linux/arch/arm/mach-bcm/platsmp.c

291 lines
7.8 KiB
C

/*
* Copyright (C) 2014-2015 Broadcom Corporation
* Copyright 2014 Linaro Limited
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/cpumask.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/of.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <asm/cacheflush.h>
#include <asm/smp.h>
#include <asm/smp_plat.h>
#include <asm/smp_scu.h>
/* Size of mapped Cortex A9 SCU address space */
#define CORTEX_A9_SCU_SIZE 0x58
#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
#define BOOT_ADDR_CPUID_MASK 0x3
/* Name of device node property defining secondary boot register location */
#define OF_SECONDARY_BOOT "secondary-boot-reg"
#define MPIDR_CPUID_BITMASK 0x3
/* I/O address of register used to coordinate secondary core startup */
static u32 secondary_boot_addr;
/*
* Enable the Cortex A9 Snoop Control Unit
*
* By the time this is called we already know there are multiple
* cores present. We assume we're running on a Cortex A9 processor,
* so any trouble getting the base address register or getting the
* SCU base is a problem.
*
* Return 0 if successful or an error code otherwise.
*/
static int __init scu_a9_enable(void)
{
unsigned long config_base;
void __iomem *scu_base;
if (!scu_a9_has_base()) {
pr_err("no configuration base address register!\n");
return -ENXIO;
}
/* Config base address register value is zero for uniprocessor */
config_base = scu_a9_get_base();
if (!config_base) {
pr_err("hardware reports only one core\n");
return -ENOENT;
}
scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
if (!scu_base) {
pr_err("failed to remap config base (%lu/%u) for SCU\n",
config_base, CORTEX_A9_SCU_SIZE);
return -ENOMEM;
}
scu_enable(scu_base);
iounmap(scu_base); /* That's the last we'll need of this */
return 0;
}
static int nsp_write_lut(void)
{
void __iomem *sku_rom_lut;
phys_addr_t secondary_startup_phy;
if (!secondary_boot_addr) {
pr_warn("required secondary boot register not specified\n");
return -EINVAL;
}
sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
sizeof(secondary_boot_addr));
if (!sku_rom_lut) {
pr_warn("unable to ioremap SKU-ROM LUT register\n");
return -ENOMEM;
}
secondary_startup_phy = virt_to_phys(secondary_startup);
BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
writel_relaxed(secondary_startup_phy, sku_rom_lut);
/* Ensure the write is visible to the secondary core */
smp_wmb();
iounmap(sku_rom_lut);
return 0;
}
static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
{
static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
struct device_node *cpus_node = NULL;
struct device_node *cpu_node = NULL;
int ret;
/*
* This function is only called via smp_ops->smp_prepare_cpu().
* That only happens if a "/cpus" device tree node exists
* and has an "enable-method" property that selects the SMP
* operations defined herein.
*/
cpus_node = of_find_node_by_path("/cpus");
if (!cpus_node)
return;
for_each_child_of_node(cpus_node, cpu_node) {
u32 cpuid;
if (of_node_cmp(cpu_node->type, "cpu"))
continue;
if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
pr_debug("%s: missing reg property\n",
cpu_node->full_name);
ret = -ENOENT;
goto out;
}
/*
* "secondary-boot-reg" property should be defined only
* for secondary cpu
*/
if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
/*
* Our secondary enable method requires a
* "secondary-boot-reg" property to specify a register
* address used to request the ROM code boot a secondary
* core. If we have any trouble getting this we fall
* back to uniprocessor mode.
*/
if (of_property_read_u32(cpu_node,
OF_SECONDARY_BOOT,
&secondary_boot_addr)) {
pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
cpu_node->name);
ret = -ENOENT;
goto out;
}
}
}
/*
* Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
* returned, the SoC reported a uniprocessor configuration.
* We bail on any other error.
*/
ret = scu_a9_enable();
out:
of_node_put(cpu_node);
of_node_put(cpus_node);
if (ret) {
/* Update the CPU present map to reflect uniprocessor mode */
pr_warn("disabling SMP\n");
init_cpu_present(&only_cpu_0);
}
}
/*
* The ROM code has the secondary cores looping, waiting for an event.
* When an event occurs each core examines the bottom two bits of the
* secondary boot register. When a core finds those bits contain its
* own core id, it performs initialization, including computing its boot
* address by clearing the boot register value's bottom two bits. The
* core signals that it is beginning its execution by writing its boot
* address back to the secondary boot register, and finally jumps to
* that address.
*
* So to start a core executing we need to:
* - Encode the (hardware) CPU id with the bottom bits of the secondary
* start address.
* - Write that value into the secondary boot register.
* - Generate an event to wake up the secondary CPU(s).
* - Wait for the secondary boot register to be re-written, which
* indicates the secondary core has started.
*/
static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
void __iomem *boot_reg;
phys_addr_t boot_func;
u64 start_clock;
u32 cpu_id;
u32 boot_val;
bool timeout = false;
cpu_id = cpu_logical_map(cpu);
if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
return -EINVAL;
}
if (!secondary_boot_addr) {
pr_err("required secondary boot register not specified\n");
return -EINVAL;
}
boot_reg = ioremap_nocache(
(phys_addr_t)secondary_boot_addr, sizeof(u32));
if (!boot_reg) {
pr_err("unable to map boot register for cpu %u\n", cpu_id);
return -ENOMEM;
}
/*
* Secondary cores will start in secondary_startup(),
* defined in "arch/arm/kernel/head.S"
*/
boot_func = virt_to_phys(secondary_startup);
BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
BUG_ON(boot_func > (phys_addr_t)U32_MAX);
/* The core to start is encoded in the low bits */
boot_val = (u32)boot_func | cpu_id;
writel_relaxed(boot_val, boot_reg);
sev();
/* The low bits will be cleared once the core has started */
start_clock = local_clock();
while (!timeout && readl_relaxed(boot_reg) == boot_val)
timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
iounmap(boot_reg);
if (!timeout)
return 0;
pr_err("timeout waiting for cpu %u to start\n", cpu_id);
return -ENXIO;
}
static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
{
int ret;
/*
* After wake up, secondary core branches to the startup
* address programmed at SKU ROM LUT location.
*/
ret = nsp_write_lut();
if (ret) {
pr_err("unable to write startup addr to SKU ROM LUT\n");
goto out;
}
/* Send a CPU wakeup interrupt to the secondary core */
arch_send_wakeup_ipi_mask(cpumask_of(cpu));
out:
return ret;
}
static const struct smp_operations bcm_smp_ops __initconst = {
.smp_prepare_cpus = bcm_smp_prepare_cpus,
.smp_boot_secondary = kona_boot_secondary,
};
CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
&bcm_smp_ops);
struct smp_operations nsp_smp_ops __initdata = {
.smp_prepare_cpus = bcm_smp_prepare_cpus,
.smp_boot_secondary = nsp_boot_secondary,
};
CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);