linux/tools/perf/builtin-stat.c

3072 lines
75 KiB
C

/*
* builtin-stat.c
*
* Builtin stat command: Give a precise performance counters summary
* overview about any workload, CPU or specific PID.
*
* Sample output:
$ perf stat ./hackbench 10
Time: 0.118
Performance counter stats for './hackbench 10':
1708.761321 task-clock # 11.037 CPUs utilized
41,190 context-switches # 0.024 M/sec
6,735 CPU-migrations # 0.004 M/sec
17,318 page-faults # 0.010 M/sec
5,205,202,243 cycles # 3.046 GHz
3,856,436,920 stalled-cycles-frontend # 74.09% frontend cycles idle
1,600,790,871 stalled-cycles-backend # 30.75% backend cycles idle
2,603,501,247 instructions # 0.50 insns per cycle
# 1.48 stalled cycles per insn
484,357,498 branches # 283.455 M/sec
6,388,934 branch-misses # 1.32% of all branches
0.154822978 seconds time elapsed
*
* Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
*
* Improvements and fixes by:
*
* Arjan van de Ven <arjan@linux.intel.com>
* Yanmin Zhang <yanmin.zhang@intel.com>
* Wu Fengguang <fengguang.wu@intel.com>
* Mike Galbraith <efault@gmx.de>
* Paul Mackerras <paulus@samba.org>
* Jaswinder Singh Rajput <jaswinder@kernel.org>
*
* Released under the GPL v2. (and only v2, not any later version)
*/
#include "perf.h"
#include "builtin.h"
#include "util/cgroup.h"
#include "util/util.h"
#include <subcmd/parse-options.h>
#include "util/parse-events.h"
#include "util/pmu.h"
#include "util/event.h"
#include "util/evlist.h"
#include "util/evsel.h"
#include "util/debug.h"
#include "util/drv_configs.h"
#include "util/color.h"
#include "util/stat.h"
#include "util/header.h"
#include "util/cpumap.h"
#include "util/thread.h"
#include "util/thread_map.h"
#include "util/counts.h"
#include "util/group.h"
#include "util/session.h"
#include "util/tool.h"
#include "util/string2.h"
#include "util/metricgroup.h"
#include "asm/bug.h"
#include <linux/time64.h>
#include <api/fs/fs.h>
#include <errno.h>
#include <signal.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <inttypes.h>
#include <locale.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
#include "sane_ctype.h"
#define DEFAULT_SEPARATOR " "
#define CNTR_NOT_SUPPORTED "<not supported>"
#define CNTR_NOT_COUNTED "<not counted>"
#define FREEZE_ON_SMI_PATH "devices/cpu/freeze_on_smi"
static void print_counters(struct timespec *ts, int argc, const char **argv);
/* Default events used for perf stat -T */
static const char *transaction_attrs = {
"task-clock,"
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/,"
"cpu/el-start/,"
"cpu/cycles-ct/"
"}"
};
/* More limited version when the CPU does not have all events. */
static const char * transaction_limited_attrs = {
"task-clock,"
"{"
"instructions,"
"cycles,"
"cpu/cycles-t/,"
"cpu/tx-start/"
"}"
};
static const char * topdown_attrs[] = {
"topdown-total-slots",
"topdown-slots-retired",
"topdown-recovery-bubbles",
"topdown-fetch-bubbles",
"topdown-slots-issued",
NULL,
};
static const char *smi_cost_attrs = {
"{"
"msr/aperf/,"
"msr/smi/,"
"cycles"
"}"
};
static struct perf_evlist *evsel_list;
static struct rblist metric_events;
static struct target target = {
.uid = UINT_MAX,
};
typedef int (*aggr_get_id_t)(struct cpu_map *m, int cpu);
static int run_count = 1;
static bool no_inherit = false;
static volatile pid_t child_pid = -1;
static bool null_run = false;
static int detailed_run = 0;
static bool transaction_run;
static bool topdown_run = false;
static bool smi_cost = false;
static bool smi_reset = false;
static bool big_num = true;
static int big_num_opt = -1;
static const char *csv_sep = NULL;
static bool csv_output = false;
static bool group = false;
static const char *pre_cmd = NULL;
static const char *post_cmd = NULL;
static bool sync_run = false;
static unsigned int initial_delay = 0;
static unsigned int unit_width = 4; /* strlen("unit") */
static bool forever = false;
static bool metric_only = false;
static bool force_metric_only = false;
static bool no_merge = false;
static struct timespec ref_time;
static struct cpu_map *aggr_map;
static aggr_get_id_t aggr_get_id;
static bool append_file;
static bool interval_count;
static const char *output_name;
static int output_fd;
static int print_free_counters_hint;
static int print_mixed_hw_group_error;
struct perf_stat {
bool record;
struct perf_data data;
struct perf_session *session;
u64 bytes_written;
struct perf_tool tool;
bool maps_allocated;
struct cpu_map *cpus;
struct thread_map *threads;
enum aggr_mode aggr_mode;
};
static struct perf_stat perf_stat;
#define STAT_RECORD perf_stat.record
static volatile int done = 0;
static struct perf_stat_config stat_config = {
.aggr_mode = AGGR_GLOBAL,
.scale = true,
};
static bool is_duration_time(struct perf_evsel *evsel)
{
return !strcmp(evsel->name, "duration_time");
}
static inline void diff_timespec(struct timespec *r, struct timespec *a,
struct timespec *b)
{
r->tv_sec = a->tv_sec - b->tv_sec;
if (a->tv_nsec < b->tv_nsec) {
r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec;
r->tv_sec--;
} else {
r->tv_nsec = a->tv_nsec - b->tv_nsec ;
}
}
static void perf_stat__reset_stats(void)
{
int i;
perf_evlist__reset_stats(evsel_list);
perf_stat__reset_shadow_stats();
for (i = 0; i < stat_config.stats_num; i++)
perf_stat__reset_shadow_per_stat(&stat_config.stats[i]);
}
static int create_perf_stat_counter(struct perf_evsel *evsel)
{
struct perf_event_attr *attr = &evsel->attr;
struct perf_evsel *leader = evsel->leader;
if (stat_config.scale) {
attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
PERF_FORMAT_TOTAL_TIME_RUNNING;
}
/*
* The event is part of non trivial group, let's enable
* the group read (for leader) and ID retrieval for all
* members.
*/
if (leader->nr_members > 1)
attr->read_format |= PERF_FORMAT_ID|PERF_FORMAT_GROUP;
attr->inherit = !no_inherit;
/*
* Some events get initialized with sample_(period/type) set,
* like tracepoints. Clear it up for counting.
*/
attr->sample_period = 0;
/*
* But set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless
* while avoiding that older tools show confusing messages.
*
* However for pipe sessions we need to keep it zero,
* because script's perf_evsel__check_attr is triggered
* by attr->sample_type != 0, and we can't run it on
* stat sessions.
*/
if (!(STAT_RECORD && perf_stat.data.is_pipe))
attr->sample_type = PERF_SAMPLE_IDENTIFIER;
/*
* Disabling all counters initially, they will be enabled
* either manually by us or by kernel via enable_on_exec
* set later.
*/
if (perf_evsel__is_group_leader(evsel)) {
attr->disabled = 1;
/*
* In case of initial_delay we enable tracee
* events manually.
*/
if (target__none(&target) && !initial_delay)
attr->enable_on_exec = 1;
}
if (target__has_cpu(&target) && !target__has_per_thread(&target))
return perf_evsel__open_per_cpu(evsel, perf_evsel__cpus(evsel));
return perf_evsel__open_per_thread(evsel, evsel_list->threads);
}
/*
* Does the counter have nsecs as a unit?
*/
static inline int nsec_counter(struct perf_evsel *evsel)
{
if (perf_evsel__match(evsel, SOFTWARE, SW_CPU_CLOCK) ||
perf_evsel__match(evsel, SOFTWARE, SW_TASK_CLOCK))
return 1;
return 0;
}
static int process_synthesized_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_sample *sample __maybe_unused,
struct machine *machine __maybe_unused)
{
if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) {
pr_err("failed to write perf data, error: %m\n");
return -1;
}
perf_stat.bytes_written += event->header.size;
return 0;
}
static int write_stat_round_event(u64 tm, u64 type)
{
return perf_event__synthesize_stat_round(NULL, tm, type,
process_synthesized_event,
NULL);
}
#define WRITE_STAT_ROUND_EVENT(time, interval) \
write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval)
#define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
static int
perf_evsel__write_stat_event(struct perf_evsel *counter, u32 cpu, u32 thread,
struct perf_counts_values *count)
{
struct perf_sample_id *sid = SID(counter, cpu, thread);
return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count,
process_synthesized_event, NULL);
}
/*
* Read out the results of a single counter:
* do not aggregate counts across CPUs in system-wide mode
*/
static int read_counter(struct perf_evsel *counter)
{
int nthreads = thread_map__nr(evsel_list->threads);
int ncpus, cpu, thread;
if (target__has_cpu(&target) && !target__has_per_thread(&target))
ncpus = perf_evsel__nr_cpus(counter);
else
ncpus = 1;
if (!counter->supported)
return -ENOENT;
if (counter->system_wide)
nthreads = 1;
for (thread = 0; thread < nthreads; thread++) {
for (cpu = 0; cpu < ncpus; cpu++) {
struct perf_counts_values *count;
count = perf_counts(counter->counts, cpu, thread);
/*
* The leader's group read loads data into its group members
* (via perf_evsel__read_counter) and sets threir count->loaded.
*/
if (!count->loaded &&
perf_evsel__read_counter(counter, cpu, thread)) {
counter->counts->scaled = -1;
perf_counts(counter->counts, cpu, thread)->ena = 0;
perf_counts(counter->counts, cpu, thread)->run = 0;
return -1;
}
count->loaded = false;
if (STAT_RECORD) {
if (perf_evsel__write_stat_event(counter, cpu, thread, count)) {
pr_err("failed to write stat event\n");
return -1;
}
}
if (verbose > 1) {
fprintf(stat_config.output,
"%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
perf_evsel__name(counter),
cpu,
count->val, count->ena, count->run);
}
}
}
return 0;
}
static void read_counters(void)
{
struct perf_evsel *counter;
int ret;
evlist__for_each_entry(evsel_list, counter) {
ret = read_counter(counter);
if (ret)
pr_debug("failed to read counter %s\n", counter->name);
if (ret == 0 && perf_stat_process_counter(&stat_config, counter))
pr_warning("failed to process counter %s\n", counter->name);
}
}
static void process_interval(void)
{
struct timespec ts, rs;
read_counters();
clock_gettime(CLOCK_MONOTONIC, &ts);
diff_timespec(&rs, &ts, &ref_time);
if (STAT_RECORD) {
if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL))
pr_err("failed to write stat round event\n");
}
init_stats(&walltime_nsecs_stats);
update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000);
print_counters(&rs, 0, NULL);
}
static void enable_counters(void)
{
if (initial_delay)
usleep(initial_delay * USEC_PER_MSEC);
/*
* We need to enable counters only if:
* - we don't have tracee (attaching to task or cpu)
* - we have initial delay configured
*/
if (!target__none(&target) || initial_delay)
perf_evlist__enable(evsel_list);
}
static void disable_counters(void)
{
/*
* If we don't have tracee (attaching to task or cpu), counters may
* still be running. To get accurate group ratios, we must stop groups
* from counting before reading their constituent counters.
*/
if (!target__none(&target))
perf_evlist__disable(evsel_list);
}
static volatile int workload_exec_errno;
/*
* perf_evlist__prepare_workload will send a SIGUSR1
* if the fork fails, since we asked by setting its
* want_signal to true.
*/
static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
void *ucontext __maybe_unused)
{
workload_exec_errno = info->si_value.sival_int;
}
static int perf_stat_synthesize_config(bool is_pipe)
{
int err;
if (is_pipe) {
err = perf_event__synthesize_attrs(NULL, perf_stat.session,
process_synthesized_event);
if (err < 0) {
pr_err("Couldn't synthesize attrs.\n");
return err;
}
}
err = perf_event__synthesize_extra_attr(NULL,
evsel_list,
process_synthesized_event,
is_pipe);
err = perf_event__synthesize_thread_map2(NULL, evsel_list->threads,
process_synthesized_event,
NULL);
if (err < 0) {
pr_err("Couldn't synthesize thread map.\n");
return err;
}
err = perf_event__synthesize_cpu_map(NULL, evsel_list->cpus,
process_synthesized_event, NULL);
if (err < 0) {
pr_err("Couldn't synthesize thread map.\n");
return err;
}
err = perf_event__synthesize_stat_config(NULL, &stat_config,
process_synthesized_event, NULL);
if (err < 0) {
pr_err("Couldn't synthesize config.\n");
return err;
}
return 0;
}
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
static int __store_counter_ids(struct perf_evsel *counter)
{
int cpu, thread;
for (cpu = 0; cpu < xyarray__max_x(counter->fd); cpu++) {
for (thread = 0; thread < xyarray__max_y(counter->fd);
thread++) {
int fd = FD(counter, cpu, thread);
if (perf_evlist__id_add_fd(evsel_list, counter,
cpu, thread, fd) < 0)
return -1;
}
}
return 0;
}
static int store_counter_ids(struct perf_evsel *counter)
{
struct cpu_map *cpus = counter->cpus;
struct thread_map *threads = counter->threads;
if (perf_evsel__alloc_id(counter, cpus->nr, threads->nr))
return -ENOMEM;
return __store_counter_ids(counter);
}
static bool perf_evsel__should_store_id(struct perf_evsel *counter)
{
return STAT_RECORD || counter->attr.read_format & PERF_FORMAT_ID;
}
static struct perf_evsel *perf_evsel__reset_weak_group(struct perf_evsel *evsel)
{
struct perf_evsel *c2, *leader;
bool is_open = true;
leader = evsel->leader;
pr_debug("Weak group for %s/%d failed\n",
leader->name, leader->nr_members);
/*
* for_each_group_member doesn't work here because it doesn't
* include the first entry.
*/
evlist__for_each_entry(evsel_list, c2) {
if (c2 == evsel)
is_open = false;
if (c2->leader == leader) {
if (is_open)
perf_evsel__close(c2);
c2->leader = c2;
c2->nr_members = 0;
}
}
return leader;
}
static int __run_perf_stat(int argc, const char **argv)
{
int interval = stat_config.interval;
int times = stat_config.times;
int timeout = stat_config.timeout;
char msg[BUFSIZ];
unsigned long long t0, t1;
struct perf_evsel *counter;
struct timespec ts;
size_t l;
int status = 0;
const bool forks = (argc > 0);
bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false;
struct perf_evsel_config_term *err_term;
if (interval) {
ts.tv_sec = interval / USEC_PER_MSEC;
ts.tv_nsec = (interval % USEC_PER_MSEC) * NSEC_PER_MSEC;
} else if (timeout) {
ts.tv_sec = timeout / USEC_PER_MSEC;
ts.tv_nsec = (timeout % USEC_PER_MSEC) * NSEC_PER_MSEC;
} else {
ts.tv_sec = 1;
ts.tv_nsec = 0;
}
if (forks) {
if (perf_evlist__prepare_workload(evsel_list, &target, argv, is_pipe,
workload_exec_failed_signal) < 0) {
perror("failed to prepare workload");
return -1;
}
child_pid = evsel_list->workload.pid;
}
if (group)
perf_evlist__set_leader(evsel_list);
evlist__for_each_entry(evsel_list, counter) {
try_again:
if (create_perf_stat_counter(counter) < 0) {
/* Weak group failed. Reset the group. */
if ((errno == EINVAL || errno == EBADF) &&
counter->leader != counter &&
counter->weak_group) {
counter = perf_evsel__reset_weak_group(counter);
goto try_again;
}
/*
* PPC returns ENXIO for HW counters until 2.6.37
* (behavior changed with commit b0a873e).
*/
if (errno == EINVAL || errno == ENOSYS ||
errno == ENOENT || errno == EOPNOTSUPP ||
errno == ENXIO) {
if (verbose > 0)
ui__warning("%s event is not supported by the kernel.\n",
perf_evsel__name(counter));
counter->supported = false;
if ((counter->leader != counter) ||
!(counter->leader->nr_members > 1))
continue;
} else if (perf_evsel__fallback(counter, errno, msg, sizeof(msg))) {
if (verbose > 0)
ui__warning("%s\n", msg);
goto try_again;
} else if (target__has_per_thread(&target) &&
evsel_list->threads &&
evsel_list->threads->err_thread != -1) {
/*
* For global --per-thread case, skip current
* error thread.
*/
if (!thread_map__remove(evsel_list->threads,
evsel_list->threads->err_thread)) {
evsel_list->threads->err_thread = -1;
goto try_again;
}
}
perf_evsel__open_strerror(counter, &target,
errno, msg, sizeof(msg));
ui__error("%s\n", msg);
if (child_pid != -1)
kill(child_pid, SIGTERM);
return -1;
}
counter->supported = true;
l = strlen(counter->unit);
if (l > unit_width)
unit_width = l;
if (perf_evsel__should_store_id(counter) &&
store_counter_ids(counter))
return -1;
}
if (perf_evlist__apply_filters(evsel_list, &counter)) {
pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n",
counter->filter, perf_evsel__name(counter), errno,
str_error_r(errno, msg, sizeof(msg)));
return -1;
}
if (perf_evlist__apply_drv_configs(evsel_list, &counter, &err_term)) {
pr_err("failed to set config \"%s\" on event %s with %d (%s)\n",
err_term->val.drv_cfg, perf_evsel__name(counter), errno,
str_error_r(errno, msg, sizeof(msg)));
return -1;
}
if (STAT_RECORD) {
int err, fd = perf_data__fd(&perf_stat.data);
if (is_pipe) {
err = perf_header__write_pipe(perf_data__fd(&perf_stat.data));
} else {
err = perf_session__write_header(perf_stat.session, evsel_list,
fd, false);
}
if (err < 0)
return err;
err = perf_stat_synthesize_config(is_pipe);
if (err < 0)
return err;
}
/*
* Enable counters and exec the command:
*/
t0 = rdclock();
clock_gettime(CLOCK_MONOTONIC, &ref_time);
if (forks) {
perf_evlist__start_workload(evsel_list);
enable_counters();
if (interval || timeout) {
while (!waitpid(child_pid, &status, WNOHANG)) {
nanosleep(&ts, NULL);
if (timeout)
break;
process_interval();
if (interval_count && !(--times))
break;
}
}
waitpid(child_pid, &status, 0);
if (workload_exec_errno) {
const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg));
pr_err("Workload failed: %s\n", emsg);
return -1;
}
if (WIFSIGNALED(status))
psignal(WTERMSIG(status), argv[0]);
} else {
enable_counters();
while (!done) {
nanosleep(&ts, NULL);
if (timeout)
break;
if (interval) {
process_interval();
if (interval_count && !(--times))
break;
}
}
}
disable_counters();
t1 = rdclock();
update_stats(&walltime_nsecs_stats, t1 - t0);
/*
* Closing a group leader splits the group, and as we only disable
* group leaders, results in remaining events becoming enabled. To
* avoid arbitrary skew, we must read all counters before closing any
* group leaders.
*/
read_counters();
perf_evlist__close(evsel_list);
return WEXITSTATUS(status);
}
static int run_perf_stat(int argc, const char **argv)
{
int ret;
if (pre_cmd) {
ret = system(pre_cmd);
if (ret)
return ret;
}
if (sync_run)
sync();
ret = __run_perf_stat(argc, argv);
if (ret)
return ret;
if (post_cmd) {
ret = system(post_cmd);
if (ret)
return ret;
}
return ret;
}
static void print_running(u64 run, u64 ena)
{
if (csv_output) {
fprintf(stat_config.output, "%s%" PRIu64 "%s%.2f",
csv_sep,
run,
csv_sep,
ena ? 100.0 * run / ena : 100.0);
} else if (run != ena) {
fprintf(stat_config.output, " (%.2f%%)", 100.0 * run / ena);
}
}
static void print_noise_pct(double total, double avg)
{
double pct = rel_stddev_stats(total, avg);
if (csv_output)
fprintf(stat_config.output, "%s%.2f%%", csv_sep, pct);
else if (pct)
fprintf(stat_config.output, " ( +-%6.2f%% )", pct);
}
static void print_noise(struct perf_evsel *evsel, double avg)
{
struct perf_stat_evsel *ps;
if (run_count == 1)
return;
ps = evsel->stats;
print_noise_pct(stddev_stats(&ps->res_stats[0]), avg);
}
static void aggr_printout(struct perf_evsel *evsel, int id, int nr)
{
switch (stat_config.aggr_mode) {
case AGGR_CORE:
fprintf(stat_config.output, "S%d-C%*d%s%*d%s",
cpu_map__id_to_socket(id),
csv_output ? 0 : -8,
cpu_map__id_to_cpu(id),
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_SOCKET:
fprintf(stat_config.output, "S%*d%s%*d%s",
csv_output ? 0 : -5,
id,
csv_sep,
csv_output ? 0 : 4,
nr,
csv_sep);
break;
case AGGR_NONE:
fprintf(stat_config.output, "CPU%*d%s",
csv_output ? 0 : -4,
perf_evsel__cpus(evsel)->map[id], csv_sep);
break;
case AGGR_THREAD:
fprintf(stat_config.output, "%*s-%*d%s",
csv_output ? 0 : 16,
thread_map__comm(evsel->threads, id),
csv_output ? 0 : -8,
thread_map__pid(evsel->threads, id),
csv_sep);
break;
case AGGR_GLOBAL:
case AGGR_UNSET:
default:
break;
}
}
struct outstate {
FILE *fh;
bool newline;
const char *prefix;
int nfields;
int id, nr;
struct perf_evsel *evsel;
};
#define METRIC_LEN 35
static void new_line_std(void *ctx)
{
struct outstate *os = ctx;
os->newline = true;
}
static void do_new_line_std(struct outstate *os)
{
fputc('\n', os->fh);
fputs(os->prefix, os->fh);
aggr_printout(os->evsel, os->id, os->nr);
if (stat_config.aggr_mode == AGGR_NONE)
fprintf(os->fh, " ");
fprintf(os->fh, " ");
}
static void print_metric_std(void *ctx, const char *color, const char *fmt,
const char *unit, double val)
{
struct outstate *os = ctx;
FILE *out = os->fh;
int n;
bool newline = os->newline;
os->newline = false;
if (unit == NULL || fmt == NULL) {
fprintf(out, "%-*s", METRIC_LEN, "");
return;
}
if (newline)
do_new_line_std(os);
n = fprintf(out, " # ");
if (color)
n += color_fprintf(out, color, fmt, val);
else
n += fprintf(out, fmt, val);
fprintf(out, " %-*s", METRIC_LEN - n - 1, unit);
}
static void new_line_csv(void *ctx)
{
struct outstate *os = ctx;
int i;
fputc('\n', os->fh);
if (os->prefix)
fprintf(os->fh, "%s%s", os->prefix, csv_sep);
aggr_printout(os->evsel, os->id, os->nr);
for (i = 0; i < os->nfields; i++)
fputs(csv_sep, os->fh);
}
static void print_metric_csv(void *ctx,
const char *color __maybe_unused,
const char *fmt, const char *unit, double val)
{
struct outstate *os = ctx;
FILE *out = os->fh;
char buf[64], *vals, *ends;
if (unit == NULL || fmt == NULL) {
fprintf(out, "%s%s", csv_sep, csv_sep);
return;
}
snprintf(buf, sizeof(buf), fmt, val);
ends = vals = ltrim(buf);
while (isdigit(*ends) || *ends == '.')
ends++;
*ends = 0;
while (isspace(*unit))
unit++;
fprintf(out, "%s%s%s%s", csv_sep, vals, csv_sep, unit);
}
#define METRIC_ONLY_LEN 20
/* Filter out some columns that don't work well in metrics only mode */
static bool valid_only_metric(const char *unit)
{
if (!unit)
return false;
if (strstr(unit, "/sec") ||
strstr(unit, "hz") ||
strstr(unit, "Hz") ||
strstr(unit, "CPUs utilized"))
return false;
return true;
}
static const char *fixunit(char *buf, struct perf_evsel *evsel,
const char *unit)
{
if (!strncmp(unit, "of all", 6)) {
snprintf(buf, 1024, "%s %s", perf_evsel__name(evsel),
unit);
return buf;
}
return unit;
}
static void print_metric_only(void *ctx, const char *color, const char *fmt,
const char *unit, double val)
{
struct outstate *os = ctx;
FILE *out = os->fh;
int n;
char buf[1024];
unsigned mlen = METRIC_ONLY_LEN;
if (!valid_only_metric(unit))
return;
unit = fixunit(buf, os->evsel, unit);
if (color)
n = color_fprintf(out, color, fmt, val);
else
n = fprintf(out, fmt, val);
if (n > METRIC_ONLY_LEN)
n = METRIC_ONLY_LEN;
if (mlen < strlen(unit))
mlen = strlen(unit) + 1;
fprintf(out, "%*s", mlen - n, "");
}
static void print_metric_only_csv(void *ctx, const char *color __maybe_unused,
const char *fmt,
const char *unit, double val)
{
struct outstate *os = ctx;
FILE *out = os->fh;
char buf[64], *vals, *ends;
char tbuf[1024];
if (!valid_only_metric(unit))
return;
unit = fixunit(tbuf, os->evsel, unit);
snprintf(buf, sizeof buf, fmt, val);
ends = vals = ltrim(buf);
while (isdigit(*ends) || *ends == '.')
ends++;
*ends = 0;
fprintf(out, "%s%s", vals, csv_sep);
}
static void new_line_metric(void *ctx __maybe_unused)
{
}
static void print_metric_header(void *ctx, const char *color __maybe_unused,
const char *fmt __maybe_unused,
const char *unit, double val __maybe_unused)
{
struct outstate *os = ctx;
char tbuf[1024];
if (!valid_only_metric(unit))
return;
unit = fixunit(tbuf, os->evsel, unit);
if (csv_output)
fprintf(os->fh, "%s%s", unit, csv_sep);
else
fprintf(os->fh, "%-*s ", METRIC_ONLY_LEN, unit);
}
static void nsec_printout(int id, int nr, struct perf_evsel *evsel, double avg)
{
FILE *output = stat_config.output;
double msecs = avg / NSEC_PER_MSEC;
const char *fmt_v, *fmt_n;
char name[25];
fmt_v = csv_output ? "%.6f%s" : "%18.6f%s";
fmt_n = csv_output ? "%s" : "%-25s";
aggr_printout(evsel, id, nr);
scnprintf(name, sizeof(name), "%s%s",
perf_evsel__name(evsel), csv_output ? "" : " (msec)");
fprintf(output, fmt_v, msecs, csv_sep);
if (csv_output)
fprintf(output, "%s%s", evsel->unit, csv_sep);
else
fprintf(output, "%-*s%s", unit_width, evsel->unit, csv_sep);
fprintf(output, fmt_n, name);
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
}
static int first_shadow_cpu(struct perf_evsel *evsel, int id)
{
int i;
if (!aggr_get_id)
return 0;
if (stat_config.aggr_mode == AGGR_NONE)
return id;
if (stat_config.aggr_mode == AGGR_GLOBAL)
return 0;
for (i = 0; i < perf_evsel__nr_cpus(evsel); i++) {
int cpu2 = perf_evsel__cpus(evsel)->map[i];
if (aggr_get_id(evsel_list->cpus, cpu2) == id)
return cpu2;
}
return 0;
}
static void abs_printout(int id, int nr, struct perf_evsel *evsel, double avg)
{
FILE *output = stat_config.output;
double sc = evsel->scale;
const char *fmt;
if (csv_output) {
fmt = floor(sc) != sc ? "%.2f%s" : "%.0f%s";
} else {
if (big_num)
fmt = floor(sc) != sc ? "%'18.2f%s" : "%'18.0f%s";
else
fmt = floor(sc) != sc ? "%18.2f%s" : "%18.0f%s";
}
aggr_printout(evsel, id, nr);
fprintf(output, fmt, avg, csv_sep);
if (evsel->unit)
fprintf(output, "%-*s%s",
csv_output ? 0 : unit_width,
evsel->unit, csv_sep);
fprintf(output, "%-*s", csv_output ? 0 : 25, perf_evsel__name(evsel));
if (evsel->cgrp)
fprintf(output, "%s%s", csv_sep, evsel->cgrp->name);
}
static bool is_mixed_hw_group(struct perf_evsel *counter)
{
struct perf_evlist *evlist = counter->evlist;
u32 pmu_type = counter->attr.type;
struct perf_evsel *pos;
if (counter->nr_members < 2)
return false;
evlist__for_each_entry(evlist, pos) {
/* software events can be part of any hardware group */
if (pos->attr.type == PERF_TYPE_SOFTWARE)
continue;
if (pmu_type == PERF_TYPE_SOFTWARE) {
pmu_type = pos->attr.type;
continue;
}
if (pmu_type != pos->attr.type)
return true;
}
return false;
}
static void printout(int id, int nr, struct perf_evsel *counter, double uval,
char *prefix, u64 run, u64 ena, double noise,
struct runtime_stat *st)
{
struct perf_stat_output_ctx out;
struct outstate os = {
.fh = stat_config.output,
.prefix = prefix ? prefix : "",
.id = id,
.nr = nr,
.evsel = counter,
};
print_metric_t pm = print_metric_std;
void (*nl)(void *);
if (metric_only) {
nl = new_line_metric;
if (csv_output)
pm = print_metric_only_csv;
else
pm = print_metric_only;
} else
nl = new_line_std;
if (csv_output && !metric_only) {
static int aggr_fields[] = {
[AGGR_GLOBAL] = 0,
[AGGR_THREAD] = 1,
[AGGR_NONE] = 1,
[AGGR_SOCKET] = 2,
[AGGR_CORE] = 2,
};
pm = print_metric_csv;
nl = new_line_csv;
os.nfields = 3;
os.nfields += aggr_fields[stat_config.aggr_mode];
if (counter->cgrp)
os.nfields++;
}
if (run == 0 || ena == 0 || counter->counts->scaled == -1) {
if (metric_only) {
pm(&os, NULL, "", "", 0);
return;
}
aggr_printout(counter, id, nr);
fprintf(stat_config.output, "%*s%s",
csv_output ? 0 : 18,
counter->supported ? CNTR_NOT_COUNTED : CNTR_NOT_SUPPORTED,
csv_sep);
if (counter->supported) {
print_free_counters_hint = 1;
if (is_mixed_hw_group(counter))
print_mixed_hw_group_error = 1;
}
fprintf(stat_config.output, "%-*s%s",
csv_output ? 0 : unit_width,
counter->unit, csv_sep);
fprintf(stat_config.output, "%*s",
csv_output ? 0 : -25,
perf_evsel__name(counter));
if (counter->cgrp)
fprintf(stat_config.output, "%s%s",
csv_sep, counter->cgrp->name);
if (!csv_output)
pm(&os, NULL, NULL, "", 0);
print_noise(counter, noise);
print_running(run, ena);
if (csv_output)
pm(&os, NULL, NULL, "", 0);
return;
}
if (metric_only)
/* nothing */;
else if (nsec_counter(counter))
nsec_printout(id, nr, counter, uval);
else
abs_printout(id, nr, counter, uval);
out.print_metric = pm;
out.new_line = nl;
out.ctx = &os;
out.force_header = false;
if (csv_output && !metric_only) {
print_noise(counter, noise);
print_running(run, ena);
}
perf_stat__print_shadow_stats(counter, uval,
first_shadow_cpu(counter, id),
&out, &metric_events, st);
if (!csv_output && !metric_only) {
print_noise(counter, noise);
print_running(run, ena);
}
}
static void aggr_update_shadow(void)
{
int cpu, s2, id, s;
u64 val;
struct perf_evsel *counter;
for (s = 0; s < aggr_map->nr; s++) {
id = aggr_map->map[s];
evlist__for_each_entry(evsel_list, counter) {
val = 0;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
s2 = aggr_get_id(evsel_list->cpus, cpu);
if (s2 != id)
continue;
val += perf_counts(counter->counts, cpu, 0)->val;
}
perf_stat__update_shadow_stats(counter, val,
first_shadow_cpu(counter, id),
&rt_stat);
}
}
}
static void uniquify_event_name(struct perf_evsel *counter)
{
char *new_name;
char *config;
if (counter->uniquified_name ||
!counter->pmu_name || !strncmp(counter->name, counter->pmu_name,
strlen(counter->pmu_name)))
return;
config = strchr(counter->name, '/');
if (config) {
if (asprintf(&new_name,
"%s%s", counter->pmu_name, config) > 0) {
free(counter->name);
counter->name = new_name;
}
} else {
if (asprintf(&new_name,
"%s [%s]", counter->name, counter->pmu_name) > 0) {
free(counter->name);
counter->name = new_name;
}
}
counter->uniquified_name = true;
}
static void collect_all_aliases(struct perf_evsel *counter,
void (*cb)(struct perf_evsel *counter, void *data,
bool first),
void *data)
{
struct perf_evsel *alias;
alias = list_prepare_entry(counter, &(evsel_list->entries), node);
list_for_each_entry_continue (alias, &evsel_list->entries, node) {
if (strcmp(perf_evsel__name(alias), perf_evsel__name(counter)) ||
alias->scale != counter->scale ||
alias->cgrp != counter->cgrp ||
strcmp(alias->unit, counter->unit) ||
nsec_counter(alias) != nsec_counter(counter))
break;
alias->merged_stat = true;
cb(alias, data, false);
}
}
static bool collect_data(struct perf_evsel *counter,
void (*cb)(struct perf_evsel *counter, void *data,
bool first),
void *data)
{
if (counter->merged_stat)
return false;
cb(counter, data, true);
if (no_merge)
uniquify_event_name(counter);
else if (counter->auto_merge_stats)
collect_all_aliases(counter, cb, data);
return true;
}
struct aggr_data {
u64 ena, run, val;
int id;
int nr;
int cpu;
};
static void aggr_cb(struct perf_evsel *counter, void *data, bool first)
{
struct aggr_data *ad = data;
int cpu, s2;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
struct perf_counts_values *counts;
s2 = aggr_get_id(perf_evsel__cpus(counter), cpu);
if (s2 != ad->id)
continue;
if (first)
ad->nr++;
counts = perf_counts(counter->counts, cpu, 0);
/*
* When any result is bad, make them all to give
* consistent output in interval mode.
*/
if (counts->ena == 0 || counts->run == 0 ||
counter->counts->scaled == -1) {
ad->ena = 0;
ad->run = 0;
break;
}
ad->val += counts->val;
ad->ena += counts->ena;
ad->run += counts->run;
}
}
static void print_aggr(char *prefix)
{
FILE *output = stat_config.output;
struct perf_evsel *counter;
int s, id, nr;
double uval;
u64 ena, run, val;
bool first;
if (!(aggr_map || aggr_get_id))
return;
aggr_update_shadow();
/*
* With metric_only everything is on a single line.
* Without each counter has its own line.
*/
for (s = 0; s < aggr_map->nr; s++) {
struct aggr_data ad;
if (prefix && metric_only)
fprintf(output, "%s", prefix);
ad.id = id = aggr_map->map[s];
first = true;
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
ad.val = ad.ena = ad.run = 0;
ad.nr = 0;
if (!collect_data(counter, aggr_cb, &ad))
continue;
nr = ad.nr;
ena = ad.ena;
run = ad.run;
val = ad.val;
if (first && metric_only) {
first = false;
aggr_printout(counter, id, nr);
}
if (prefix && !metric_only)
fprintf(output, "%s", prefix);
uval = val * counter->scale;
printout(id, nr, counter, uval, prefix, run, ena, 1.0,
&rt_stat);
if (!metric_only)
fputc('\n', output);
}
if (metric_only)
fputc('\n', output);
}
}
static int cmp_val(const void *a, const void *b)
{
return ((struct perf_aggr_thread_value *)b)->val -
((struct perf_aggr_thread_value *)a)->val;
}
static struct perf_aggr_thread_value *sort_aggr_thread(
struct perf_evsel *counter,
int nthreads, int ncpus,
int *ret)
{
int cpu, thread, i = 0;
double uval;
struct perf_aggr_thread_value *buf;
buf = calloc(nthreads, sizeof(struct perf_aggr_thread_value));
if (!buf)
return NULL;
for (thread = 0; thread < nthreads; thread++) {
u64 ena = 0, run = 0, val = 0;
for (cpu = 0; cpu < ncpus; cpu++) {
val += perf_counts(counter->counts, cpu, thread)->val;
ena += perf_counts(counter->counts, cpu, thread)->ena;
run += perf_counts(counter->counts, cpu, thread)->run;
}
uval = val * counter->scale;
/*
* Skip value 0 when enabling --per-thread globally,
* otherwise too many 0 output.
*/
if (uval == 0.0 && target__has_per_thread(&target))
continue;
buf[i].counter = counter;
buf[i].id = thread;
buf[i].uval = uval;
buf[i].val = val;
buf[i].run = run;
buf[i].ena = ena;
i++;
}
qsort(buf, i, sizeof(struct perf_aggr_thread_value), cmp_val);
if (ret)
*ret = i;
return buf;
}
static void print_aggr_thread(struct perf_evsel *counter, char *prefix)
{
FILE *output = stat_config.output;
int nthreads = thread_map__nr(counter->threads);
int ncpus = cpu_map__nr(counter->cpus);
int thread, sorted_threads, id;
struct perf_aggr_thread_value *buf;
buf = sort_aggr_thread(counter, nthreads, ncpus, &sorted_threads);
if (!buf) {
perror("cannot sort aggr thread");
return;
}
for (thread = 0; thread < sorted_threads; thread++) {
if (prefix)
fprintf(output, "%s", prefix);
id = buf[thread].id;
if (stat_config.stats)
printout(id, 0, buf[thread].counter, buf[thread].uval,
prefix, buf[thread].run, buf[thread].ena, 1.0,
&stat_config.stats[id]);
else
printout(id, 0, buf[thread].counter, buf[thread].uval,
prefix, buf[thread].run, buf[thread].ena, 1.0,
&rt_stat);
fputc('\n', output);
}
free(buf);
}
struct caggr_data {
double avg, avg_enabled, avg_running;
};
static void counter_aggr_cb(struct perf_evsel *counter, void *data,
bool first __maybe_unused)
{
struct caggr_data *cd = data;
struct perf_stat_evsel *ps = counter->stats;
cd->avg += avg_stats(&ps->res_stats[0]);
cd->avg_enabled += avg_stats(&ps->res_stats[1]);
cd->avg_running += avg_stats(&ps->res_stats[2]);
}
/*
* Print out the results of a single counter:
* aggregated counts in system-wide mode
*/
static void print_counter_aggr(struct perf_evsel *counter, char *prefix)
{
FILE *output = stat_config.output;
double uval;
struct caggr_data cd = { .avg = 0.0 };
if (!collect_data(counter, counter_aggr_cb, &cd))
return;
if (prefix && !metric_only)
fprintf(output, "%s", prefix);
uval = cd.avg * counter->scale;
printout(-1, 0, counter, uval, prefix, cd.avg_running, cd.avg_enabled,
cd.avg, &rt_stat);
if (!metric_only)
fprintf(output, "\n");
}
static void counter_cb(struct perf_evsel *counter, void *data,
bool first __maybe_unused)
{
struct aggr_data *ad = data;
ad->val += perf_counts(counter->counts, ad->cpu, 0)->val;
ad->ena += perf_counts(counter->counts, ad->cpu, 0)->ena;
ad->run += perf_counts(counter->counts, ad->cpu, 0)->run;
}
/*
* Print out the results of a single counter:
* does not use aggregated count in system-wide
*/
static void print_counter(struct perf_evsel *counter, char *prefix)
{
FILE *output = stat_config.output;
u64 ena, run, val;
double uval;
int cpu;
for (cpu = 0; cpu < perf_evsel__nr_cpus(counter); cpu++) {
struct aggr_data ad = { .cpu = cpu };
if (!collect_data(counter, counter_cb, &ad))
return;
val = ad.val;
ena = ad.ena;
run = ad.run;
if (prefix)
fprintf(output, "%s", prefix);
uval = val * counter->scale;
printout(cpu, 0, counter, uval, prefix, run, ena, 1.0,
&rt_stat);
fputc('\n', output);
}
}
static void print_no_aggr_metric(char *prefix)
{
int cpu;
int nrcpus = 0;
struct perf_evsel *counter;
u64 ena, run, val;
double uval;
nrcpus = evsel_list->cpus->nr;
for (cpu = 0; cpu < nrcpus; cpu++) {
bool first = true;
if (prefix)
fputs(prefix, stat_config.output);
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
if (first) {
aggr_printout(counter, cpu, 0);
first = false;
}
val = perf_counts(counter->counts, cpu, 0)->val;
ena = perf_counts(counter->counts, cpu, 0)->ena;
run = perf_counts(counter->counts, cpu, 0)->run;
uval = val * counter->scale;
printout(cpu, 0, counter, uval, prefix, run, ena, 1.0,
&rt_stat);
}
fputc('\n', stat_config.output);
}
}
static int aggr_header_lens[] = {
[AGGR_CORE] = 18,
[AGGR_SOCKET] = 12,
[AGGR_NONE] = 6,
[AGGR_THREAD] = 24,
[AGGR_GLOBAL] = 0,
};
static const char *aggr_header_csv[] = {
[AGGR_CORE] = "core,cpus,",
[AGGR_SOCKET] = "socket,cpus",
[AGGR_NONE] = "cpu,",
[AGGR_THREAD] = "comm-pid,",
[AGGR_GLOBAL] = ""
};
static void print_metric_headers(const char *prefix, bool no_indent)
{
struct perf_stat_output_ctx out;
struct perf_evsel *counter;
struct outstate os = {
.fh = stat_config.output
};
if (prefix)
fprintf(stat_config.output, "%s", prefix);
if (!csv_output && !no_indent)
fprintf(stat_config.output, "%*s",
aggr_header_lens[stat_config.aggr_mode], "");
if (csv_output) {
if (stat_config.interval)
fputs("time,", stat_config.output);
fputs(aggr_header_csv[stat_config.aggr_mode],
stat_config.output);
}
/* Print metrics headers only */
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
os.evsel = counter;
out.ctx = &os;
out.print_metric = print_metric_header;
out.new_line = new_line_metric;
out.force_header = true;
os.evsel = counter;
perf_stat__print_shadow_stats(counter, 0,
0,
&out,
&metric_events,
&rt_stat);
}
fputc('\n', stat_config.output);
}
static void print_interval(char *prefix, struct timespec *ts)
{
FILE *output = stat_config.output;
static int num_print_interval;
sprintf(prefix, "%6lu.%09lu%s", ts->tv_sec, ts->tv_nsec, csv_sep);
if (num_print_interval == 0 && !csv_output) {
switch (stat_config.aggr_mode) {
case AGGR_SOCKET:
fprintf(output, "# time socket cpus");
if (!metric_only)
fprintf(output, " counts %*s events\n", unit_width, "unit");
break;
case AGGR_CORE:
fprintf(output, "# time core cpus");
if (!metric_only)
fprintf(output, " counts %*s events\n", unit_width, "unit");
break;
case AGGR_NONE:
fprintf(output, "# time CPU");
if (!metric_only)
fprintf(output, " counts %*s events\n", unit_width, "unit");
break;
case AGGR_THREAD:
fprintf(output, "# time comm-pid");
if (!metric_only)
fprintf(output, " counts %*s events\n", unit_width, "unit");
break;
case AGGR_GLOBAL:
default:
fprintf(output, "# time");
if (!metric_only)
fprintf(output, " counts %*s events\n", unit_width, "unit");
case AGGR_UNSET:
break;
}
}
if (num_print_interval == 0 && metric_only)
print_metric_headers(" ", true);
if (++num_print_interval == 25)
num_print_interval = 0;
}
static void print_header(int argc, const char **argv)
{
FILE *output = stat_config.output;
int i;
fflush(stdout);
if (!csv_output) {
fprintf(output, "\n");
fprintf(output, " Performance counter stats for ");
if (target.system_wide)
fprintf(output, "\'system wide");
else if (target.cpu_list)
fprintf(output, "\'CPU(s) %s", target.cpu_list);
else if (!target__has_task(&target)) {
fprintf(output, "\'%s", argv ? argv[0] : "pipe");
for (i = 1; argv && (i < argc); i++)
fprintf(output, " %s", argv[i]);
} else if (target.pid)
fprintf(output, "process id \'%s", target.pid);
else
fprintf(output, "thread id \'%s", target.tid);
fprintf(output, "\'");
if (run_count > 1)
fprintf(output, " (%d runs)", run_count);
fprintf(output, ":\n\n");
}
}
static void print_footer(void)
{
FILE *output = stat_config.output;
int n;
if (!null_run)
fprintf(output, "\n");
fprintf(output, " %17.9f seconds time elapsed",
avg_stats(&walltime_nsecs_stats) / NSEC_PER_SEC);
if (run_count > 1) {
fprintf(output, " ");
print_noise_pct(stddev_stats(&walltime_nsecs_stats),
avg_stats(&walltime_nsecs_stats));
}
fprintf(output, "\n\n");
if (print_free_counters_hint &&
sysctl__read_int("kernel/nmi_watchdog", &n) >= 0 &&
n > 0)
fprintf(output,
"Some events weren't counted. Try disabling the NMI watchdog:\n"
" echo 0 > /proc/sys/kernel/nmi_watchdog\n"
" perf stat ...\n"
" echo 1 > /proc/sys/kernel/nmi_watchdog\n");
if (print_mixed_hw_group_error)
fprintf(output,
"The events in group usually have to be from "
"the same PMU. Try reorganizing the group.\n");
}
static void print_counters(struct timespec *ts, int argc, const char **argv)
{
int interval = stat_config.interval;
struct perf_evsel *counter;
char buf[64], *prefix = NULL;
/* Do not print anything if we record to the pipe. */
if (STAT_RECORD && perf_stat.data.is_pipe)
return;
if (interval)
print_interval(prefix = buf, ts);
else
print_header(argc, argv);
if (metric_only) {
static int num_print_iv;
if (num_print_iv == 0 && !interval)
print_metric_headers(prefix, false);
if (num_print_iv++ == 25)
num_print_iv = 0;
if (stat_config.aggr_mode == AGGR_GLOBAL && prefix)
fprintf(stat_config.output, "%s", prefix);
}
switch (stat_config.aggr_mode) {
case AGGR_CORE:
case AGGR_SOCKET:
print_aggr(prefix);
break;
case AGGR_THREAD:
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
print_aggr_thread(counter, prefix);
}
break;
case AGGR_GLOBAL:
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
print_counter_aggr(counter, prefix);
}
if (metric_only)
fputc('\n', stat_config.output);
break;
case AGGR_NONE:
if (metric_only)
print_no_aggr_metric(prefix);
else {
evlist__for_each_entry(evsel_list, counter) {
if (is_duration_time(counter))
continue;
print_counter(counter, prefix);
}
}
break;
case AGGR_UNSET:
default:
break;
}
if (!interval && !csv_output)
print_footer();
fflush(stat_config.output);
}
static volatile int signr = -1;
static void skip_signal(int signo)
{
if ((child_pid == -1) || stat_config.interval)
done = 1;
signr = signo;
/*
* render child_pid harmless
* won't send SIGTERM to a random
* process in case of race condition
* and fast PID recycling
*/
child_pid = -1;
}
static void sig_atexit(void)
{
sigset_t set, oset;
/*
* avoid race condition with SIGCHLD handler
* in skip_signal() which is modifying child_pid
* goal is to avoid send SIGTERM to a random
* process
*/
sigemptyset(&set);
sigaddset(&set, SIGCHLD);
sigprocmask(SIG_BLOCK, &set, &oset);
if (child_pid != -1)
kill(child_pid, SIGTERM);
sigprocmask(SIG_SETMASK, &oset, NULL);
if (signr == -1)
return;
signal(signr, SIG_DFL);
kill(getpid(), signr);
}
static int stat__set_big_num(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
big_num_opt = unset ? 0 : 1;
return 0;
}
static int enable_metric_only(const struct option *opt __maybe_unused,
const char *s __maybe_unused, int unset)
{
force_metric_only = true;
metric_only = !unset;
return 0;
}
static int parse_metric_groups(const struct option *opt,
const char *str,
int unset __maybe_unused)
{
return metricgroup__parse_groups(opt, str, &metric_events);
}
static const struct option stat_options[] = {
OPT_BOOLEAN('T', "transaction", &transaction_run,
"hardware transaction statistics"),
OPT_CALLBACK('e', "event", &evsel_list, "event",
"event selector. use 'perf list' to list available events",
parse_events_option),
OPT_CALLBACK(0, "filter", &evsel_list, "filter",
"event filter", parse_filter),
OPT_BOOLEAN('i', "no-inherit", &no_inherit,
"child tasks do not inherit counters"),
OPT_STRING('p', "pid", &target.pid, "pid",
"stat events on existing process id"),
OPT_STRING('t', "tid", &target.tid, "tid",
"stat events on existing thread id"),
OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
"system-wide collection from all CPUs"),
OPT_BOOLEAN('g', "group", &group,
"put the counters into a counter group"),
OPT_BOOLEAN('c', "scale", &stat_config.scale, "scale/normalize counters"),
OPT_INCR('v', "verbose", &verbose,
"be more verbose (show counter open errors, etc)"),
OPT_INTEGER('r', "repeat", &run_count,
"repeat command and print average + stddev (max: 100, forever: 0)"),
OPT_BOOLEAN('n', "null", &null_run,
"null run - dont start any counters"),
OPT_INCR('d', "detailed", &detailed_run,
"detailed run - start a lot of events"),
OPT_BOOLEAN('S', "sync", &sync_run,
"call sync() before starting a run"),
OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
"print large numbers with thousands\' separators",
stat__set_big_num),
OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
"list of cpus to monitor in system-wide"),
OPT_SET_UINT('A', "no-aggr", &stat_config.aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_BOOLEAN(0, "no-merge", &no_merge, "Do not merge identical named events"),
OPT_STRING('x', "field-separator", &csv_sep, "separator",
"print counts with custom separator"),
OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
"monitor event in cgroup name only", parse_cgroups),
OPT_STRING('o', "output", &output_name, "file", "output file name"),
OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
OPT_INTEGER(0, "log-fd", &output_fd,
"log output to fd, instead of stderr"),
OPT_STRING(0, "pre", &pre_cmd, "command",
"command to run prior to the measured command"),
OPT_STRING(0, "post", &post_cmd, "command",
"command to run after to the measured command"),
OPT_UINTEGER('I', "interval-print", &stat_config.interval,
"print counts at regular interval in ms "
"(overhead is possible for values <= 100ms)"),
OPT_INTEGER(0, "interval-count", &stat_config.times,
"print counts for fixed number of times"),
OPT_UINTEGER(0, "timeout", &stat_config.timeout,
"stop workload and print counts after a timeout period in ms (>= 10ms)"),
OPT_SET_UINT(0, "per-socket", &stat_config.aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-core", &stat_config.aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_SET_UINT(0, "per-thread", &stat_config.aggr_mode,
"aggregate counts per thread", AGGR_THREAD),
OPT_UINTEGER('D', "delay", &initial_delay,
"ms to wait before starting measurement after program start"),
OPT_CALLBACK_NOOPT(0, "metric-only", &metric_only, NULL,
"Only print computed metrics. No raw values", enable_metric_only),
OPT_BOOLEAN(0, "topdown", &topdown_run,
"measure topdown level 1 statistics"),
OPT_BOOLEAN(0, "smi-cost", &smi_cost,
"measure SMI cost"),
OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list",
"monitor specified metrics or metric groups (separated by ,)",
parse_metric_groups),
OPT_END()
};
static int perf_stat__get_socket(struct cpu_map *map, int cpu)
{
return cpu_map__get_socket(map, cpu, NULL);
}
static int perf_stat__get_core(struct cpu_map *map, int cpu)
{
return cpu_map__get_core(map, cpu, NULL);
}
static int cpu_map__get_max(struct cpu_map *map)
{
int i, max = -1;
for (i = 0; i < map->nr; i++) {
if (map->map[i] > max)
max = map->map[i];
}
return max;
}
static struct cpu_map *cpus_aggr_map;
static int perf_stat__get_aggr(aggr_get_id_t get_id, struct cpu_map *map, int idx)
{
int cpu;
if (idx >= map->nr)
return -1;
cpu = map->map[idx];
if (cpus_aggr_map->map[cpu] == -1)
cpus_aggr_map->map[cpu] = get_id(map, idx);
return cpus_aggr_map->map[cpu];
}
static int perf_stat__get_socket_cached(struct cpu_map *map, int idx)
{
return perf_stat__get_aggr(perf_stat__get_socket, map, idx);
}
static int perf_stat__get_core_cached(struct cpu_map *map, int idx)
{
return perf_stat__get_aggr(perf_stat__get_core, map, idx);
}
static int perf_stat_init_aggr_mode(void)
{
int nr;
switch (stat_config.aggr_mode) {
case AGGR_SOCKET:
if (cpu_map__build_socket_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build socket map");
return -1;
}
aggr_get_id = perf_stat__get_socket_cached;
break;
case AGGR_CORE:
if (cpu_map__build_core_map(evsel_list->cpus, &aggr_map)) {
perror("cannot build core map");
return -1;
}
aggr_get_id = perf_stat__get_core_cached;
break;
case AGGR_NONE:
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
break;
}
/*
* The evsel_list->cpus is the base we operate on,
* taking the highest cpu number to be the size of
* the aggregation translate cpumap.
*/
nr = cpu_map__get_max(evsel_list->cpus);
cpus_aggr_map = cpu_map__empty_new(nr + 1);
return cpus_aggr_map ? 0 : -ENOMEM;
}
static void perf_stat__exit_aggr_mode(void)
{
cpu_map__put(aggr_map);
cpu_map__put(cpus_aggr_map);
aggr_map = NULL;
cpus_aggr_map = NULL;
}
static inline int perf_env__get_cpu(struct perf_env *env, struct cpu_map *map, int idx)
{
int cpu;
if (idx > map->nr)
return -1;
cpu = map->map[idx];
if (cpu >= env->nr_cpus_avail)
return -1;
return cpu;
}
static int perf_env__get_socket(struct cpu_map *map, int idx, void *data)
{
struct perf_env *env = data;
int cpu = perf_env__get_cpu(env, map, idx);
return cpu == -1 ? -1 : env->cpu[cpu].socket_id;
}
static int perf_env__get_core(struct cpu_map *map, int idx, void *data)
{
struct perf_env *env = data;
int core = -1, cpu = perf_env__get_cpu(env, map, idx);
if (cpu != -1) {
int socket_id = env->cpu[cpu].socket_id;
/*
* Encode socket in upper 16 bits
* core_id is relative to socket, and
* we need a global id. So we combine
* socket + core id.
*/
core = (socket_id << 16) | (env->cpu[cpu].core_id & 0xffff);
}
return core;
}
static int perf_env__build_socket_map(struct perf_env *env, struct cpu_map *cpus,
struct cpu_map **sockp)
{
return cpu_map__build_map(cpus, sockp, perf_env__get_socket, env);
}
static int perf_env__build_core_map(struct perf_env *env, struct cpu_map *cpus,
struct cpu_map **corep)
{
return cpu_map__build_map(cpus, corep, perf_env__get_core, env);
}
static int perf_stat__get_socket_file(struct cpu_map *map, int idx)
{
return perf_env__get_socket(map, idx, &perf_stat.session->header.env);
}
static int perf_stat__get_core_file(struct cpu_map *map, int idx)
{
return perf_env__get_core(map, idx, &perf_stat.session->header.env);
}
static int perf_stat_init_aggr_mode_file(struct perf_stat *st)
{
struct perf_env *env = &st->session->header.env;
switch (stat_config.aggr_mode) {
case AGGR_SOCKET:
if (perf_env__build_socket_map(env, evsel_list->cpus, &aggr_map)) {
perror("cannot build socket map");
return -1;
}
aggr_get_id = perf_stat__get_socket_file;
break;
case AGGR_CORE:
if (perf_env__build_core_map(env, evsel_list->cpus, &aggr_map)) {
perror("cannot build core map");
return -1;
}
aggr_get_id = perf_stat__get_core_file;
break;
case AGGR_NONE:
case AGGR_GLOBAL:
case AGGR_THREAD:
case AGGR_UNSET:
default:
break;
}
return 0;
}
static int topdown_filter_events(const char **attr, char **str, bool use_group)
{
int off = 0;
int i;
int len = 0;
char *s;
for (i = 0; attr[i]; i++) {
if (pmu_have_event("cpu", attr[i])) {
len += strlen(attr[i]) + 1;
attr[i - off] = attr[i];
} else
off++;
}
attr[i - off] = NULL;
*str = malloc(len + 1 + 2);
if (!*str)
return -1;
s = *str;
if (i - off == 0) {
*s = 0;
return 0;
}
if (use_group)
*s++ = '{';
for (i = 0; attr[i]; i++) {
strcpy(s, attr[i]);
s += strlen(s);
*s++ = ',';
}
if (use_group) {
s[-1] = '}';
*s = 0;
} else
s[-1] = 0;
return 0;
}
__weak bool arch_topdown_check_group(bool *warn)
{
*warn = false;
return false;
}
__weak void arch_topdown_group_warn(void)
{
}
/*
* Add default attributes, if there were no attributes specified or
* if -d/--detailed, -d -d or -d -d -d is used:
*/
static int add_default_attributes(void)
{
int err;
struct perf_event_attr default_attrs0[] = {
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS },
{ .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES },
};
struct perf_event_attr frontend_attrs[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_FRONTEND },
};
struct perf_event_attr backend_attrs[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_STALLED_CYCLES_BACKEND },
};
struct perf_event_attr default_attrs1[] = {
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS },
{ .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_BRANCH_MISSES },
};
/*
* Detailed stats (-d), covering the L1 and last level data caches:
*/
struct perf_event_attr detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_LL << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very detailed stats (-d -d), covering the instruction cache and the TLB caches:
*/
struct perf_event_attr very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1I << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_DTLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_ITLB << 0 |
(PERF_COUNT_HW_CACHE_OP_READ << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/*
* Very, very detailed stats (-d -d -d), adding prefetch events:
*/
struct perf_event_attr very_very_detailed_attrs[] = {
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) },
{ .type = PERF_TYPE_HW_CACHE,
.config =
PERF_COUNT_HW_CACHE_L1D << 0 |
(PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) |
(PERF_COUNT_HW_CACHE_RESULT_MISS << 16) },
};
/* Set attrs if no event is selected and !null_run: */
if (null_run)
return 0;
if (transaction_run) {
struct parse_events_error errinfo;
if (pmu_have_event("cpu", "cycles-ct") &&
pmu_have_event("cpu", "el-start"))
err = parse_events(evsel_list, transaction_attrs,
&errinfo);
else
err = parse_events(evsel_list,
transaction_limited_attrs,
&errinfo);
if (err) {
fprintf(stderr, "Cannot set up transaction events\n");
return -1;
}
return 0;
}
if (smi_cost) {
int smi;
if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) {
fprintf(stderr, "freeze_on_smi is not supported.\n");
return -1;
}
if (!smi) {
if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) {
fprintf(stderr, "Failed to set freeze_on_smi.\n");
return -1;
}
smi_reset = true;
}
if (pmu_have_event("msr", "aperf") &&
pmu_have_event("msr", "smi")) {
if (!force_metric_only)
metric_only = true;
err = parse_events(evsel_list, smi_cost_attrs, NULL);
} else {
fprintf(stderr, "To measure SMI cost, it needs "
"msr/aperf/, msr/smi/ and cpu/cycles/ support\n");
return -1;
}
if (err) {
fprintf(stderr, "Cannot set up SMI cost events\n");
return -1;
}
return 0;
}
if (topdown_run) {
char *str = NULL;
bool warn = false;
if (stat_config.aggr_mode != AGGR_GLOBAL &&
stat_config.aggr_mode != AGGR_CORE) {
pr_err("top down event configuration requires --per-core mode\n");
return -1;
}
stat_config.aggr_mode = AGGR_CORE;
if (nr_cgroups || !target__has_cpu(&target)) {
pr_err("top down event configuration requires system-wide mode (-a)\n");
return -1;
}
if (!force_metric_only)
metric_only = true;
if (topdown_filter_events(topdown_attrs, &str,
arch_topdown_check_group(&warn)) < 0) {
pr_err("Out of memory\n");
return -1;
}
if (topdown_attrs[0] && str) {
if (warn)
arch_topdown_group_warn();
err = parse_events(evsel_list, str, NULL);
if (err) {
fprintf(stderr,
"Cannot set up top down events %s: %d\n",
str, err);
free(str);
return -1;
}
} else {
fprintf(stderr, "System does not support topdown\n");
return -1;
}
free(str);
}
if (!evsel_list->nr_entries) {
if (target__has_cpu(&target))
default_attrs0[0].config = PERF_COUNT_SW_CPU_CLOCK;
if (perf_evlist__add_default_attrs(evsel_list, default_attrs0) < 0)
return -1;
if (pmu_have_event("cpu", "stalled-cycles-frontend")) {
if (perf_evlist__add_default_attrs(evsel_list,
frontend_attrs) < 0)
return -1;
}
if (pmu_have_event("cpu", "stalled-cycles-backend")) {
if (perf_evlist__add_default_attrs(evsel_list,
backend_attrs) < 0)
return -1;
}
if (perf_evlist__add_default_attrs(evsel_list, default_attrs1) < 0)
return -1;
}
/* Detailed events get appended to the event list: */
if (detailed_run < 1)
return 0;
/* Append detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, detailed_attrs) < 0)
return -1;
if (detailed_run < 2)
return 0;
/* Append very detailed run extra attributes: */
if (perf_evlist__add_default_attrs(evsel_list, very_detailed_attrs) < 0)
return -1;
if (detailed_run < 3)
return 0;
/* Append very, very detailed run extra attributes: */
return perf_evlist__add_default_attrs(evsel_list, very_very_detailed_attrs);
}
static const char * const stat_record_usage[] = {
"perf stat record [<options>]",
NULL,
};
static void init_features(struct perf_session *session)
{
int feat;
for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++)
perf_header__set_feat(&session->header, feat);
perf_header__clear_feat(&session->header, HEADER_BUILD_ID);
perf_header__clear_feat(&session->header, HEADER_TRACING_DATA);
perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK);
perf_header__clear_feat(&session->header, HEADER_AUXTRACE);
}
static int __cmd_record(int argc, const char **argv)
{
struct perf_session *session;
struct perf_data *data = &perf_stat.data;
argc = parse_options(argc, argv, stat_options, stat_record_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
if (output_name)
data->file.path = output_name;
if (run_count != 1 || forever) {
pr_err("Cannot use -r option with perf stat record.\n");
return -1;
}
session = perf_session__new(data, false, NULL);
if (session == NULL) {
pr_err("Perf session creation failed.\n");
return -1;
}
init_features(session);
session->evlist = evsel_list;
perf_stat.session = session;
perf_stat.record = true;
return argc;
}
static int process_stat_round_event(struct perf_tool *tool __maybe_unused,
union perf_event *event,
struct perf_session *session)
{
struct stat_round_event *stat_round = &event->stat_round;
struct perf_evsel *counter;
struct timespec tsh, *ts = NULL;
const char **argv = session->header.env.cmdline_argv;
int argc = session->header.env.nr_cmdline;
evlist__for_each_entry(evsel_list, counter)
perf_stat_process_counter(&stat_config, counter);
if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL)
update_stats(&walltime_nsecs_stats, stat_round->time);
if (stat_config.interval && stat_round->time) {
tsh.tv_sec = stat_round->time / NSEC_PER_SEC;
tsh.tv_nsec = stat_round->time % NSEC_PER_SEC;
ts = &tsh;
}
print_counters(ts, argc, argv);
return 0;
}
static
int process_stat_config_event(struct perf_tool *tool,
union perf_event *event,
struct perf_session *session __maybe_unused)
{
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
perf_event__read_stat_config(&stat_config, &event->stat_config);
if (cpu_map__empty(st->cpus)) {
if (st->aggr_mode != AGGR_UNSET)
pr_warning("warning: processing task data, aggregation mode not set\n");
return 0;
}
if (st->aggr_mode != AGGR_UNSET)
stat_config.aggr_mode = st->aggr_mode;
if (perf_stat.data.is_pipe)
perf_stat_init_aggr_mode();
else
perf_stat_init_aggr_mode_file(st);
return 0;
}
static int set_maps(struct perf_stat *st)
{
if (!st->cpus || !st->threads)
return 0;
if (WARN_ONCE(st->maps_allocated, "stats double allocation\n"))
return -EINVAL;
perf_evlist__set_maps(evsel_list, st->cpus, st->threads);
if (perf_evlist__alloc_stats(evsel_list, true))
return -ENOMEM;
st->maps_allocated = true;
return 0;
}
static
int process_thread_map_event(struct perf_tool *tool,
union perf_event *event,
struct perf_session *session __maybe_unused)
{
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
if (st->threads) {
pr_warning("Extra thread map event, ignoring.\n");
return 0;
}
st->threads = thread_map__new_event(&event->thread_map);
if (!st->threads)
return -ENOMEM;
return set_maps(st);
}
static
int process_cpu_map_event(struct perf_tool *tool,
union perf_event *event,
struct perf_session *session __maybe_unused)
{
struct perf_stat *st = container_of(tool, struct perf_stat, tool);
struct cpu_map *cpus;
if (st->cpus) {
pr_warning("Extra cpu map event, ignoring.\n");
return 0;
}
cpus = cpu_map__new_data(&event->cpu_map.data);
if (!cpus)
return -ENOMEM;
st->cpus = cpus;
return set_maps(st);
}
static int runtime_stat_new(struct perf_stat_config *config, int nthreads)
{
int i;
config->stats = calloc(nthreads, sizeof(struct runtime_stat));
if (!config->stats)
return -1;
config->stats_num = nthreads;
for (i = 0; i < nthreads; i++)
runtime_stat__init(&config->stats[i]);
return 0;
}
static void runtime_stat_delete(struct perf_stat_config *config)
{
int i;
if (!config->stats)
return;
for (i = 0; i < config->stats_num; i++)
runtime_stat__exit(&config->stats[i]);
free(config->stats);
}
static const char * const stat_report_usage[] = {
"perf stat report [<options>]",
NULL,
};
static struct perf_stat perf_stat = {
.tool = {
.attr = perf_event__process_attr,
.event_update = perf_event__process_event_update,
.thread_map = process_thread_map_event,
.cpu_map = process_cpu_map_event,
.stat_config = process_stat_config_event,
.stat = perf_event__process_stat_event,
.stat_round = process_stat_round_event,
},
.aggr_mode = AGGR_UNSET,
};
static int __cmd_report(int argc, const char **argv)
{
struct perf_session *session;
const struct option options[] = {
OPT_STRING('i', "input", &input_name, "file", "input file name"),
OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode,
"aggregate counts per processor socket", AGGR_SOCKET),
OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode,
"aggregate counts per physical processor core", AGGR_CORE),
OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode,
"disable CPU count aggregation", AGGR_NONE),
OPT_END()
};
struct stat st;
int ret;
argc = parse_options(argc, argv, options, stat_report_usage, 0);
if (!input_name || !strlen(input_name)) {
if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
input_name = "-";
else
input_name = "perf.data";
}
perf_stat.data.file.path = input_name;
perf_stat.data.mode = PERF_DATA_MODE_READ;
session = perf_session__new(&perf_stat.data, false, &perf_stat.tool);
if (session == NULL)
return -1;
perf_stat.session = session;
stat_config.output = stderr;
evsel_list = session->evlist;
ret = perf_session__process_events(session);
if (ret)
return ret;
perf_session__delete(session);
return 0;
}
static void setup_system_wide(int forks)
{
/*
* Make system wide (-a) the default target if
* no target was specified and one of following
* conditions is met:
*
* - there's no workload specified
* - there is workload specified but all requested
* events are system wide events
*/
if (!target__none(&target))
return;
if (!forks)
target.system_wide = true;
else {
struct perf_evsel *counter;
evlist__for_each_entry(evsel_list, counter) {
if (!counter->system_wide)
return;
}
if (evsel_list->nr_entries)
target.system_wide = true;
}
}
int cmd_stat(int argc, const char **argv)
{
const char * const stat_usage[] = {
"perf stat [<options>] [<command>]",
NULL
};
int status = -EINVAL, run_idx;
const char *mode;
FILE *output = stderr;
unsigned int interval, timeout;
const char * const stat_subcommands[] = { "record", "report" };
setlocale(LC_ALL, "");
evsel_list = perf_evlist__new();
if (evsel_list == NULL)
return -ENOMEM;
parse_events__shrink_config_terms();
argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands,
(const char **) stat_usage,
PARSE_OPT_STOP_AT_NON_OPTION);
perf_stat__collect_metric_expr(evsel_list);
perf_stat__init_shadow_stats();
if (csv_sep) {
csv_output = true;
if (!strcmp(csv_sep, "\\t"))
csv_sep = "\t";
} else
csv_sep = DEFAULT_SEPARATOR;
if (argc && !strncmp(argv[0], "rec", 3)) {
argc = __cmd_record(argc, argv);
if (argc < 0)
return -1;
} else if (argc && !strncmp(argv[0], "rep", 3))
return __cmd_report(argc, argv);
interval = stat_config.interval;
timeout = stat_config.timeout;
/*
* For record command the -o is already taken care of.
*/
if (!STAT_RECORD && output_name && strcmp(output_name, "-"))
output = NULL;
if (output_name && output_fd) {
fprintf(stderr, "cannot use both --output and --log-fd\n");
parse_options_usage(stat_usage, stat_options, "o", 1);
parse_options_usage(NULL, stat_options, "log-fd", 0);
goto out;
}
if (metric_only && stat_config.aggr_mode == AGGR_THREAD) {
fprintf(stderr, "--metric-only is not supported with --per-thread\n");
goto out;
}
if (metric_only && run_count > 1) {
fprintf(stderr, "--metric-only is not supported with -r\n");
goto out;
}
if (output_fd < 0) {
fprintf(stderr, "argument to --log-fd must be a > 0\n");
parse_options_usage(stat_usage, stat_options, "log-fd", 0);
goto out;
}
if (!output) {
struct timespec tm;
mode = append_file ? "a" : "w";
output = fopen(output_name, mode);
if (!output) {
perror("failed to create output file");
return -1;
}
clock_gettime(CLOCK_REALTIME, &tm);
fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
} else if (output_fd > 0) {
mode = append_file ? "a" : "w";
output = fdopen(output_fd, mode);
if (!output) {
perror("Failed opening logfd");
return -errno;
}
}
stat_config.output = output;
/*
* let the spreadsheet do the pretty-printing
*/
if (csv_output) {
/* User explicitly passed -B? */
if (big_num_opt == 1) {
fprintf(stderr, "-B option not supported with -x\n");
parse_options_usage(stat_usage, stat_options, "B", 1);
parse_options_usage(NULL, stat_options, "x", 1);
goto out;
} else /* Nope, so disable big number formatting */
big_num = false;
} else if (big_num_opt == 0) /* User passed --no-big-num */
big_num = false;
setup_system_wide(argc);
if (run_count < 0) {
pr_err("Run count must be a positive number\n");
parse_options_usage(stat_usage, stat_options, "r", 1);
goto out;
} else if (run_count == 0) {
forever = true;
run_count = 1;
}
if ((stat_config.aggr_mode == AGGR_THREAD) &&
!target__has_task(&target)) {
if (!target.system_wide || target.cpu_list) {
fprintf(stderr, "The --per-thread option is only "
"available when monitoring via -p -t -a "
"options or only --per-thread.\n");
parse_options_usage(NULL, stat_options, "p", 1);
parse_options_usage(NULL, stat_options, "t", 1);
goto out;
}
}
/*
* no_aggr, cgroup are for system-wide only
* --per-thread is aggregated per thread, we dont mix it with cpu mode
*/
if (((stat_config.aggr_mode != AGGR_GLOBAL &&
stat_config.aggr_mode != AGGR_THREAD) || nr_cgroups) &&
!target__has_cpu(&target)) {
fprintf(stderr, "both cgroup and no-aggregation "
"modes only available in system-wide mode\n");
parse_options_usage(stat_usage, stat_options, "G", 1);
parse_options_usage(NULL, stat_options, "A", 1);
parse_options_usage(NULL, stat_options, "a", 1);
goto out;
}
if (add_default_attributes())
goto out;
target__validate(&target);
if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide))
target.per_thread = true;
if (perf_evlist__create_maps(evsel_list, &target) < 0) {
if (target__has_task(&target)) {
pr_err("Problems finding threads of monitor\n");
parse_options_usage(stat_usage, stat_options, "p", 1);
parse_options_usage(NULL, stat_options, "t", 1);
} else if (target__has_cpu(&target)) {
perror("failed to parse CPUs map");
parse_options_usage(stat_usage, stat_options, "C", 1);
parse_options_usage(NULL, stat_options, "a", 1);
}
goto out;
}
/*
* Initialize thread_map with comm names,
* so we could print it out on output.
*/
if (stat_config.aggr_mode == AGGR_THREAD) {
thread_map__read_comms(evsel_list->threads);
if (target.system_wide) {
if (runtime_stat_new(&stat_config,
thread_map__nr(evsel_list->threads))) {
goto out;
}
}
}
if (stat_config.times && interval)
interval_count = true;
else if (stat_config.times && !interval) {
pr_err("interval-count option should be used together with "
"interval-print.\n");
parse_options_usage(stat_usage, stat_options, "interval-count", 0);
parse_options_usage(stat_usage, stat_options, "I", 1);
goto out;
}
if (timeout && timeout < 100) {
if (timeout < 10) {
pr_err("timeout must be >= 10ms.\n");
parse_options_usage(stat_usage, stat_options, "timeout", 0);
goto out;
} else
pr_warning("timeout < 100ms. "
"The overhead percentage could be high in some cases. "
"Please proceed with caution.\n");
}
if (timeout && interval) {
pr_err("timeout option is not supported with interval-print.\n");
parse_options_usage(stat_usage, stat_options, "timeout", 0);
parse_options_usage(stat_usage, stat_options, "I", 1);
goto out;
}
if (perf_evlist__alloc_stats(evsel_list, interval))
goto out;
if (perf_stat_init_aggr_mode())
goto out;
/*
* We dont want to block the signals - that would cause
* child tasks to inherit that and Ctrl-C would not work.
* What we want is for Ctrl-C to work in the exec()-ed
* task, but being ignored by perf stat itself:
*/
atexit(sig_atexit);
if (!forever)
signal(SIGINT, skip_signal);
signal(SIGCHLD, skip_signal);
signal(SIGALRM, skip_signal);
signal(SIGABRT, skip_signal);
status = 0;
for (run_idx = 0; forever || run_idx < run_count; run_idx++) {
if (run_count != 1 && verbose > 0)
fprintf(output, "[ perf stat: executing run #%d ... ]\n",
run_idx + 1);
status = run_perf_stat(argc, argv);
if (forever && status != -1) {
print_counters(NULL, argc, argv);
perf_stat__reset_stats();
}
}
if (!forever && status != -1 && !interval)
print_counters(NULL, argc, argv);
if (STAT_RECORD) {
/*
* We synthesize the kernel mmap record just so that older tools
* don't emit warnings about not being able to resolve symbols
* due to /proc/sys/kernel/kptr_restrict settings and instear provide
* a saner message about no samples being in the perf.data file.
*
* This also serves to suppress a warning about f_header.data.size == 0
* in header.c at the moment 'perf stat record' gets introduced, which
* is not really needed once we start adding the stat specific PERF_RECORD_
* records, but the need to suppress the kptr_restrict messages in older
* tools remain -acme
*/
int fd = perf_data__fd(&perf_stat.data);
int err = perf_event__synthesize_kernel_mmap((void *)&perf_stat,
process_synthesized_event,
&perf_stat.session->machines.host);
if (err) {
pr_warning("Couldn't synthesize the kernel mmap record, harmless, "
"older tools may produce warnings about this file\n.");
}
if (!interval) {
if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL))
pr_err("failed to write stat round event\n");
}
if (!perf_stat.data.is_pipe) {
perf_stat.session->header.data_size += perf_stat.bytes_written;
perf_session__write_header(perf_stat.session, evsel_list, fd, true);
}
perf_session__delete(perf_stat.session);
}
perf_stat__exit_aggr_mode();
perf_evlist__free_stats(evsel_list);
out:
if (smi_cost && smi_reset)
sysfs__write_int(FREEZE_ON_SMI_PATH, 0);
perf_evlist__delete(evsel_list);
runtime_stat_delete(&stat_config);
return status;
}