
u32 i;
|
|
u32 offset;
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
|
|
AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
|
|
AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
|
|
AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
|
|
|
|
offset = txPower;
|
|
for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
|
|
if (i < offset)
|
|
pPDADCValues[i] = 0x0;
|
|
else
|
|
pPDADCValues[i] = 0xFF;
|
|
}
|
|
|
|
static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
|
|
}
|
|
|
|
static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
|
|
{
|
|
return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
|
|
}
|
|
|
|
#define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
|
|
|
|
static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u16 *eep_data = (u16 *)&ah->eeprom.def;
|
|
int addr, ar5416_eep_start_loc = 0x100;
|
|
|
|
for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
|
|
if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
|
|
eep_data)) {
|
|
ath_err(ath9k_hw_common(ah),
|
|
"Unable to read eeprom region\n");
|
|
return false;
|
|
}
|
|
eep_data++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
u16 *eep_data = (u16 *)&ah->eeprom.def;
|
|
|
|
ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
|
|
0x100, SIZE_EEPROM_DEF);
|
|
return true;
|
|
}
|
|
|
|
static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"Reading from EEPROM, not flash\n");
|
|
}
|
|
|
|
if (common->bus_ops->ath_bus_type == ATH_USB)
|
|
return __ath9k_hw_usb_def_fill_eeprom(ah);
|
|
else
|
|
return __ath9k_hw_def_fill_eeprom(ah);
|
|
}
|
|
|
|
#undef SIZE_EEPROM_DEF
|
|
|
|
static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
|
|
{
|
|
struct ar5416_eeprom_def *eep =
|
|
(struct ar5416_eeprom_def *) &ah->eeprom.def;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
u16 *eepdata, temp, magic, magic2;
|
|
u32 sum = 0, el;
|
|
bool need_swap = false;
|
|
int i, addr, size;
|
|
|
|
if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
|
|
ath_err(common, "Reading Magic # failed\n");
|
|
return false;
|
|
}
|
|
|
|
if (!ath9k_hw_use_flash(ah)) {
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"Read Magic = 0x%04X\n", magic);
|
|
|
|
if (magic != AR5416_EEPROM_MAGIC) {
|
|
magic2 = swab16(magic);
|
|
|
|
if (magic2 == AR5416_EEPROM_MAGIC) {
|
|
size = sizeof(struct ar5416_eeprom_def);
|
|
need_swap = true;
|
|
eepdata = (u16 *) (&ah->eeprom);
|
|
|
|
for (addr = 0; addr < size / sizeof(u16); addr++) {
|
|
temp = swab16(*eepdata);
|
|
*eepdata = temp;
|
|
eepdata++;
|
|
}
|
|
} else {
|
|
ath_err(common,
|
|
"Invalid EEPROM Magic. Endianness mismatch.\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
|
|
need_swap ? "True" : "False");
|
|
|
|
if (need_swap)
|
|
el = swab16(ah->eeprom.def.baseEepHeader.length);
|
|
else
|
|
el = ah->eeprom.def.baseEepHeader.length;
|
|
|
|
if (el > sizeof(struct ar5416_eeprom_def))
|
|
el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
|
|
else
|
|
el = el / sizeof(u16);
|
|
|
|
eepdata = (u16 *)(&ah->eeprom);
|
|
|
|
for (i = 0; i < el; i++)
|
|
sum ^= *eepdata++;
|
|
|
|
if (need_swap) {
|
|
u32 integer, j;
|
|
u16 word;
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"EEPROM Endianness is not native.. Changing.\n");
|
|
|
|
word = swab16(eep->baseEepHeader.length);
|
|
eep->baseEepHeader.length = word;
|
|
|
|
word = swab16(eep->baseEepHeader.checksum);
|
|
eep->baseEepHeader.checksum = word;
|
|
|
|
word = swab16(eep->baseEepHeader.version);
|
|
eep->baseEepHeader.version = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[0]);
|
|
eep->baseEepHeader.regDmn[0] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.regDmn[1]);
|
|
eep->baseEepHeader.regDmn[1] = word;
|
|
|
|
word = swab16(eep->baseEepHeader.rfSilent);
|
|
eep->baseEepHeader.rfSilent = word;
|
|
|
|
word = swab16(eep->baseEepHeader.blueToothOptions);
|
|
eep->baseEepHeader.blueToothOptions = word;
|
|
|
|
word = swab16(eep->baseEepHeader.deviceCap);
|
|
eep->baseEepHeader.deviceCap = word;
|
|
|
|
for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
|
|
struct modal_eep_header *pModal =
|
|
&eep->modalHeader[j];
|
|
integer = swab32(pModal->antCtrlCommon);
|
|
pModal->antCtrlCommon = integer;
|
|
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
integer = swab32(pModal->antCtrlChain[i]);
|
|
pModal->antCtrlChain[i] = integer;
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
word = swab16(pModal->xpaBiasLvlFreq[i]);
|
|
pModal->xpaBiasLvlFreq[i] = word;
|
|
}
|
|
|
|
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
|
|
word = swab16(pModal->spurChans[i].spurChan);
|
|
pModal->spurChans[i].spurChan = word;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
|
|
ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
|
|
ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
|
|
sum, ah->eep_ops->get_eeprom_ver(ah));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Enable fixup for AR_AN_TOP2 if necessary */
|
|
if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
|
|
((eep->baseEepHeader.version & 0xff) > 0x0a) &&
|
|
(eep->baseEepHeader.pwdclkind == 0))
|
|
ah->need_an_top2_fixup = 1;
|
|
|
|
if ((common->bus_ops->ath_bus_type == ATH_USB) &&
|
|
(AR_SREV_9280(ah)))
|
|
eep->modalHeader[0].xpaBiasLvl = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
|
|
enum eeprom_param param)
|
|
{
|
|
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
|
|
struct modal_eep_header *pModal = eep->modalHeader;
|
|
struct base_eep_header *pBase = &eep->baseEepHeader;
|
|
|
|
switch (param) {
|
|
case EEP_NFTHRESH_5:
|
|
return pModal[0].noiseFloorThreshCh[0];
|
|
case EEP_NFTHRESH_2:
|
|
return pModal[1].noiseFloorThreshCh[0];
|
|
case EEP_MAC_LSW:
|
|
return pBase->macAddr[0] << 8 | pBase->macAddr[1];
|
|
case EEP_MAC_MID:
|
|
return pBase->macAddr[2] << 8 | pBase->macAddr[3];
|
|
case EEP_MAC_MSW:
|
|
return pBase->macAddr[4] << 8 | pBase->macAddr[5];
|
|
case EEP_REG_0:
|
|
return pBase->regDmn[0];
|
|
case EEP_REG_1:
|
|
return pBase->regDmn[1];
|
|
case EEP_OP_CAP:
|
|
return pBase->deviceCap;
|
|
case EEP_OP_MODE:
|
|
return pBase->opCapFlags;
|
|
case EEP_RF_SILENT:
|
|
return pBase->rfSilent;
|
|
case EEP_OB_5:
|
|
return pModal[0].ob;
|
|
case EEP_DB_5:
|
|
return pModal[0].db;
|
|
case EEP_OB_2:
|
|
return pModal[1].ob;
|
|
case EEP_DB_2:
|
|
return pModal[1].db;
|
|
case EEP_MINOR_REV:
|
|
return AR5416_VER_MASK;
|
|
case EEP_TX_MASK:
|
|
return pBase->txMask;
|
|
case EEP_RX_MASK:
|
|
return pBase->rxMask;
|
|
case EEP_FSTCLK_5G:
|
|
return pBase->fastClk5g;
|
|
case EEP_RXGAIN_TYPE:
|
|
return pBase->rxGainType;
|
|
case EEP_TXGAIN_TYPE:
|
|
return pBase->txGainType;
|
|
case EEP_OL_PWRCTRL:
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
|
|
return pBase->openLoopPwrCntl ? true : false;
|
|
else
|
|
return false;
|
|
case EEP_RC_CHAIN_MASK:
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
|
|
return pBase->rcChainMask;
|
|
else
|
|
return 0;
|
|
case EEP_DAC_HPWR_5G:
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
|
|
return pBase->dacHiPwrMode_5G;
|
|
else
|
|
return 0;
|
|
case EEP_FRAC_N_5G:
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
|
|
return pBase->frac_n_5g;
|
|
else
|
|
return 0;
|
|
case EEP_PWR_TABLE_OFFSET:
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
|
|
return pBase->pwr_table_offset;
|
|
else
|
|
return AR5416_PWR_TABLE_OFFSET_DB;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_def_set_gain(struct ath_hw *ah,
|
|
struct modal_eep_header *pModal,
|
|
struct ar5416_eeprom_def *eep,
|
|
u8 txRxAttenLocal, int regChainOffset, int i)
|
|
{
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
|
|
txRxAttenLocal = pModal->txRxAttenCh[i];
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[i]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
|
|
pModal->bswAtten[i]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
|
|
pModal->xatten2Margin[i]);
|
|
REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
|
|
pModal->xatten2Db[i]);
|
|
} else {
|
|
REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
|
|
| SM(pModal-> bswMargin[i],
|
|
AR_PHY_GAIN_2GHZ_BSW_MARGIN));
|
|
REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
|
|
| SM(pModal->bswAtten[i],
|
|
AR_PHY_GAIN_2GHZ_BSW_ATTEN));
|
|
}
|
|
}
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
REG_RMW_FIELD(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
|
|
REG_RMW_FIELD(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
|
|
} else {
|
|
REG_WRITE(ah,
|
|
AR_PHY_RXGAIN + regChainOffset,
|
|
(REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
|
|
~AR_PHY_RXGAIN_TXRX_ATTEN)
|
|
| SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
|
|
REG_WRITE(ah,
|
|
AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
(REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
|
|
~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
|
|
SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
struct modal_eep_header *pModal;
|
|
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
|
|
int i, regChainOffset;
|
|
u8 txRxAttenLocal;
|
|
|
|
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
|
|
txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
|
|
|
|
REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
|
|
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
if (AR_SREV_9280(ah)) {
|
|
if (i >= 2)
|
|
break;
|
|
}
|
|
|
|
if (AR_SREV_5416_20_OR_LATER(ah) &&
|
|
(ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
else
|
|
regChainOffset = i * 0x1000;
|
|
|
|
REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
|
|
pModal->antCtrlChain[i]);
|
|
|
|
REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
|
|
(REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
|
|
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[i],
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[i],
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
|
|
ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
|
|
regChainOffset, i);
|
|
}
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
|
|
AR_AN_RF2G1_CH0_OB,
|
|
AR_AN_RF2G1_CH0_OB_S,
|
|
pModal->ob);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
|
|
AR_AN_RF2G1_CH0_DB,
|
|
AR_AN_RF2G1_CH0_DB_S,
|
|
pModal->db);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
|
|
AR_AN_RF2G1_CH1_OB,
|
|
AR_AN_RF2G1_CH1_OB_S,
|
|
pModal->ob_ch1);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
|
|
AR_AN_RF2G1_CH1_DB,
|
|
AR_AN_RF2G1_CH1_DB_S,
|
|
pModal->db_ch1);
|
|
} else {
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
|
|
AR_AN_RF5G1_CH0_OB5,
|
|
AR_AN_RF5G1_CH0_OB5_S,
|
|
pModal->ob);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
|
|
AR_AN_RF5G1_CH0_DB5,
|
|
AR_AN_RF5G1_CH0_DB5_S,
|
|
pModal->db);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
|
|
AR_AN_RF5G1_CH1_OB5,
|
|
AR_AN_RF5G1_CH1_OB5_S,
|
|
pModal->ob_ch1);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
|
|
AR_AN_RF5G1_CH1_DB5,
|
|
AR_AN_RF5G1_CH1_DB5_S,
|
|
pModal->db_ch1);
|
|
}
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
|
|
AR_AN_TOP2_XPABIAS_LVL,
|
|
AR_AN_TOP2_XPABIAS_LVL_S,
|
|
pModal->xpaBiasLvl);
|
|
ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
|
|
AR_AN_TOP2_LOCALBIAS,
|
|
AR_AN_TOP2_LOCALBIAS_S,
|
|
!!(pModal->lna_ctl &
|
|
LNA_CTL_LOCAL_BIAS));
|
|
REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
|
|
!!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
|
|
pModal->switchSettling);
|
|
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
|
|
pModal->adcDesiredSize);
|
|
|
|
if (!AR_SREV_9280_20_OR_LATER(ah))
|
|
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
|
|
AR_PHY_DESIRED_SZ_PGA,
|
|
pModal->pgaDesiredSize);
|
|
|
|
REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
|
|
| SM(pModal->txEndToXpaOff,
|
|
AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
|
|
| SM(pModal->txFrameToXpaOn,
|
|
AR_PHY_RF_CTL4_FRAME_XPAA_ON)
|
|
| SM(pModal->txFrameToXpaOn,
|
|
AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
|
|
pModal->txEndToRxOn);
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
|
|
AR_PHY_EXT_CCA0_THRESH62,
|
|
pModal->thresh62);
|
|
} else {
|
|
REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
|
|
AR_PHY_EXT_CCA_THRESH62,
|
|
pModal->thresh62);
|
|
}
|
|
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
|
|
AR_PHY_TX_END_DATA_START,
|
|
pModal->txFrameToDataStart);
|
|
REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
|
|
pModal->txFrameToPaOn);
|
|
}
|
|
|
|
if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
|
|
if (IS_CHAN_HT40(chan))
|
|
REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH,
|
|
pModal->swSettleHt40);
|
|
}
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah) &&
|
|
AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
|
|
REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
|
|
AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
|
|
pModal->miscBits);
|
|
|
|
|
|
if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
|
|
if (IS_CHAN_2GHZ(chan))
|
|
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
|
|
eep->baseEepHeader.dacLpMode);
|
|
else if (eep->baseEepHeader.dacHiPwrMode_5G)
|
|
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
|
|
else
|
|
REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
|
|
eep->baseEepHeader.dacLpMode);
|
|
|
|
udelay(100);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
|
|
pModal->miscBits >> 2);
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
|
|
AR_PHY_TX_DESIRED_SCALE_CCK,
|
|
eep->baseEepHeader.desiredScaleCCK);
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_def_set_addac(struct ath_hw *ah,
|
|
struct ath9k_channel *chan)
|
|
{
|
|
#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
|
|
struct modal_eep_header *pModal;
|
|
struct ar5416_eeprom_def *eep = &ah->eeprom.def;
|
|
u8 biaslevel;
|
|
|
|
if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
|
|
return;
|
|
|
|
if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
|
|
return;
|
|
|
|
pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
|
|
|
|
if (pModal->xpaBiasLvl != 0xff) {
|
|
biaslevel = pModal->xpaBiasLvl;
|
|
} else {
|
|
u16 resetFreqBin, freqBin, freqCount = 0;
|
|
struct chan_centers centers;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
resetFreqBin = FREQ2FBIN(centers.synth_center,
|
|
IS_CHAN_2GHZ(chan));
|
|
freqBin = XPA_LVL_FREQ(0) & 0xff;
|
|
biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
|
|
|
|
freqCount++;
|
|
|
|
while (freqCount < 3) {
|
|
if (XPA_LVL_FREQ(freqCount) == 0x0)
|
|
break;
|
|
|
|
freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
|
|
if (resetFreqBin >= freqBin)
|
|
biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
|
|
else
|
|
break;
|
|
freqCount++;
|
|
}
|
|
}
|
|
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
|
|
7, 1) & (~0x18)) | biaslevel << 3;
|
|
} else {
|
|
INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
|
|
6, 1) & (~0xc0)) | biaslevel << 6;
|
|
}
|
|
#undef XPA_LVL_FREQ
|
|
}
|
|
|
|
static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
|
|
u16 *gb,
|
|
u16 numXpdGain,
|
|
u16 pdGainOverlap_t2,
|
|
int8_t pwr_table_offset,
|
|
int16_t *diff)
|
|
|
|
{
|
|
u16 k;
|
|
|
|
/* Prior to writing the boundaries or the pdadc vs. power table
|
|
* into the chip registers the default starting point on the pdadc
|
|
* vs. power table needs to be checked and the curve boundaries
|
|
* adjusted accordingly
|
|
*/
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
u16 gb_limit;
|
|
|
|
if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
|
|
/* get the difference in dB */
|
|
*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
|
|
/* get the number of half dB steps */
|
|
*diff *= 2;
|
|
/* change the original gain boundary settings
|
|
* by the number of half dB steps
|
|
*/
|
|
for (k = 0; k < numXpdGain; k++)
|
|
gb[k] = (u16)(gb[k] - *diff);
|
|
}
|
|
/* Because of a hardware limitation, ensure the gain boundary
|
|
* is not larger than (63 - overlap)
|
|
*/
|
|
gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
|
|
|
|
for (k = 0; k < numXpdGain; k++)
|
|
gb[k] = (u16)min(gb_limit, gb[k]);
|
|
}
|
|
|
|
return *diff;
|
|
}
|
|
|
|
static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
|
|
int8_t pwr_table_offset,
|
|
int16_t diff,
|
|
u8 *pdadcValues)
|
|
{
|
|
#define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
|
|
u16 k;
|
|
|
|
/* If this is a board that has a pwrTableOffset that differs from
|
|
* the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
|
|
* pdadc vs pwr table needs to be adjusted prior to writing to the
|
|
* chip.
|
|
*/
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
|
|
/* shift the table to start at the new offset */
|
|
for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
|
|
pdadcValues[k] = pdadcValues[k + diff];
|
|
}
|
|
|
|
/* fill the back of the table */
|
|
for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
|
|
pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
|
|
}
|
|
}
|
|
}
|
|
#undef NUM_PDADC
|
|
}
|
|
|
|
static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *pTxPowerIndexOffset)
|
|
{
|
|
#define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
|
|
#define SM_PDGAIN_B(x, y) \
|
|
SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
|
|
struct cal_data_per_freq *pRawDataset;
|
|
u8 *pCalBChans = NULL;
|
|
u16 pdGainOverlap_t2;
|
|
static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
|
|
u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
|
|
u16 numPiers, i, j;
|
|
int16_t diff = 0;
|
|
u16 numXpdGain, xpdMask;
|
|
u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
|
|
u32 reg32, regOffset, regChainOffset;
|
|
int16_t modalIdx;
|
|
int8_t pwr_table_offset;
|
|
|
|
modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
|
|
xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
|
|
|
|
pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
pdGainOverlap_t2 =
|
|
pEepData->modalHeader[modalIdx].pdGainOverlap;
|
|
} else {
|
|
pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
}
|
|
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR5416_NUM_2G_CAL_PIERS;
|
|
} else {
|
|
pCalBChans = pEepData->calFreqPier5G;
|
|
numPiers = AR5416_NUM_5G_CAL_PIERS;
|
|
}
|
|
|
|
if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
|
|
pRawDataset = pEepData->calPierData2G[0];
|
|
ah->initPDADC = ((struct calDataPerFreqOpLoop *)
|
|
pRawDataset)->vpdPdg[0][0];
|
|
}
|
|
|
|
numXpdGain = 0;
|
|
|
|
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_NUM_PD_GAINS)
|
|
break;
|
|
xpdGainValues[numXpdGain] =
|
|
(u16)(AR5416_PD_GAINS_IN_MASK - i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(numXpdGain - 1) & 0x3);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
|
|
xpdGainValues[0]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
|
|
xpdGainValues[1]);
|
|
REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
|
|
xpdGainValues[2]);
|
|
|
|
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
|
|
if (AR_SREV_5416_20_OR_LATER(ah) &&
|
|
(ah->rxchainmask == 5 || ah->txchainmask == 5) &&
|
|
(i != 0)) {
|
|
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
|
|
} else
|
|
regChainOffset = i * 0x1000;
|
|
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
if (IS_CHAN_2GHZ(chan))
|
|
pRawDataset = pEepData->calPierData2G[i];
|
|
else
|
|
pRawDataset = pEepData->calPierData5G[i];
|
|
|
|
|
|
if (OLC_FOR_AR9280_20_LATER) {
|
|
u8 pcdacIdx;
|
|
u8 txPower;
|
|
|
|
ath9k_get_txgain_index(ah, chan,
|
|
(struct calDataPerFreqOpLoop *)pRawDataset,
|
|
pCalBChans, numPiers, &txPower, &pcdacIdx);
|
|
ath9k_olc_get_pdadcs(ah, pcdacIdx,
|
|
txPower/2, pdadcValues);
|
|
} else {
|
|
ath9k_hw_get_gain_boundaries_pdadcs(ah,
|
|
chan, pRawDataset,
|
|
pCalBChans, numPiers,
|
|
pdGainOverlap_t2,
|
|
gainBoundaries,
|
|
pdadcValues,
|
|
numXpdGain);
|
|
}
|
|
|
|
diff = ath9k_change_gain_boundary_setting(ah,
|
|
gainBoundaries,
|
|
numXpdGain,
|
|
pdGainOverlap_t2,
|
|
pwr_table_offset,
|
|
&diff);
|
|
|
|
ENABLE_REGWRITE_BUFFER(ah);
|
|
|
|
if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
|
|
if (OLC_FOR_AR9280_20_LATER) {
|
|
REG_WRITE(ah,
|
|
AR_PHY_TPCRG5 + regChainOffset,
|
|
SM(0x6,
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
|
|
SM_PD_GAIN(1) | SM_PD_GAIN(2) |
|
|
SM_PD_GAIN(3) | SM_PD_GAIN(4));
|
|
} else {
|
|
REG_WRITE(ah,
|
|
AR_PHY_TPCRG5 + regChainOffset,
|
|
SM(pdGainOverlap_t2,
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
|
|
SM_PDGAIN_B(0, 1) |
|
|
SM_PDGAIN_B(1, 2) |
|
|
SM_PDGAIN_B(2, 3) |
|
|
SM_PDGAIN_B(3, 4));
|
|
}
|
|
}
|
|
|
|
|
|
ath9k_adjust_pdadc_values(ah, pwr_table_offset,
|
|
diff, pdadcValues);
|
|
|
|
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
|
|
for (j = 0; j < 32; j++) {
|
|
reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
|
|
((pdadcValues[4 * j + 1] & 0xFF) << 8) |
|
|
((pdadcValues[4 * j + 2] & 0xFF) << 16)|
|
|
((pdadcValues[4 * j + 3] & 0xFF) << 24);
|
|
REG_WRITE(ah, regOffset, reg32);
|
|
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"PDADC (%d,%4x): %4.4x %8.8x\n",
|
|
i, regChainOffset, regOffset,
|
|
reg32);
|
|
ath_dbg(common, ATH_DBG_EEPROM,
|
|
"PDADC: Chain %d | PDADC %3d "
|
|
"Value %3d | PDADC %3d Value %3d | "
|
|
"PDADC %3d Value %3d | PDADC %3d "
|
|
"Value %3d |\n",
|
|
i, 4 * j, pdadcValues[4 * j],
|
|
4 * j + 1, pdadcValues[4 * j + 1],
|
|
4 * j + 2, pdadcValues[4 * j + 2],
|
|
4 * j + 3, pdadcValues[4 * j + 3]);
|
|
|
|
regOffset += 4;
|
|
}
|
|
REGWRITE_BUFFER_FLUSH(ah);
|
|
}
|
|
}
|
|
|
|
*pTxPowerIndexOffset = 0;
|
|
#undef SM_PD_GAIN
|
|
#undef SM_PDGAIN_B
|
|
}
|
|
|
|
static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
int16_t *ratesArray,
|
|
u16 cfgCtl,
|
|
u16 AntennaReduction,
|
|
u16 twiceMaxRegulatoryPower,
|
|
u16 powerLimit)
|
|
{
|
|
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
|
|
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN 9 /* 10*log10(3)*2 */
|
|
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
|
|
u16 twiceMaxEdgePower = MAX_RATE_POWER;
|
|
static const u16 tpScaleReductionTable[5] =
|
|
{ 0, 3, 6, 9, MAX_RATE_POWER };
|
|
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
struct cal_ctl_data *rep;
|
|
struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
|
|
0, { 0, 0, 0, 0}
|
|
};
|
|
struct cal_target_power_leg targetPowerOfdmExt = {
|
|
0, { 0, 0, 0, 0} }, targetPowerCckExt = {
|
|
0, { 0, 0, 0, 0 }
|
|
};
|
|
struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
|
|
0, {0, 0, 0, 0}
|
|
};
|
|
u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
|
|
static const u16 ctlModesFor11a[] = {
|
|
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
|
|
};
|
|
static const u16 ctlModesFor11g[] = {
|
|
CTL_11B, CTL_11G, CTL_2GHT20,
|
|
CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
|
|
};
|
|
u16 numCtlModes;
|
|
const u16 *pCtlMode;
|
|
u16 ctlMode, freq;
|
|
struct chan_centers centers;
|
|
int tx_chainmask;
|
|
u16 twiceMinEdgePower;
|
|
|
|
tx_chainmask = ah->txchainmask;
|
|
|
|
ath9k_hw_get_channel_centers(ah, chan, ¢ers);
|
|
|
|
twiceLargestAntenna = max(
|
|
pEepData->modalHeader
|
|
[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
|
|
pEepData->modalHeader
|
|
[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
|
|
|
|
twiceLargestAntenna = max((u8)twiceLargestAntenna,
|
|
pEepData->modalHeader
|
|
[IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
|
|
|
|
twiceLargestAntenna = (int16_t)min(AntennaReduction -
|
|
twiceLargestAntenna, 0);
|
|
|
|
maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
|
|
|
|
if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
|
|
maxRegAllowedPower -=
|
|
(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
|
|
}
|
|
|
|
scaledPower = min(powerLimit, maxRegAllowedPower);
|
|
|
|
switch (ar5416_get_ntxchains(tx_chainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
|
|
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
|
|
else
|
|
scaledPower = 0;
|
|
break;
|
|
case 3:
|
|
if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
|
|
scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
|
|
else
|
|
scaledPower = 0;
|
|
break;
|
|
}
|
|
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
|
|
SUB_NUM_CTL_MODES_AT_2G_40;
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCck, 4, false);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdm, 4, false);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT20,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerHt20, 8, false);
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11g);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower2GHT40,
|
|
AR5416_NUM_2G_40_TARGET_POWERS,
|
|
&targetPowerHt40, 8, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPowerCck,
|
|
AR5416_NUM_2G_CCK_TARGET_POWERS,
|
|
&targetPowerCckExt, 4, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower2G,
|
|
AR5416_NUM_2G_20_TARGET_POWERS,
|
|
&targetPowerOfdmExt, 4, true);
|
|
}
|
|
} else {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
|
|
SUB_NUM_CTL_MODES_AT_5G_40;
|
|
pCtlMode = ctlModesFor11a;
|
|
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower5G,
|
|
AR5416_NUM_5G_20_TARGET_POWERS,
|
|
&targetPowerOfdm, 4, false);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower5GHT20,
|
|
AR5416_NUM_5G_20_TARGET_POWERS,
|
|
&targetPowerHt20, 8, false);
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
numCtlModes = ARRAY_SIZE(ctlModesFor11a);
|
|
ath9k_hw_get_target_powers(ah, chan,
|
|
pEepData->calTargetPower5GHT40,
|
|
AR5416_NUM_5G_40_TARGET_POWERS,
|
|
&targetPowerHt40, 8, true);
|
|
ath9k_hw_get_legacy_target_powers(ah, chan,
|
|
pEepData->calTargetPower5G,
|
|
AR5416_NUM_5G_20_TARGET_POWERS,
|
|
&targetPowerOfdmExt, 4, true);
|
|
}
|
|
}
|
|
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
if (isHt40CtlMode)
|
|
freq = centers.synth_center;
|
|
else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
|
|
freq = centers.ext_center;
|
|
else
|
|
freq = centers.ctl_center;
|
|
|
|
if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
|
|
ah->eep_ops->get_eeprom_rev(ah) <= 2)
|
|
twiceMaxEdgePower = MAX_RATE_POWER;
|
|
|
|
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
|
|
if ((((cfgCtl & ~CTL_MODE_M) |
|
|
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
|
|
pEepData->ctlIndex[i]) ||
|
|
(((cfgCtl & ~CTL_MODE_M) |
|
|
(pCtlMode[ctlMode] & CTL_MODE_M)) ==
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
|
|
twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
|
|
rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
|
|
IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
|
|
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
twiceMaxEdgePower = min(twiceMaxEdgePower,
|
|
twiceMinEdgePower);
|
|
} else {
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
minCtlPower = min(twiceMaxEdgePower, scaledPower);
|
|
|
|
switch (pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] =
|
|
min((u16)targetPowerCck.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11A:
|
|
case CTL_11G:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] =
|
|
min((u16)targetPowerOfdm.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_5GHT20:
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] =
|
|
min((u16)targetPowerHt20.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] = min((u16)
|
|
targetPowerCckExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_11A_EXT:
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] = min((u16)
|
|
targetPowerOfdmExt.tPow2x[0],
|
|
minCtlPower);
|
|
break;
|
|
case CTL_5GHT40:
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] =
|
|
min((u16)targetPowerHt40.tPow2x[i],
|
|
minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
|
|
ratesArray[rate18mb] = ratesArray[rate24mb] =
|
|
targetPowerOfdm.tPow2x[0];
|
|
ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
|
|
ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
|
|
ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
|
|
ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
|
|
ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
|
|
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
ratesArray[rate1l] = targetPowerCck.tPow2x[0];
|
|
ratesArray[rate2s] = ratesArray[rate2l] =
|
|
targetPowerCck.tPow2x[1];
|
|
ratesArray[rate5_5s] = ratesArray[rate5_5l] =
|
|
targetPowerCck.tPow2x[2];
|
|
ratesArray[rate11s] = ratesArray[rate11l] =
|
|
targetPowerCck.tPow2x[3];
|
|
}
|
|
if (IS_CHAN_HT40(chan)) {
|
|
for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
|
|
ratesArray[rateHt40_0 + i] =
|
|
targetPowerHt40.tPow2x[i];
|
|
}
|
|
ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
|
|
ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
ratesArray[rateExtCck] =
|
|
targetPowerCckExt.tPow2x[0];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
|
|
struct ath9k_channel *chan,
|
|
u16 cfgCtl,
|
|
u8 twiceAntennaReduction,
|
|
u8 twiceMaxRegulatoryPower,
|
|
u8 powerLimit, bool test)
|
|
{
|
|
#define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
|
|
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
|
|
struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
|
|
struct modal_eep_header *pModal =
|
|
&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
|
|
int16_t ratesArray[Ar5416RateSize];
|
|
int16_t txPowerIndexOffset = 0;
|
|
u8 ht40PowerIncForPdadc = 2;
|
|
int i, cck_ofdm_delta = 0;
|
|
|
|
memset(ratesArray, 0, sizeof(ratesArray));
|
|
|
|
if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
|
|
AR5416_EEP_MINOR_VER_2) {
|
|
ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
}
|
|
|
|
ath9k_hw_set_def_power_per_rate_table(ah, chan,
|
|
&ratesArray[0], cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower,
|
|
powerLimit);
|
|
|
|
ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
|
|
|
|
regulatory->max_power_level = 0;
|
|
for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
|
|
ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
|
|
if (ratesArray[i] > MAX_RATE_POWER)
|
|
ratesArray[i] = MAX_RATE_POWER;
|
|
if (ratesArray[i] > regulatory->max_power_level)
|
|
regulatory->max_power_level = ratesArray[i];
|
|
}
|
|
|
|
if (!test) {
|
|
i = rate6mb;
|
|
|
|
if (IS_CHAN_HT40(chan))
|
|
i = rateHt40_0;
|
|
else if (IS_CHAN_HT20(chan))
|
|
i = rateHt20_0;
|
|
|
|
regulatory->max_power_level = ratesArray[i];
|
|
}
|
|
|
|
switch(ar5416_get_ntxchains(ah->txchainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
|
|
break;
|
|
case 3:
|
|
regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
|
|
break;
|
|
default:
|
|
ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
|
|
"Invalid chainmask configuration\n");
|
|
break;
|
|
}
|
|
|
|
if (test)
|
|
return;
|
|
|
|
if (AR_SREV_9280_20_OR_LATER(ah)) {
|
|
for (i = 0; i < Ar5416RateSize; i++) {
|
|
int8_t pwr_table_offset;
|
|
|
|
pwr_table_offset = ah->eep_ops->get_eeprom(ah,
|
|
EEP_PWR_TABLE_OFFSET);
|
|
ratesArray[i] -= pwr_table_offset * 2;
|
|
}
|
|
}
|
|
|
|
ENABLE_REGWRITE_BUFFER(ah);
|
|
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
|
|
ATH9K_POW_SM(ratesArray[rate18mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate12mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate9mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate6mb], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
|
|
ATH9K_POW_SM(ratesArray[rate54mb], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate48mb], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate36mb], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate24mb], 0));
|
|
|
|
if (IS_CHAN_2GHZ(chan)) {
|
|
if (OLC_FOR_AR9280_20_LATER) {
|
|
cck_ofdm_delta = 2;
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
|
|
| ATH9K_POW_SM(ratesArray[rateXr], 8)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
|
|
} else {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
|
|
ATH9K_POW_SM(ratesArray[rate2s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate2l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateXr], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate1l], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
|
|
ATH9K_POW_SM(ratesArray[rate11s], 24)
|
|
| ATH9K_POW_SM(ratesArray[rate11l], 16)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
|
|
| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
|
|
}
|
|
}
|
|
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
|
|
ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
|
|
|
|
if (IS_CHAN_HT40(chan)) {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_3] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_2] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_1] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_0] +
|
|
ht40PowerIncForPdadc, 0));
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
|
|
ATH9K_POW_SM(ratesArray[rateHt40_7] +
|
|
ht40PowerIncForPdadc, 24)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_6] +
|
|
ht40PowerIncForPdadc, 16)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_5] +
|
|
ht40PowerIncForPdadc, 8)
|
|
| ATH9K_POW_SM(ratesArray[rateHt40_4] +
|
|
ht40PowerIncForPdadc, 0));
|
|
if (OLC_FOR_AR9280_20_LATER) {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
|
|
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
|
|
} else {
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
|
|
ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
|
|
| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
|
|
| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
|
|
| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
|
|
}
|
|
}
|
|
|
|
REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
|
|
ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
|
|
| ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
|
|
|
|
REGWRITE_BUFFER_FLUSH(ah);
|
|
}
|
|
|
|
static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
|
|
{
|
|
#define EEP_DEF_SPURCHAN \
|
|
(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
u16 spur_val = AR_NO_SPUR;
|
|
|
|
ath_dbg(common, ATH_DBG_ANI,
|
|
"Getting spur idx:%d is2Ghz:%d val:%x\n",
|
|
i, is2GHz, ah->config.spurchans[i][is2GHz]);
|
|
|
|
switch (ah->config.spurmode) {
|
|
case SPUR_DISABLE:
|
|
break;
|
|
case SPUR_ENABLE_IOCTL:
|
|
spur_val = ah->config.spurchans[i][is2GHz];
|
|
ath_dbg(common, ATH_DBG_ANI,
|
|
"Getting spur val from new loc. %d\n", spur_val);
|
|
break;
|
|
case SPUR_ENABLE_EEPROM:
|
|
spur_val = EEP_DEF_SPURCHAN;
|
|
break;
|
|
}
|
|
|
|
return spur_val;
|
|
|
|
#undef EEP_DEF_SPURCHAN
|
|
}
|
|
|
|
const struct eeprom_ops eep_def_ops = {
|
|
.check_eeprom = ath9k_hw_def_check_eeprom,
|
|
.get_eeprom = ath9k_hw_def_get_eeprom,
|
|
.fill_eeprom = ath9k_hw_def_fill_eeprom,
|
|
.get_eeprom_ver = ath9k_hw_def_get_eeprom_ver,
|
|
.get_eeprom_rev = ath9k_hw_def_get_eeprom_rev,
|
|
.set_board_values = ath9k_hw_def_set_board_values,
|
|
.set_addac = ath9k_hw_def_set_addac,
|
|
.set_txpower = ath9k_hw_def_set_txpower,
|
|
.get_spur_channel = ath9k_hw_def_get_spur_channel
|
|
};
|