mirror of https://gitee.com/openkylin/linux.git
1457 lines
36 KiB
C
1457 lines
36 KiB
C
/*
|
|
* Copyright (c) 2000-2003 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_inum.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_sb.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_quota.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_rtalloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_itable.h"
|
|
#include "xfs_attr.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_trans_space.h"
|
|
#include "xfs_trans_priv.h"
|
|
#include "xfs_qm.h"
|
|
#include "xfs_trace.h"
|
|
|
|
|
|
/*
|
|
LOCK ORDER
|
|
|
|
inode lock (ilock)
|
|
dquot hash-chain lock (hashlock)
|
|
xqm dquot freelist lock (freelistlock
|
|
mount's dquot list lock (mplistlock)
|
|
user dquot lock - lock ordering among dquots is based on the uid or gid
|
|
group dquot lock - similar to udquots. Between the two dquots, the udquot
|
|
has to be locked first.
|
|
pin lock - the dquot lock must be held to take this lock.
|
|
flush lock - ditto.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
xfs_buftarg_t *xfs_dqerror_target;
|
|
int xfs_do_dqerror;
|
|
int xfs_dqreq_num;
|
|
int xfs_dqerror_mod = 33;
|
|
#endif
|
|
|
|
static struct lock_class_key xfs_dquot_other_class;
|
|
|
|
/*
|
|
* Allocate and initialize a dquot. We don't always allocate fresh memory;
|
|
* we try to reclaim a free dquot if the number of incore dquots are above
|
|
* a threshold.
|
|
* The only field inside the core that gets initialized at this point
|
|
* is the d_id field. The idea is to fill in the entire q_core
|
|
* when we read in the on disk dquot.
|
|
*/
|
|
STATIC xfs_dquot_t *
|
|
xfs_qm_dqinit(
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id,
|
|
uint type)
|
|
{
|
|
xfs_dquot_t *dqp;
|
|
boolean_t brandnewdquot;
|
|
|
|
brandnewdquot = xfs_qm_dqalloc_incore(&dqp);
|
|
dqp->dq_flags = type;
|
|
dqp->q_core.d_id = cpu_to_be32(id);
|
|
dqp->q_mount = mp;
|
|
|
|
/*
|
|
* No need to re-initialize these if this is a reclaimed dquot.
|
|
*/
|
|
if (brandnewdquot) {
|
|
INIT_LIST_HEAD(&dqp->q_freelist);
|
|
mutex_init(&dqp->q_qlock);
|
|
init_waitqueue_head(&dqp->q_pinwait);
|
|
|
|
/*
|
|
* Because we want to use a counting completion, complete
|
|
* the flush completion once to allow a single access to
|
|
* the flush completion without blocking.
|
|
*/
|
|
init_completion(&dqp->q_flush);
|
|
complete(&dqp->q_flush);
|
|
|
|
trace_xfs_dqinit(dqp);
|
|
} else {
|
|
/*
|
|
* Only the q_core portion was zeroed in dqreclaim_one().
|
|
* So, we need to reset others.
|
|
*/
|
|
dqp->q_nrefs = 0;
|
|
dqp->q_blkno = 0;
|
|
INIT_LIST_HEAD(&dqp->q_mplist);
|
|
INIT_LIST_HEAD(&dqp->q_hashlist);
|
|
dqp->q_bufoffset = 0;
|
|
dqp->q_fileoffset = 0;
|
|
dqp->q_transp = NULL;
|
|
dqp->q_gdquot = NULL;
|
|
dqp->q_res_bcount = 0;
|
|
dqp->q_res_icount = 0;
|
|
dqp->q_res_rtbcount = 0;
|
|
atomic_set(&dqp->q_pincount, 0);
|
|
dqp->q_hash = NULL;
|
|
ASSERT(list_empty(&dqp->q_freelist));
|
|
|
|
trace_xfs_dqreuse(dqp);
|
|
}
|
|
|
|
/*
|
|
* In either case we need to make sure group quotas have a different
|
|
* lock class than user quotas, to make sure lockdep knows we can
|
|
* locks of one of each at the same time.
|
|
*/
|
|
if (!(type & XFS_DQ_USER))
|
|
lockdep_set_class(&dqp->q_qlock, &xfs_dquot_other_class);
|
|
|
|
/*
|
|
* log item gets initialized later
|
|
*/
|
|
return (dqp);
|
|
}
|
|
|
|
/*
|
|
* This is called to free all the memory associated with a dquot
|
|
*/
|
|
void
|
|
xfs_qm_dqdestroy(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
ASSERT(list_empty(&dqp->q_freelist));
|
|
|
|
mutex_destroy(&dqp->q_qlock);
|
|
kmem_zone_free(xfs_Gqm->qm_dqzone, dqp);
|
|
|
|
atomic_dec(&xfs_Gqm->qm_totaldquots);
|
|
}
|
|
|
|
/*
|
|
* This is what a 'fresh' dquot inside a dquot chunk looks like on disk.
|
|
*/
|
|
STATIC void
|
|
xfs_qm_dqinit_core(
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
xfs_dqblk_t *d)
|
|
{
|
|
/*
|
|
* Caller has zero'd the entire dquot 'chunk' already.
|
|
*/
|
|
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
|
|
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
|
|
d->dd_diskdq.d_id = cpu_to_be32(id);
|
|
d->dd_diskdq.d_flags = type;
|
|
}
|
|
|
|
/*
|
|
* If default limits are in force, push them into the dquot now.
|
|
* We overwrite the dquot limits only if they are zero and this
|
|
* is not the root dquot.
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqlimits(
|
|
xfs_mount_t *mp,
|
|
xfs_disk_dquot_t *d)
|
|
{
|
|
xfs_quotainfo_t *q = mp->m_quotainfo;
|
|
|
|
ASSERT(d->d_id);
|
|
|
|
if (q->qi_bsoftlimit && !d->d_blk_softlimit)
|
|
d->d_blk_softlimit = cpu_to_be64(q->qi_bsoftlimit);
|
|
if (q->qi_bhardlimit && !d->d_blk_hardlimit)
|
|
d->d_blk_hardlimit = cpu_to_be64(q->qi_bhardlimit);
|
|
if (q->qi_isoftlimit && !d->d_ino_softlimit)
|
|
d->d_ino_softlimit = cpu_to_be64(q->qi_isoftlimit);
|
|
if (q->qi_ihardlimit && !d->d_ino_hardlimit)
|
|
d->d_ino_hardlimit = cpu_to_be64(q->qi_ihardlimit);
|
|
if (q->qi_rtbsoftlimit && !d->d_rtb_softlimit)
|
|
d->d_rtb_softlimit = cpu_to_be64(q->qi_rtbsoftlimit);
|
|
if (q->qi_rtbhardlimit && !d->d_rtb_hardlimit)
|
|
d->d_rtb_hardlimit = cpu_to_be64(q->qi_rtbhardlimit);
|
|
}
|
|
|
|
/*
|
|
* Check the limits and timers of a dquot and start or reset timers
|
|
* if necessary.
|
|
* This gets called even when quota enforcement is OFF, which makes our
|
|
* life a little less complicated. (We just don't reject any quota
|
|
* reservations in that case, when enforcement is off).
|
|
* We also return 0 as the values of the timers in Q_GETQUOTA calls, when
|
|
* enforcement's off.
|
|
* In contrast, warnings are a little different in that they don't
|
|
* 'automatically' get started when limits get exceeded. They do
|
|
* get reset to zero, however, when we find the count to be under
|
|
* the soft limit (they are only ever set non-zero via userspace).
|
|
*/
|
|
void
|
|
xfs_qm_adjust_dqtimers(
|
|
xfs_mount_t *mp,
|
|
xfs_disk_dquot_t *d)
|
|
{
|
|
ASSERT(d->d_id);
|
|
|
|
#ifdef DEBUG
|
|
if (d->d_blk_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_blk_softlimit) <=
|
|
be64_to_cpu(d->d_blk_hardlimit));
|
|
if (d->d_ino_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_ino_softlimit) <=
|
|
be64_to_cpu(d->d_ino_hardlimit));
|
|
if (d->d_rtb_hardlimit)
|
|
ASSERT(be64_to_cpu(d->d_rtb_softlimit) <=
|
|
be64_to_cpu(d->d_rtb_hardlimit));
|
|
#endif
|
|
|
|
if (!d->d_btimer) {
|
|
if ((d->d_blk_softlimit &&
|
|
(be64_to_cpu(d->d_bcount) >=
|
|
be64_to_cpu(d->d_blk_softlimit))) ||
|
|
(d->d_blk_hardlimit &&
|
|
(be64_to_cpu(d->d_bcount) >=
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_btimelimit);
|
|
} else {
|
|
d->d_bwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_blk_softlimit ||
|
|
(be64_to_cpu(d->d_bcount) <
|
|
be64_to_cpu(d->d_blk_softlimit))) &&
|
|
(!d->d_blk_hardlimit ||
|
|
(be64_to_cpu(d->d_bcount) <
|
|
be64_to_cpu(d->d_blk_hardlimit)))) {
|
|
d->d_btimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_itimer) {
|
|
if ((d->d_ino_softlimit &&
|
|
(be64_to_cpu(d->d_icount) >=
|
|
be64_to_cpu(d->d_ino_softlimit))) ||
|
|
(d->d_ino_hardlimit &&
|
|
(be64_to_cpu(d->d_icount) >=
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_itimelimit);
|
|
} else {
|
|
d->d_iwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_ino_softlimit ||
|
|
(be64_to_cpu(d->d_icount) <
|
|
be64_to_cpu(d->d_ino_softlimit))) &&
|
|
(!d->d_ino_hardlimit ||
|
|
(be64_to_cpu(d->d_icount) <
|
|
be64_to_cpu(d->d_ino_hardlimit)))) {
|
|
d->d_itimer = 0;
|
|
}
|
|
}
|
|
|
|
if (!d->d_rtbtimer) {
|
|
if ((d->d_rtb_softlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >=
|
|
be64_to_cpu(d->d_rtb_softlimit))) ||
|
|
(d->d_rtb_hardlimit &&
|
|
(be64_to_cpu(d->d_rtbcount) >=
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = cpu_to_be32(get_seconds() +
|
|
mp->m_quotainfo->qi_rtbtimelimit);
|
|
} else {
|
|
d->d_rtbwarns = 0;
|
|
}
|
|
} else {
|
|
if ((!d->d_rtb_softlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <
|
|
be64_to_cpu(d->d_rtb_softlimit))) &&
|
|
(!d->d_rtb_hardlimit ||
|
|
(be64_to_cpu(d->d_rtbcount) <
|
|
be64_to_cpu(d->d_rtb_hardlimit)))) {
|
|
d->d_rtbtimer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize a buffer full of dquots and log the whole thing
|
|
*/
|
|
STATIC void
|
|
xfs_qm_init_dquot_blk(
|
|
xfs_trans_t *tp,
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id,
|
|
uint type,
|
|
xfs_buf_t *bp)
|
|
{
|
|
struct xfs_quotainfo *q = mp->m_quotainfo;
|
|
xfs_dqblk_t *d;
|
|
int curid, i;
|
|
|
|
ASSERT(tp);
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
d = bp->b_addr;
|
|
|
|
/*
|
|
* ID of the first dquot in the block - id's are zero based.
|
|
*/
|
|
curid = id - (id % q->qi_dqperchunk);
|
|
ASSERT(curid >= 0);
|
|
memset(d, 0, BBTOB(q->qi_dqchunklen));
|
|
for (i = 0; i < q->qi_dqperchunk; i++, d++, curid++)
|
|
xfs_qm_dqinit_core(curid, type, d);
|
|
xfs_trans_dquot_buf(tp, bp,
|
|
(type & XFS_DQ_USER ? XFS_BLF_UDQUOT_BUF :
|
|
((type & XFS_DQ_PROJ) ? XFS_BLF_PDQUOT_BUF :
|
|
XFS_BLF_GDQUOT_BUF)));
|
|
xfs_trans_log_buf(tp, bp, 0, BBTOB(q->qi_dqchunklen) - 1);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Allocate a block and fill it with dquots.
|
|
* This is called when the bmapi finds a hole.
|
|
*/
|
|
STATIC int
|
|
xfs_qm_dqalloc(
|
|
xfs_trans_t **tpp,
|
|
xfs_mount_t *mp,
|
|
xfs_dquot_t *dqp,
|
|
xfs_inode_t *quotip,
|
|
xfs_fileoff_t offset_fsb,
|
|
xfs_buf_t **O_bpp)
|
|
{
|
|
xfs_fsblock_t firstblock;
|
|
xfs_bmap_free_t flist;
|
|
xfs_bmbt_irec_t map;
|
|
int nmaps, error, committed;
|
|
xfs_buf_t *bp;
|
|
xfs_trans_t *tp = *tpp;
|
|
|
|
ASSERT(tp != NULL);
|
|
|
|
trace_xfs_dqalloc(dqp);
|
|
|
|
/*
|
|
* Initialize the bmap freelist prior to calling bmapi code.
|
|
*/
|
|
xfs_bmap_init(&flist, &firstblock);
|
|
xfs_ilock(quotip, XFS_ILOCK_EXCL);
|
|
/*
|
|
* Return if this type of quotas is turned off while we didn't
|
|
* have an inode lock
|
|
*/
|
|
if (XFS_IS_THIS_QUOTA_OFF(dqp)) {
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
return (ESRCH);
|
|
}
|
|
|
|
xfs_trans_ijoin(tp, quotip, XFS_ILOCK_EXCL);
|
|
nmaps = 1;
|
|
error = xfs_bmapi_write(tp, quotip, offset_fsb,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, XFS_BMAPI_METADATA,
|
|
&firstblock, XFS_QM_DQALLOC_SPACE_RES(mp),
|
|
&map, &nmaps, &flist);
|
|
if (error)
|
|
goto error0;
|
|
ASSERT(map.br_blockcount == XFS_DQUOT_CLUSTER_SIZE_FSB);
|
|
ASSERT(nmaps == 1);
|
|
ASSERT((map.br_startblock != DELAYSTARTBLOCK) &&
|
|
(map.br_startblock != HOLESTARTBLOCK));
|
|
|
|
/*
|
|
* Keep track of the blkno to save a lookup later
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
/* now we can just get the buffer (there's nothing to read yet) */
|
|
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp,
|
|
dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen,
|
|
0);
|
|
|
|
error = xfs_buf_geterror(bp);
|
|
if (error)
|
|
goto error1;
|
|
|
|
/*
|
|
* Make a chunk of dquots out of this buffer and log
|
|
* the entire thing.
|
|
*/
|
|
xfs_qm_init_dquot_blk(tp, mp, be32_to_cpu(dqp->q_core.d_id),
|
|
dqp->dq_flags & XFS_DQ_ALLTYPES, bp);
|
|
|
|
/*
|
|
* xfs_bmap_finish() may commit the current transaction and
|
|
* start a second transaction if the freelist is not empty.
|
|
*
|
|
* Since we still want to modify this buffer, we need to
|
|
* ensure that the buffer is not released on commit of
|
|
* the first transaction and ensure the buffer is added to the
|
|
* second transaction.
|
|
*
|
|
* If there is only one transaction then don't stop the buffer
|
|
* from being released when it commits later on.
|
|
*/
|
|
|
|
xfs_trans_bhold(tp, bp);
|
|
|
|
if ((error = xfs_bmap_finish(tpp, &flist, &committed))) {
|
|
goto error1;
|
|
}
|
|
|
|
if (committed) {
|
|
tp = *tpp;
|
|
xfs_trans_bjoin(tp, bp);
|
|
} else {
|
|
xfs_trans_bhold_release(tp, bp);
|
|
}
|
|
|
|
*O_bpp = bp;
|
|
return 0;
|
|
|
|
error1:
|
|
xfs_bmap_cancel(&flist);
|
|
error0:
|
|
xfs_iunlock(quotip, XFS_ILOCK_EXCL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Maps a dquot to the buffer containing its on-disk version.
|
|
* This returns a ptr to the buffer containing the on-disk dquot
|
|
* in the bpp param, and a ptr to the on-disk dquot within that buffer
|
|
*/
|
|
STATIC int
|
|
xfs_qm_dqtobp(
|
|
xfs_trans_t **tpp,
|
|
xfs_dquot_t *dqp,
|
|
xfs_disk_dquot_t **O_ddpp,
|
|
xfs_buf_t **O_bpp,
|
|
uint flags)
|
|
{
|
|
xfs_bmbt_irec_t map;
|
|
int nmaps = 1, error;
|
|
xfs_buf_t *bp;
|
|
xfs_inode_t *quotip = XFS_DQ_TO_QIP(dqp);
|
|
xfs_mount_t *mp = dqp->q_mount;
|
|
xfs_disk_dquot_t *ddq;
|
|
xfs_dqid_t id = be32_to_cpu(dqp->q_core.d_id);
|
|
xfs_trans_t *tp = (tpp ? *tpp : NULL);
|
|
|
|
dqp->q_fileoffset = (xfs_fileoff_t)id / mp->m_quotainfo->qi_dqperchunk;
|
|
|
|
xfs_ilock(quotip, XFS_ILOCK_SHARED);
|
|
if (XFS_IS_THIS_QUOTA_OFF(dqp)) {
|
|
/*
|
|
* Return if this type of quotas is turned off while we
|
|
* didn't have the quota inode lock.
|
|
*/
|
|
xfs_iunlock(quotip, XFS_ILOCK_SHARED);
|
|
return ESRCH;
|
|
}
|
|
|
|
/*
|
|
* Find the block map; no allocations yet
|
|
*/
|
|
error = xfs_bmapi_read(quotip, dqp->q_fileoffset,
|
|
XFS_DQUOT_CLUSTER_SIZE_FSB, &map, &nmaps, 0);
|
|
|
|
xfs_iunlock(quotip, XFS_ILOCK_SHARED);
|
|
if (error)
|
|
return error;
|
|
|
|
ASSERT(nmaps == 1);
|
|
ASSERT(map.br_blockcount == 1);
|
|
|
|
/*
|
|
* Offset of dquot in the (fixed sized) dquot chunk.
|
|
*/
|
|
dqp->q_bufoffset = (id % mp->m_quotainfo->qi_dqperchunk) *
|
|
sizeof(xfs_dqblk_t);
|
|
|
|
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
|
|
if (map.br_startblock == HOLESTARTBLOCK) {
|
|
/*
|
|
* We don't allocate unless we're asked to
|
|
*/
|
|
if (!(flags & XFS_QMOPT_DQALLOC))
|
|
return ENOENT;
|
|
|
|
ASSERT(tp);
|
|
error = xfs_qm_dqalloc(tpp, mp, dqp, quotip,
|
|
dqp->q_fileoffset, &bp);
|
|
if (error)
|
|
return error;
|
|
tp = *tpp;
|
|
} else {
|
|
trace_xfs_dqtobp_read(dqp);
|
|
|
|
/*
|
|
* store the blkno etc so that we don't have to do the
|
|
* mapping all the time
|
|
*/
|
|
dqp->q_blkno = XFS_FSB_TO_DADDR(mp, map.br_startblock);
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen,
|
|
0, &bp);
|
|
if (error || !bp)
|
|
return XFS_ERROR(error);
|
|
}
|
|
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
|
|
/*
|
|
* calculate the location of the dquot inside the buffer.
|
|
*/
|
|
ddq = bp->b_addr + dqp->q_bufoffset;
|
|
|
|
/*
|
|
* A simple sanity check in case we got a corrupted dquot...
|
|
*/
|
|
error = xfs_qm_dqcheck(mp, ddq, id, dqp->dq_flags & XFS_DQ_ALLTYPES,
|
|
flags & (XFS_QMOPT_DQREPAIR|XFS_QMOPT_DOWARN),
|
|
"dqtobp");
|
|
if (error) {
|
|
if (!(flags & XFS_QMOPT_DQREPAIR)) {
|
|
xfs_trans_brelse(tp, bp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
}
|
|
|
|
*O_bpp = bp;
|
|
*O_ddpp = ddq;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Read in the ondisk dquot using dqtobp() then copy it to an incore version,
|
|
* and release the buffer immediately.
|
|
*
|
|
*/
|
|
/* ARGSUSED */
|
|
STATIC int
|
|
xfs_qm_dqread(
|
|
xfs_trans_t **tpp,
|
|
xfs_dqid_t id,
|
|
xfs_dquot_t *dqp, /* dquot to get filled in */
|
|
uint flags)
|
|
{
|
|
xfs_disk_dquot_t *ddqp;
|
|
xfs_buf_t *bp;
|
|
int error;
|
|
xfs_trans_t *tp;
|
|
|
|
ASSERT(tpp);
|
|
|
|
trace_xfs_dqread(dqp);
|
|
|
|
/*
|
|
* get a pointer to the on-disk dquot and the buffer containing it
|
|
* dqp already knows its own type (GROUP/USER).
|
|
*/
|
|
if ((error = xfs_qm_dqtobp(tpp, dqp, &ddqp, &bp, flags))) {
|
|
return (error);
|
|
}
|
|
tp = *tpp;
|
|
|
|
/* copy everything from disk dquot to the incore dquot */
|
|
memcpy(&dqp->q_core, ddqp, sizeof(xfs_disk_dquot_t));
|
|
ASSERT(be32_to_cpu(dqp->q_core.d_id) == id);
|
|
xfs_qm_dquot_logitem_init(dqp);
|
|
|
|
/*
|
|
* Reservation counters are defined as reservation plus current usage
|
|
* to avoid having to add every time.
|
|
*/
|
|
dqp->q_res_bcount = be64_to_cpu(ddqp->d_bcount);
|
|
dqp->q_res_icount = be64_to_cpu(ddqp->d_icount);
|
|
dqp->q_res_rtbcount = be64_to_cpu(ddqp->d_rtbcount);
|
|
|
|
/* Mark the buf so that this will stay incore a little longer */
|
|
xfs_buf_set_ref(bp, XFS_DQUOT_REF);
|
|
|
|
/*
|
|
* We got the buffer with a xfs_trans_read_buf() (in dqtobp())
|
|
* So we need to release with xfs_trans_brelse().
|
|
* The strategy here is identical to that of inodes; we lock
|
|
* the dquot in xfs_qm_dqget() before making it accessible to
|
|
* others. This is because dquots, like inodes, need a good level of
|
|
* concurrency, and we don't want to take locks on the entire buffers
|
|
* for dquot accesses.
|
|
* Note also that the dquot buffer may even be dirty at this point, if
|
|
* this particular dquot was repaired. We still aren't afraid to
|
|
* brelse it because we have the changes incore.
|
|
*/
|
|
ASSERT(xfs_buf_islocked(bp));
|
|
xfs_trans_brelse(tp, bp);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
/*
|
|
* allocate an incore dquot from the kernel heap,
|
|
* and fill its core with quota information kept on disk.
|
|
* If XFS_QMOPT_DQALLOC is set, it'll allocate a dquot on disk
|
|
* if it wasn't already allocated.
|
|
*/
|
|
STATIC int
|
|
xfs_qm_idtodq(
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id, /* gid or uid, depending on type */
|
|
uint type, /* UDQUOT or GDQUOT */
|
|
uint flags, /* DQALLOC, DQREPAIR */
|
|
xfs_dquot_t **O_dqpp)/* OUT : incore dquot, not locked */
|
|
{
|
|
xfs_dquot_t *dqp;
|
|
int error;
|
|
xfs_trans_t *tp;
|
|
int cancelflags=0;
|
|
|
|
dqp = xfs_qm_dqinit(mp, id, type);
|
|
tp = NULL;
|
|
if (flags & XFS_QMOPT_DQALLOC) {
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_QM_DQALLOC);
|
|
error = xfs_trans_reserve(tp, XFS_QM_DQALLOC_SPACE_RES(mp),
|
|
XFS_WRITE_LOG_RES(mp) +
|
|
BBTOB(mp->m_quotainfo->qi_dqchunklen) - 1 +
|
|
128,
|
|
0,
|
|
XFS_TRANS_PERM_LOG_RES,
|
|
XFS_WRITE_LOG_COUNT);
|
|
if (error) {
|
|
cancelflags = 0;
|
|
goto error0;
|
|
}
|
|
cancelflags = XFS_TRANS_RELEASE_LOG_RES;
|
|
}
|
|
|
|
/*
|
|
* Read it from disk; xfs_dqread() takes care of
|
|
* all the necessary initialization of dquot's fields (locks, etc)
|
|
*/
|
|
if ((error = xfs_qm_dqread(&tp, id, dqp, flags))) {
|
|
/*
|
|
* This can happen if quotas got turned off (ESRCH),
|
|
* or if the dquot didn't exist on disk and we ask to
|
|
* allocate (ENOENT).
|
|
*/
|
|
trace_xfs_dqread_fail(dqp);
|
|
cancelflags |= XFS_TRANS_ABORT;
|
|
goto error0;
|
|
}
|
|
if (tp) {
|
|
if ((error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES)))
|
|
goto error1;
|
|
}
|
|
|
|
*O_dqpp = dqp;
|
|
return (0);
|
|
|
|
error0:
|
|
ASSERT(error);
|
|
if (tp)
|
|
xfs_trans_cancel(tp, cancelflags);
|
|
error1:
|
|
xfs_qm_dqdestroy(dqp);
|
|
*O_dqpp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Lookup a dquot in the incore dquot hashtable. We keep two separate
|
|
* hashtables for user and group dquots; and, these are global tables
|
|
* inside the XQM, not per-filesystem tables.
|
|
* The hash chain must be locked by caller, and it is left locked
|
|
* on return. Returning dquot is locked.
|
|
*/
|
|
STATIC int
|
|
xfs_qm_dqlookup(
|
|
xfs_mount_t *mp,
|
|
xfs_dqid_t id,
|
|
xfs_dqhash_t *qh,
|
|
xfs_dquot_t **O_dqpp)
|
|
{
|
|
xfs_dquot_t *dqp;
|
|
uint flist_locked;
|
|
|
|
ASSERT(mutex_is_locked(&qh->qh_lock));
|
|
|
|
flist_locked = B_FALSE;
|
|
|
|
/*
|
|
* Traverse the hashchain looking for a match
|
|
*/
|
|
list_for_each_entry(dqp, &qh->qh_list, q_hashlist) {
|
|
/*
|
|
* We already have the hashlock. We don't need the
|
|
* dqlock to look at the id field of the dquot, since the
|
|
* id can't be modified without the hashlock anyway.
|
|
*/
|
|
if (be32_to_cpu(dqp->q_core.d_id) == id && dqp->q_mount == mp) {
|
|
trace_xfs_dqlookup_found(dqp);
|
|
|
|
/*
|
|
* All in core dquots must be on the dqlist of mp
|
|
*/
|
|
ASSERT(!list_empty(&dqp->q_mplist));
|
|
|
|
xfs_dqlock(dqp);
|
|
if (dqp->q_nrefs == 0) {
|
|
ASSERT(!list_empty(&dqp->q_freelist));
|
|
if (!mutex_trylock(&xfs_Gqm->qm_dqfrlist_lock)) {
|
|
trace_xfs_dqlookup_want(dqp);
|
|
|
|
/*
|
|
* We may have raced with dqreclaim_one()
|
|
* (and lost). So, flag that we don't
|
|
* want the dquot to be reclaimed.
|
|
*/
|
|
dqp->dq_flags |= XFS_DQ_WANT;
|
|
xfs_dqunlock(dqp);
|
|
mutex_lock(&xfs_Gqm->qm_dqfrlist_lock);
|
|
xfs_dqlock(dqp);
|
|
dqp->dq_flags &= ~(XFS_DQ_WANT);
|
|
}
|
|
flist_locked = B_TRUE;
|
|
}
|
|
|
|
/*
|
|
* id couldn't have changed; we had the hashlock all
|
|
* along
|
|
*/
|
|
ASSERT(be32_to_cpu(dqp->q_core.d_id) == id);
|
|
|
|
if (flist_locked) {
|
|
if (dqp->q_nrefs != 0) {
|
|
mutex_unlock(&xfs_Gqm->qm_dqfrlist_lock);
|
|
flist_locked = B_FALSE;
|
|
} else {
|
|
/* take it off the freelist */
|
|
trace_xfs_dqlookup_freelist(dqp);
|
|
list_del_init(&dqp->q_freelist);
|
|
xfs_Gqm->qm_dqfrlist_cnt--;
|
|
}
|
|
}
|
|
|
|
XFS_DQHOLD(dqp);
|
|
|
|
if (flist_locked)
|
|
mutex_unlock(&xfs_Gqm->qm_dqfrlist_lock);
|
|
/*
|
|
* move the dquot to the front of the hashchain
|
|
*/
|
|
ASSERT(mutex_is_locked(&qh->qh_lock));
|
|
list_move(&dqp->q_hashlist, &qh->qh_list);
|
|
trace_xfs_dqlookup_done(dqp);
|
|
*O_dqpp = dqp;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
*O_dqpp = NULL;
|
|
ASSERT(mutex_is_locked(&qh->qh_lock));
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Given the file system, inode OR id, and type (UDQUOT/GDQUOT), return a
|
|
* a locked dquot, doing an allocation (if requested) as needed.
|
|
* When both an inode and an id are given, the inode's id takes precedence.
|
|
* That is, if the id changes while we don't hold the ilock inside this
|
|
* function, the new dquot is returned, not necessarily the one requested
|
|
* in the id argument.
|
|
*/
|
|
int
|
|
xfs_qm_dqget(
|
|
xfs_mount_t *mp,
|
|
xfs_inode_t *ip, /* locked inode (optional) */
|
|
xfs_dqid_t id, /* uid/projid/gid depending on type */
|
|
uint type, /* XFS_DQ_USER/XFS_DQ_PROJ/XFS_DQ_GROUP */
|
|
uint flags, /* DQALLOC, DQSUSER, DQREPAIR, DOWARN */
|
|
xfs_dquot_t **O_dqpp) /* OUT : locked incore dquot */
|
|
{
|
|
xfs_dquot_t *dqp;
|
|
xfs_dqhash_t *h;
|
|
uint version;
|
|
int error;
|
|
|
|
ASSERT(XFS_IS_QUOTA_RUNNING(mp));
|
|
if ((! XFS_IS_UQUOTA_ON(mp) && type == XFS_DQ_USER) ||
|
|
(! XFS_IS_PQUOTA_ON(mp) && type == XFS_DQ_PROJ) ||
|
|
(! XFS_IS_GQUOTA_ON(mp) && type == XFS_DQ_GROUP)) {
|
|
return (ESRCH);
|
|
}
|
|
h = XFS_DQ_HASH(mp, id, type);
|
|
|
|
#ifdef DEBUG
|
|
if (xfs_do_dqerror) {
|
|
if ((xfs_dqerror_target == mp->m_ddev_targp) &&
|
|
(xfs_dqreq_num++ % xfs_dqerror_mod) == 0) {
|
|
xfs_debug(mp, "Returning error in dqget");
|
|
return (EIO);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
again:
|
|
|
|
#ifdef DEBUG
|
|
ASSERT(type == XFS_DQ_USER ||
|
|
type == XFS_DQ_PROJ ||
|
|
type == XFS_DQ_GROUP);
|
|
if (ip) {
|
|
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
if (type == XFS_DQ_USER)
|
|
ASSERT(ip->i_udquot == NULL);
|
|
else
|
|
ASSERT(ip->i_gdquot == NULL);
|
|
}
|
|
#endif
|
|
mutex_lock(&h->qh_lock);
|
|
|
|
/*
|
|
* Look in the cache (hashtable).
|
|
* The chain is kept locked during lookup.
|
|
*/
|
|
if (xfs_qm_dqlookup(mp, id, h, O_dqpp) == 0) {
|
|
XQM_STATS_INC(xqmstats.xs_qm_dqcachehits);
|
|
/*
|
|
* The dquot was found, moved to the front of the chain,
|
|
* taken off the freelist if it was on it, and locked
|
|
* at this point. Just unlock the hashchain and return.
|
|
*/
|
|
ASSERT(*O_dqpp);
|
|
ASSERT(XFS_DQ_IS_LOCKED(*O_dqpp));
|
|
mutex_unlock(&h->qh_lock);
|
|
trace_xfs_dqget_hit(*O_dqpp);
|
|
return (0); /* success */
|
|
}
|
|
XQM_STATS_INC(xqmstats.xs_qm_dqcachemisses);
|
|
|
|
/*
|
|
* Dquot cache miss. We don't want to keep the inode lock across
|
|
* a (potential) disk read. Also we don't want to deal with the lock
|
|
* ordering between quotainode and this inode. OTOH, dropping the inode
|
|
* lock here means dealing with a chown that can happen before
|
|
* we re-acquire the lock.
|
|
*/
|
|
if (ip)
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
/*
|
|
* Save the hashchain version stamp, and unlock the chain, so that
|
|
* we don't keep the lock across a disk read
|
|
*/
|
|
version = h->qh_version;
|
|
mutex_unlock(&h->qh_lock);
|
|
|
|
/*
|
|
* Allocate the dquot on the kernel heap, and read the ondisk
|
|
* portion off the disk. Also, do all the necessary initialization
|
|
* This can return ENOENT if dquot didn't exist on disk and we didn't
|
|
* ask it to allocate; ESRCH if quotas got turned off suddenly.
|
|
*/
|
|
if ((error = xfs_qm_idtodq(mp, id, type,
|
|
flags & (XFS_QMOPT_DQALLOC|XFS_QMOPT_DQREPAIR|
|
|
XFS_QMOPT_DOWARN),
|
|
&dqp))) {
|
|
if (ip)
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* See if this is mount code calling to look at the overall quota limits
|
|
* which are stored in the id == 0 user or group's dquot.
|
|
* Since we may not have done a quotacheck by this point, just return
|
|
* the dquot without attaching it to any hashtables, lists, etc, or even
|
|
* taking a reference.
|
|
* The caller must dqdestroy this once done.
|
|
*/
|
|
if (flags & XFS_QMOPT_DQSUSER) {
|
|
ASSERT(id == 0);
|
|
ASSERT(! ip);
|
|
goto dqret;
|
|
}
|
|
|
|
/*
|
|
* Dquot lock comes after hashlock in the lock ordering
|
|
*/
|
|
if (ip) {
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
|
|
/*
|
|
* A dquot could be attached to this inode by now, since
|
|
* we had dropped the ilock.
|
|
*/
|
|
if (type == XFS_DQ_USER) {
|
|
if (!XFS_IS_UQUOTA_ON(mp)) {
|
|
/* inode stays locked on return */
|
|
xfs_qm_dqdestroy(dqp);
|
|
return XFS_ERROR(ESRCH);
|
|
}
|
|
if (ip->i_udquot) {
|
|
xfs_qm_dqdestroy(dqp);
|
|
dqp = ip->i_udquot;
|
|
xfs_dqlock(dqp);
|
|
goto dqret;
|
|
}
|
|
} else {
|
|
if (!XFS_IS_OQUOTA_ON(mp)) {
|
|
/* inode stays locked on return */
|
|
xfs_qm_dqdestroy(dqp);
|
|
return XFS_ERROR(ESRCH);
|
|
}
|
|
if (ip->i_gdquot) {
|
|
xfs_qm_dqdestroy(dqp);
|
|
dqp = ip->i_gdquot;
|
|
xfs_dqlock(dqp);
|
|
goto dqret;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hashlock comes after ilock in lock order
|
|
*/
|
|
mutex_lock(&h->qh_lock);
|
|
if (version != h->qh_version) {
|
|
xfs_dquot_t *tmpdqp;
|
|
/*
|
|
* Now, see if somebody else put the dquot in the
|
|
* hashtable before us. This can happen because we didn't
|
|
* keep the hashchain lock. We don't have to worry about
|
|
* lock order between the two dquots here since dqp isn't
|
|
* on any findable lists yet.
|
|
*/
|
|
if (xfs_qm_dqlookup(mp, id, h, &tmpdqp) == 0) {
|
|
/*
|
|
* Duplicate found. Just throw away the new dquot
|
|
* and start over.
|
|
*/
|
|
xfs_qm_dqput(tmpdqp);
|
|
mutex_unlock(&h->qh_lock);
|
|
xfs_qm_dqdestroy(dqp);
|
|
XQM_STATS_INC(xqmstats.xs_qm_dquot_dups);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put the dquot at the beginning of the hash-chain and mp's list
|
|
* LOCK ORDER: hashlock, freelistlock, mplistlock, udqlock, gdqlock ..
|
|
*/
|
|
ASSERT(mutex_is_locked(&h->qh_lock));
|
|
dqp->q_hash = h;
|
|
list_add(&dqp->q_hashlist, &h->qh_list);
|
|
h->qh_version++;
|
|
|
|
/*
|
|
* Attach this dquot to this filesystem's list of all dquots,
|
|
* kept inside the mount structure in m_quotainfo field
|
|
*/
|
|
mutex_lock(&mp->m_quotainfo->qi_dqlist_lock);
|
|
|
|
/*
|
|
* We return a locked dquot to the caller, with a reference taken
|
|
*/
|
|
xfs_dqlock(dqp);
|
|
dqp->q_nrefs = 1;
|
|
|
|
list_add(&dqp->q_mplist, &mp->m_quotainfo->qi_dqlist);
|
|
mp->m_quotainfo->qi_dquots++;
|
|
mutex_unlock(&mp->m_quotainfo->qi_dqlist_lock);
|
|
mutex_unlock(&h->qh_lock);
|
|
dqret:
|
|
ASSERT((ip == NULL) || xfs_isilocked(ip, XFS_ILOCK_EXCL));
|
|
trace_xfs_dqget_miss(dqp);
|
|
*O_dqpp = dqp;
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Release a reference to the dquot (decrement ref-count)
|
|
* and unlock it. If there is a group quota attached to this
|
|
* dquot, carefully release that too without tripping over
|
|
* deadlocks'n'stuff.
|
|
*/
|
|
void
|
|
xfs_qm_dqput(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
xfs_dquot_t *gdqp;
|
|
|
|
ASSERT(dqp->q_nrefs > 0);
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
|
|
trace_xfs_dqput(dqp);
|
|
|
|
if (dqp->q_nrefs != 1) {
|
|
dqp->q_nrefs--;
|
|
xfs_dqunlock(dqp);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* drop the dqlock and acquire the freelist and dqlock
|
|
* in the right order; but try to get it out-of-order first
|
|
*/
|
|
if (!mutex_trylock(&xfs_Gqm->qm_dqfrlist_lock)) {
|
|
trace_xfs_dqput_wait(dqp);
|
|
xfs_dqunlock(dqp);
|
|
mutex_lock(&xfs_Gqm->qm_dqfrlist_lock);
|
|
xfs_dqlock(dqp);
|
|
}
|
|
|
|
while (1) {
|
|
gdqp = NULL;
|
|
|
|
/* We can't depend on nrefs being == 1 here */
|
|
if (--dqp->q_nrefs == 0) {
|
|
trace_xfs_dqput_free(dqp);
|
|
|
|
list_add_tail(&dqp->q_freelist, &xfs_Gqm->qm_dqfrlist);
|
|
xfs_Gqm->qm_dqfrlist_cnt++;
|
|
|
|
/*
|
|
* If we just added a udquot to the freelist, then
|
|
* we want to release the gdquot reference that
|
|
* it (probably) has. Otherwise it'll keep the
|
|
* gdquot from getting reclaimed.
|
|
*/
|
|
if ((gdqp = dqp->q_gdquot)) {
|
|
/*
|
|
* Avoid a recursive dqput call
|
|
*/
|
|
xfs_dqlock(gdqp);
|
|
dqp->q_gdquot = NULL;
|
|
}
|
|
}
|
|
xfs_dqunlock(dqp);
|
|
|
|
/*
|
|
* If we had a group quota inside the user quota as a hint,
|
|
* release it now.
|
|
*/
|
|
if (! gdqp)
|
|
break;
|
|
dqp = gdqp;
|
|
}
|
|
mutex_unlock(&xfs_Gqm->qm_dqfrlist_lock);
|
|
}
|
|
|
|
/*
|
|
* Release a dquot. Flush it if dirty, then dqput() it.
|
|
* dquot must not be locked.
|
|
*/
|
|
void
|
|
xfs_qm_dqrele(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
if (!dqp)
|
|
return;
|
|
|
|
trace_xfs_dqrele(dqp);
|
|
|
|
xfs_dqlock(dqp);
|
|
/*
|
|
* We don't care to flush it if the dquot is dirty here.
|
|
* That will create stutters that we want to avoid.
|
|
* Instead we do a delayed write when we try to reclaim
|
|
* a dirty dquot. Also xfs_sync will take part of the burden...
|
|
*/
|
|
xfs_qm_dqput(dqp);
|
|
}
|
|
|
|
/*
|
|
* This is the dquot flushing I/O completion routine. It is called
|
|
* from interrupt level when the buffer containing the dquot is
|
|
* flushed to disk. It is responsible for removing the dquot logitem
|
|
* from the AIL if it has not been re-logged, and unlocking the dquot's
|
|
* flush lock. This behavior is very similar to that of inodes..
|
|
*/
|
|
STATIC void
|
|
xfs_qm_dqflush_done(
|
|
struct xfs_buf *bp,
|
|
struct xfs_log_item *lip)
|
|
{
|
|
xfs_dq_logitem_t *qip = (struct xfs_dq_logitem *)lip;
|
|
xfs_dquot_t *dqp = qip->qli_dquot;
|
|
struct xfs_ail *ailp = lip->li_ailp;
|
|
|
|
/*
|
|
* We only want to pull the item from the AIL if its
|
|
* location in the log has not changed since we started the flush.
|
|
* Thus, we only bother if the dquot's lsn has
|
|
* not changed. First we check the lsn outside the lock
|
|
* since it's cheaper, and then we recheck while
|
|
* holding the lock before removing the dquot from the AIL.
|
|
*/
|
|
if ((lip->li_flags & XFS_LI_IN_AIL) &&
|
|
lip->li_lsn == qip->qli_flush_lsn) {
|
|
|
|
/* xfs_trans_ail_delete() drops the AIL lock. */
|
|
spin_lock(&ailp->xa_lock);
|
|
if (lip->li_lsn == qip->qli_flush_lsn)
|
|
xfs_trans_ail_delete(ailp, lip);
|
|
else
|
|
spin_unlock(&ailp->xa_lock);
|
|
}
|
|
|
|
/*
|
|
* Release the dq's flush lock since we're done with it.
|
|
*/
|
|
xfs_dqfunlock(dqp);
|
|
}
|
|
|
|
/*
|
|
* Write a modified dquot to disk.
|
|
* The dquot must be locked and the flush lock too taken by caller.
|
|
* The flush lock will not be unlocked until the dquot reaches the disk,
|
|
* but the dquot is free to be unlocked and modified by the caller
|
|
* in the interim. Dquot is still locked on return. This behavior is
|
|
* identical to that of inodes.
|
|
*/
|
|
int
|
|
xfs_qm_dqflush(
|
|
xfs_dquot_t *dqp,
|
|
uint flags)
|
|
{
|
|
struct xfs_mount *mp = dqp->q_mount;
|
|
struct xfs_buf *bp;
|
|
struct xfs_disk_dquot *ddqp;
|
|
int error;
|
|
|
|
ASSERT(XFS_DQ_IS_LOCKED(dqp));
|
|
ASSERT(!completion_done(&dqp->q_flush));
|
|
|
|
trace_xfs_dqflush(dqp);
|
|
|
|
/*
|
|
* If not dirty, or it's pinned and we are not supposed to block, nada.
|
|
*/
|
|
if (!XFS_DQ_IS_DIRTY(dqp) ||
|
|
(!(flags & SYNC_WAIT) && atomic_read(&dqp->q_pincount) > 0)) {
|
|
xfs_dqfunlock(dqp);
|
|
return 0;
|
|
}
|
|
xfs_qm_dqunpin_wait(dqp);
|
|
|
|
/*
|
|
* This may have been unpinned because the filesystem is shutting
|
|
* down forcibly. If that's the case we must not write this dquot
|
|
* to disk, because the log record didn't make it to disk!
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(mp)) {
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
xfs_dqfunlock(dqp);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/*
|
|
* Get the buffer containing the on-disk dquot
|
|
*/
|
|
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, 0, &bp);
|
|
if (error) {
|
|
ASSERT(error != ENOENT);
|
|
xfs_dqfunlock(dqp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Calculate the location of the dquot inside the buffer.
|
|
*/
|
|
ddqp = bp->b_addr + dqp->q_bufoffset;
|
|
|
|
/*
|
|
* A simple sanity check in case we got a corrupted dquot..
|
|
*/
|
|
error = xfs_qm_dqcheck(mp, &dqp->q_core, be32_to_cpu(ddqp->d_id), 0,
|
|
XFS_QMOPT_DOWARN, "dqflush (incore copy)");
|
|
if (error) {
|
|
xfs_buf_relse(bp);
|
|
xfs_dqfunlock(dqp);
|
|
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
|
|
return XFS_ERROR(EIO);
|
|
}
|
|
|
|
/* This is the only portion of data that needs to persist */
|
|
memcpy(ddqp, &dqp->q_core, sizeof(xfs_disk_dquot_t));
|
|
|
|
/*
|
|
* Clear the dirty field and remember the flush lsn for later use.
|
|
*/
|
|
dqp->dq_flags &= ~XFS_DQ_DIRTY;
|
|
|
|
xfs_trans_ail_copy_lsn(mp->m_ail, &dqp->q_logitem.qli_flush_lsn,
|
|
&dqp->q_logitem.qli_item.li_lsn);
|
|
|
|
/*
|
|
* Attach an iodone routine so that we can remove this dquot from the
|
|
* AIL and release the flush lock once the dquot is synced to disk.
|
|
*/
|
|
xfs_buf_attach_iodone(bp, xfs_qm_dqflush_done,
|
|
&dqp->q_logitem.qli_item);
|
|
|
|
/*
|
|
* If the buffer is pinned then push on the log so we won't
|
|
* get stuck waiting in the write for too long.
|
|
*/
|
|
if (xfs_buf_ispinned(bp)) {
|
|
trace_xfs_dqflush_force(dqp);
|
|
xfs_log_force(mp, 0);
|
|
}
|
|
|
|
if (flags & SYNC_WAIT)
|
|
error = xfs_bwrite(bp);
|
|
else
|
|
xfs_buf_delwri_queue(bp);
|
|
|
|
xfs_buf_relse(bp);
|
|
|
|
trace_xfs_dqflush_done(dqp);
|
|
|
|
/*
|
|
* dqp is still locked, but caller is free to unlock it now.
|
|
*/
|
|
return error;
|
|
|
|
}
|
|
|
|
int
|
|
xfs_qm_dqlock_nowait(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
return mutex_trylock(&dqp->q_qlock);
|
|
}
|
|
|
|
void
|
|
xfs_dqlock(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
mutex_lock(&dqp->q_qlock);
|
|
}
|
|
|
|
void
|
|
xfs_dqunlock(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
mutex_unlock(&(dqp->q_qlock));
|
|
if (dqp->q_logitem.qli_dquot == dqp) {
|
|
/* Once was dqp->q_mount, but might just have been cleared */
|
|
xfs_trans_unlocked_item(dqp->q_logitem.qli_item.li_ailp,
|
|
(xfs_log_item_t*)&(dqp->q_logitem));
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
xfs_dqunlock_nonotify(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
mutex_unlock(&(dqp->q_qlock));
|
|
}
|
|
|
|
/*
|
|
* Lock two xfs_dquot structures.
|
|
*
|
|
* To avoid deadlocks we always lock the quota structure with
|
|
* the lowerd id first.
|
|
*/
|
|
void
|
|
xfs_dqlock2(
|
|
xfs_dquot_t *d1,
|
|
xfs_dquot_t *d2)
|
|
{
|
|
if (d1 && d2) {
|
|
ASSERT(d1 != d2);
|
|
if (be32_to_cpu(d1->q_core.d_id) >
|
|
be32_to_cpu(d2->q_core.d_id)) {
|
|
mutex_lock(&d2->q_qlock);
|
|
mutex_lock_nested(&d1->q_qlock, XFS_QLOCK_NESTED);
|
|
} else {
|
|
mutex_lock(&d1->q_qlock);
|
|
mutex_lock_nested(&d2->q_qlock, XFS_QLOCK_NESTED);
|
|
}
|
|
} else if (d1) {
|
|
mutex_lock(&d1->q_qlock);
|
|
} else if (d2) {
|
|
mutex_lock(&d2->q_qlock);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Take a dquot out of the mount's dqlist as well as the hashlist.
|
|
* This is called via unmount as well as quotaoff, and the purge
|
|
* will always succeed unless there are soft (temp) references
|
|
* outstanding.
|
|
*
|
|
* This returns 0 if it was purged, 1 if it wasn't. It's not an error code
|
|
* that we're returning! XXXsup - not cool.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
xfs_qm_dqpurge(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
xfs_dqhash_t *qh = dqp->q_hash;
|
|
xfs_mount_t *mp = dqp->q_mount;
|
|
|
|
ASSERT(mutex_is_locked(&mp->m_quotainfo->qi_dqlist_lock));
|
|
ASSERT(mutex_is_locked(&dqp->q_hash->qh_lock));
|
|
|
|
xfs_dqlock(dqp);
|
|
/*
|
|
* We really can't afford to purge a dquot that is
|
|
* referenced, because these are hard refs.
|
|
* It shouldn't happen in general because we went thru _all_ inodes in
|
|
* dqrele_all_inodes before calling this and didn't let the mountlock go.
|
|
* However it is possible that we have dquots with temporary
|
|
* references that are not attached to an inode. e.g. see xfs_setattr().
|
|
*/
|
|
if (dqp->q_nrefs != 0) {
|
|
xfs_dqunlock(dqp);
|
|
mutex_unlock(&dqp->q_hash->qh_lock);
|
|
return (1);
|
|
}
|
|
|
|
ASSERT(!list_empty(&dqp->q_freelist));
|
|
|
|
/*
|
|
* If we're turning off quotas, we have to make sure that, for
|
|
* example, we don't delete quota disk blocks while dquots are
|
|
* in the process of getting written to those disk blocks.
|
|
* This dquot might well be on AIL, and we can't leave it there
|
|
* if we're turning off quotas. Basically, we need this flush
|
|
* lock, and are willing to block on it.
|
|
*/
|
|
if (!xfs_dqflock_nowait(dqp)) {
|
|
/*
|
|
* Block on the flush lock after nudging dquot buffer,
|
|
* if it is incore.
|
|
*/
|
|
xfs_qm_dqflock_pushbuf_wait(dqp);
|
|
}
|
|
|
|
/*
|
|
* XXXIf we're turning this type of quotas off, we don't care
|
|
* about the dirty metadata sitting in this dquot. OTOH, if
|
|
* we're unmounting, we do care, so we flush it and wait.
|
|
*/
|
|
if (XFS_DQ_IS_DIRTY(dqp)) {
|
|
int error;
|
|
|
|
/* dqflush unlocks dqflock */
|
|
/*
|
|
* Given that dqpurge is a very rare occurrence, it is OK
|
|
* that we're holding the hashlist and mplist locks
|
|
* across the disk write. But, ... XXXsup
|
|
*
|
|
* We don't care about getting disk errors here. We need
|
|
* to purge this dquot anyway, so we go ahead regardless.
|
|
*/
|
|
error = xfs_qm_dqflush(dqp, SYNC_WAIT);
|
|
if (error)
|
|
xfs_warn(mp, "%s: dquot %p flush failed",
|
|
__func__, dqp);
|
|
xfs_dqflock(dqp);
|
|
}
|
|
ASSERT(atomic_read(&dqp->q_pincount) == 0);
|
|
ASSERT(XFS_FORCED_SHUTDOWN(mp) ||
|
|
!(dqp->q_logitem.qli_item.li_flags & XFS_LI_IN_AIL));
|
|
|
|
list_del_init(&dqp->q_hashlist);
|
|
qh->qh_version++;
|
|
list_del_init(&dqp->q_mplist);
|
|
mp->m_quotainfo->qi_dqreclaims++;
|
|
mp->m_quotainfo->qi_dquots--;
|
|
/*
|
|
* XXX Move this to the front of the freelist, if we can get the
|
|
* freelist lock.
|
|
*/
|
|
ASSERT(!list_empty(&dqp->q_freelist));
|
|
|
|
dqp->q_mount = NULL;
|
|
dqp->q_hash = NULL;
|
|
dqp->dq_flags = XFS_DQ_INACTIVE;
|
|
memset(&dqp->q_core, 0, sizeof(dqp->q_core));
|
|
xfs_dqfunlock(dqp);
|
|
xfs_dqunlock(dqp);
|
|
mutex_unlock(&qh->qh_lock);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Give the buffer a little push if it is incore and
|
|
* wait on the flush lock.
|
|
*/
|
|
void
|
|
xfs_qm_dqflock_pushbuf_wait(
|
|
xfs_dquot_t *dqp)
|
|
{
|
|
xfs_mount_t *mp = dqp->q_mount;
|
|
xfs_buf_t *bp;
|
|
|
|
/*
|
|
* Check to see if the dquot has been flushed delayed
|
|
* write. If so, grab its buffer and send it
|
|
* out immediately. We'll be able to acquire
|
|
* the flush lock when the I/O completes.
|
|
*/
|
|
bp = xfs_incore(mp->m_ddev_targp, dqp->q_blkno,
|
|
mp->m_quotainfo->qi_dqchunklen, XBF_TRYLOCK);
|
|
if (!bp)
|
|
goto out_lock;
|
|
|
|
if (XFS_BUF_ISDELAYWRITE(bp)) {
|
|
if (xfs_buf_ispinned(bp))
|
|
xfs_log_force(mp, 0);
|
|
xfs_buf_delwri_promote(bp);
|
|
wake_up_process(bp->b_target->bt_task);
|
|
}
|
|
xfs_buf_relse(bp);
|
|
out_lock:
|
|
xfs_dqflock(dqp);
|
|
}
|