mirror of https://gitee.com/openkylin/linux.git
2677 lines
94 KiB
C
2677 lines
94 KiB
C
/******************************************************************************
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
|
|
* USA
|
|
*
|
|
* The full GNU General Public License is included in this distribution
|
|
* in the file called LICENSE.GPL.
|
|
*
|
|
* Contact Information:
|
|
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
|
|
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Copyright(c) 2005 - 2007 Intel Corporation. All rights reserved.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* Please use this file (iwl-4965-commands.h) only for uCode API definitions.
|
|
* Please use iwl-4965-hw.h for hardware-related definitions.
|
|
* Please use iwl-4965.h for driver implementation definitions.
|
|
*/
|
|
|
|
#ifndef __iwl4965_commands_h__
|
|
#define __iwl4965_commands_h__
|
|
|
|
enum {
|
|
REPLY_ALIVE = 0x1,
|
|
REPLY_ERROR = 0x2,
|
|
|
|
/* RXON and QOS commands */
|
|
REPLY_RXON = 0x10,
|
|
REPLY_RXON_ASSOC = 0x11,
|
|
REPLY_QOS_PARAM = 0x13,
|
|
REPLY_RXON_TIMING = 0x14,
|
|
|
|
/* Multi-Station support */
|
|
REPLY_ADD_STA = 0x18,
|
|
REPLY_REMOVE_STA = 0x19, /* not used */
|
|
REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
|
|
|
|
/* RX, TX, LEDs */
|
|
REPLY_TX = 0x1c,
|
|
REPLY_RATE_SCALE = 0x47, /* 3945 only */
|
|
REPLY_LEDS_CMD = 0x48,
|
|
REPLY_TX_LINK_QUALITY_CMD = 0x4e, /* 4965 only */
|
|
|
|
/* 802.11h related */
|
|
RADAR_NOTIFICATION = 0x70, /* not used */
|
|
REPLY_QUIET_CMD = 0x71, /* not used */
|
|
REPLY_CHANNEL_SWITCH = 0x72,
|
|
CHANNEL_SWITCH_NOTIFICATION = 0x73,
|
|
REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
|
|
SPECTRUM_MEASURE_NOTIFICATION = 0x75,
|
|
|
|
/* Power Management */
|
|
POWER_TABLE_CMD = 0x77,
|
|
PM_SLEEP_NOTIFICATION = 0x7A,
|
|
PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
|
|
|
|
/* Scan commands and notifications */
|
|
REPLY_SCAN_CMD = 0x80,
|
|
REPLY_SCAN_ABORT_CMD = 0x81,
|
|
SCAN_START_NOTIFICATION = 0x82,
|
|
SCAN_RESULTS_NOTIFICATION = 0x83,
|
|
SCAN_COMPLETE_NOTIFICATION = 0x84,
|
|
|
|
/* IBSS/AP commands */
|
|
BEACON_NOTIFICATION = 0x90,
|
|
REPLY_TX_BEACON = 0x91,
|
|
WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
|
|
|
|
/* Miscellaneous commands */
|
|
QUIET_NOTIFICATION = 0x96, /* not used */
|
|
REPLY_TX_PWR_TABLE_CMD = 0x97,
|
|
MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
|
|
|
|
/* Bluetooth device coexistance config command */
|
|
REPLY_BT_CONFIG = 0x9b,
|
|
|
|
/* Statistics */
|
|
REPLY_STATISTICS_CMD = 0x9c,
|
|
STATISTICS_NOTIFICATION = 0x9d,
|
|
|
|
/* RF-KILL commands and notifications */
|
|
REPLY_CARD_STATE_CMD = 0xa0,
|
|
CARD_STATE_NOTIFICATION = 0xa1,
|
|
|
|
/* Missed beacons notification */
|
|
MISSED_BEACONS_NOTIFICATION = 0xa2,
|
|
|
|
REPLY_CT_KILL_CONFIG_CMD = 0xa4,
|
|
SENSITIVITY_CMD = 0xa8,
|
|
REPLY_PHY_CALIBRATION_CMD = 0xb0,
|
|
REPLY_RX_PHY_CMD = 0xc0,
|
|
REPLY_RX_MPDU_CMD = 0xc1,
|
|
REPLY_4965_RX = 0xc3,
|
|
REPLY_COMPRESSED_BA = 0xc5,
|
|
REPLY_MAX = 0xff
|
|
};
|
|
|
|
/******************************************************************************
|
|
* (0)
|
|
* Commonly used structures and definitions:
|
|
* Command header, rate_n_flags, txpower
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/* iwl4965_cmd_header flags value */
|
|
#define IWL_CMD_FAILED_MSK 0x40
|
|
|
|
/**
|
|
* struct iwl4965_cmd_header
|
|
*
|
|
* This header format appears in the beginning of each command sent from the
|
|
* driver, and each response/notification received from uCode.
|
|
*/
|
|
struct iwl4965_cmd_header {
|
|
u8 cmd; /* Command ID: REPLY_RXON, etc. */
|
|
u8 flags; /* IWL_CMD_* */
|
|
/*
|
|
* The driver sets up the sequence number to values of its chosing.
|
|
* uCode does not use this value, but passes it back to the driver
|
|
* when sending the response to each driver-originated command, so
|
|
* the driver can match the response to the command. Since the values
|
|
* don't get used by uCode, the driver may set up an arbitrary format.
|
|
*
|
|
* There is one exception: uCode sets bit 15 when it originates
|
|
* the response/notification, i.e. when the response/notification
|
|
* is not a direct response to a command sent by the driver. For
|
|
* example, uCode issues REPLY_3945_RX when it sends a received frame
|
|
* to the driver; it is not a direct response to any driver command.
|
|
*
|
|
* The Linux driver uses the following format:
|
|
*
|
|
* 0:7 index/position within Tx queue
|
|
* 8:13 Tx queue selection
|
|
* 14:14 driver sets this to indicate command is in the 'huge'
|
|
* storage at the end of the command buffers, i.e. scan cmd
|
|
* 15:15 uCode sets this in uCode-originated response/notification
|
|
*/
|
|
__le16 sequence;
|
|
|
|
/* command or response/notification data follows immediately */
|
|
u8 data[0];
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* 4965 rate_n_flags bit fields
|
|
*
|
|
* rate_n_flags format is used in following 4965 commands:
|
|
* REPLY_4965_RX (response only)
|
|
* REPLY_TX (both command and response)
|
|
* REPLY_TX_LINK_QUALITY_CMD
|
|
*
|
|
* High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
|
|
* 2-0: 0) 6 Mbps
|
|
* 1) 12 Mbps
|
|
* 2) 18 Mbps
|
|
* 3) 24 Mbps
|
|
* 4) 36 Mbps
|
|
* 5) 48 Mbps
|
|
* 6) 54 Mbps
|
|
* 7) 60 Mbps
|
|
*
|
|
* 3: 0) Single stream (SISO)
|
|
* 1) Dual stream (MIMO)
|
|
*
|
|
* 5: Value of 0x20 in bits 7:0 indicates 6 Mbps FAT duplicate data
|
|
*
|
|
* Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
|
|
* 3-0: 0xD) 6 Mbps
|
|
* 0xF) 9 Mbps
|
|
* 0x5) 12 Mbps
|
|
* 0x7) 18 Mbps
|
|
* 0x9) 24 Mbps
|
|
* 0xB) 36 Mbps
|
|
* 0x1) 48 Mbps
|
|
* 0x3) 54 Mbps
|
|
*
|
|
* Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
|
|
* 3-0: 10) 1 Mbps
|
|
* 20) 2 Mbps
|
|
* 55) 5.5 Mbps
|
|
* 110) 11 Mbps
|
|
*/
|
|
#define RATE_MCS_CODE_MSK 0x7
|
|
#define RATE_MCS_MIMO_POS 3
|
|
#define RATE_MCS_MIMO_MSK 0x8
|
|
#define RATE_MCS_HT_DUP_POS 5
|
|
#define RATE_MCS_HT_DUP_MSK 0x20
|
|
|
|
/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
|
|
#define RATE_MCS_FLAGS_POS 8
|
|
#define RATE_MCS_HT_POS 8
|
|
#define RATE_MCS_HT_MSK 0x100
|
|
|
|
/* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
|
|
#define RATE_MCS_CCK_POS 9
|
|
#define RATE_MCS_CCK_MSK 0x200
|
|
|
|
/* Bit 10: (1) Use Green Field preamble */
|
|
#define RATE_MCS_GF_POS 10
|
|
#define RATE_MCS_GF_MSK 0x400
|
|
|
|
/* Bit 11: (1) Use 40Mhz FAT chnl width, (0) use 20 MHz legacy chnl width */
|
|
#define RATE_MCS_FAT_POS 11
|
|
#define RATE_MCS_FAT_MSK 0x800
|
|
|
|
/* Bit 12: (1) Duplicate data on both 20MHz chnls. FAT (bit 11) must be set. */
|
|
#define RATE_MCS_DUP_POS 12
|
|
#define RATE_MCS_DUP_MSK 0x1000
|
|
|
|
/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
|
|
#define RATE_MCS_SGI_POS 13
|
|
#define RATE_MCS_SGI_MSK 0x2000
|
|
|
|
/**
|
|
* rate_n_flags Tx antenna masks (4965 has 2 transmitters):
|
|
* bit14:15 01 B inactive, A active
|
|
* 10 B active, A inactive
|
|
* 11 Both active
|
|
*/
|
|
#define RATE_MCS_ANT_A_POS 14
|
|
#define RATE_MCS_ANT_B_POS 15
|
|
#define RATE_MCS_ANT_A_MSK 0x4000
|
|
#define RATE_MCS_ANT_B_MSK 0x8000
|
|
#define RATE_MCS_ANT_AB_MSK 0xc000
|
|
|
|
|
|
/**
|
|
* struct iwl4965_tx_power - txpower format used in REPLY_SCAN_CMD
|
|
*
|
|
* Scan uses only one transmitter, so only one analog/dsp gain pair is needed.
|
|
*/
|
|
struct iwl4965_tx_power {
|
|
u8 tx_gain; /* gain for analog radio */
|
|
u8 dsp_atten; /* gain for DSP */
|
|
} __attribute__ ((packed));
|
|
|
|
#define POWER_TABLE_NUM_ENTRIES 33
|
|
#define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
|
|
#define POWER_TABLE_CCK_ENTRY 32
|
|
|
|
/**
|
|
* union iwl4965_tx_power_dual_stream
|
|
*
|
|
* Host format used for REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
|
|
* Use __le32 version (struct tx_power_dual_stream) when building command.
|
|
*
|
|
* Driver provides radio gain and DSP attenuation settings to device in pairs,
|
|
* one value for each transmitter chain. The first value is for transmitter A,
|
|
* second for transmitter B.
|
|
*
|
|
* For SISO bit rates, both values in a pair should be identical.
|
|
* For MIMO rates, one value may be different from the other,
|
|
* in order to balance the Tx output between the two transmitters.
|
|
*
|
|
* See more details in doc for TXPOWER in iwl-4965-hw.h.
|
|
*/
|
|
union iwl4965_tx_power_dual_stream {
|
|
struct {
|
|
u8 radio_tx_gain[2];
|
|
u8 dsp_predis_atten[2];
|
|
} s;
|
|
u32 dw;
|
|
};
|
|
|
|
/**
|
|
* struct tx_power_dual_stream
|
|
*
|
|
* Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
|
|
*
|
|
* Same format as iwl_tx_power_dual_stream, but __le32
|
|
*/
|
|
struct tx_power_dual_stream {
|
|
__le32 dw;
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* struct iwl4965_tx_power_db
|
|
*
|
|
* Entire table within REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
|
|
*/
|
|
struct iwl4965_tx_power_db {
|
|
struct tx_power_dual_stream power_tbl[POWER_TABLE_NUM_ENTRIES];
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/******************************************************************************
|
|
* (0a)
|
|
* Alive and Error Commands & Responses:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define UCODE_VALID_OK __constant_cpu_to_le32(0x1)
|
|
#define INITIALIZE_SUBTYPE (9)
|
|
|
|
/*
|
|
* ("Initialize") REPLY_ALIVE = 0x1 (response only, not a command)
|
|
*
|
|
* uCode issues this "initialize alive" notification once the initialization
|
|
* uCode image has completed its work, and is ready to load the runtime image.
|
|
* This is the *first* "alive" notification that the driver will receive after
|
|
* rebooting uCode; the "initialize" alive is indicated by subtype field == 9.
|
|
*
|
|
* See comments documenting "BSM" (bootstrap state machine).
|
|
*
|
|
* For 4965, this notification contains important calibration data for
|
|
* calculating txpower settings:
|
|
*
|
|
* 1) Power supply voltage indication. The voltage sensor outputs higher
|
|
* values for lower voltage, and vice versa.
|
|
*
|
|
* 2) Temperature measurement parameters, for each of two channel widths
|
|
* (20 MHz and 40 MHz) supported by the radios. Temperature sensing
|
|
* is done via one of the receiver chains, and channel width influences
|
|
* the results.
|
|
*
|
|
* 3) Tx gain compensation to balance 4965's 2 Tx chains for MIMO operation,
|
|
* for each of 5 frequency ranges.
|
|
*/
|
|
struct iwl4965_init_alive_resp {
|
|
u8 ucode_minor;
|
|
u8 ucode_major;
|
|
__le16 reserved1;
|
|
u8 sw_rev[8];
|
|
u8 ver_type;
|
|
u8 ver_subtype; /* "9" for initialize alive */
|
|
__le16 reserved2;
|
|
__le32 log_event_table_ptr;
|
|
__le32 error_event_table_ptr;
|
|
__le32 timestamp;
|
|
__le32 is_valid;
|
|
|
|
/* calibration values from "initialize" uCode */
|
|
__le32 voltage; /* signed, higher value is lower voltage */
|
|
__le32 therm_r1[2]; /* signed, 1st for normal, 2nd for FAT channel*/
|
|
__le32 therm_r2[2]; /* signed */
|
|
__le32 therm_r3[2]; /* signed */
|
|
__le32 therm_r4[2]; /* signed */
|
|
__le32 tx_atten[5][2]; /* signed MIMO gain comp, 5 freq groups,
|
|
* 2 Tx chains */
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/**
|
|
* REPLY_ALIVE = 0x1 (response only, not a command)
|
|
*
|
|
* uCode issues this "alive" notification once the runtime image is ready
|
|
* to receive commands from the driver. This is the *second* "alive"
|
|
* notification that the driver will receive after rebooting uCode;
|
|
* this "alive" is indicated by subtype field != 9.
|
|
*
|
|
* See comments documenting "BSM" (bootstrap state machine).
|
|
*
|
|
* This response includes two pointers to structures within the device's
|
|
* data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
|
|
*
|
|
* 1) log_event_table_ptr indicates base of the event log. This traces
|
|
* a 256-entry history of uCode execution within a circular buffer.
|
|
* Its header format is:
|
|
*
|
|
* __le32 log_size; log capacity (in number of entries)
|
|
* __le32 type; (1) timestamp with each entry, (0) no timestamp
|
|
* __le32 wraps; # times uCode has wrapped to top of circular buffer
|
|
* __le32 write_index; next circular buffer entry that uCode would fill
|
|
*
|
|
* The header is followed by the circular buffer of log entries. Entries
|
|
* with timestamps have the following format:
|
|
*
|
|
* __le32 event_id; range 0 - 1500
|
|
* __le32 timestamp; low 32 bits of TSF (of network, if associated)
|
|
* __le32 data; event_id-specific data value
|
|
*
|
|
* Entries without timestamps contain only event_id and data.
|
|
*
|
|
* 2) error_event_table_ptr indicates base of the error log. This contains
|
|
* information about any uCode error that occurs. For 4965, the format
|
|
* of the error log is:
|
|
*
|
|
* __le32 valid; (nonzero) valid, (0) log is empty
|
|
* __le32 error_id; type of error
|
|
* __le32 pc; program counter
|
|
* __le32 blink1; branch link
|
|
* __le32 blink2; branch link
|
|
* __le32 ilink1; interrupt link
|
|
* __le32 ilink2; interrupt link
|
|
* __le32 data1; error-specific data
|
|
* __le32 data2; error-specific data
|
|
* __le32 line; source code line of error
|
|
* __le32 bcon_time; beacon timer
|
|
* __le32 tsf_low; network timestamp function timer
|
|
* __le32 tsf_hi; network timestamp function timer
|
|
*
|
|
* The Linux driver can print both logs to the system log when a uCode error
|
|
* occurs.
|
|
*/
|
|
struct iwl4965_alive_resp {
|
|
u8 ucode_minor;
|
|
u8 ucode_major;
|
|
__le16 reserved1;
|
|
u8 sw_rev[8];
|
|
u8 ver_type;
|
|
u8 ver_subtype; /* not "9" for runtime alive */
|
|
__le16 reserved2;
|
|
__le32 log_event_table_ptr; /* SRAM address for event log */
|
|
__le32 error_event_table_ptr; /* SRAM address for error log */
|
|
__le32 timestamp;
|
|
__le32 is_valid;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
union tsf {
|
|
u8 byte[8];
|
|
__le16 word[4];
|
|
__le32 dw[2];
|
|
};
|
|
|
|
/*
|
|
* REPLY_ERROR = 0x2 (response only, not a command)
|
|
*/
|
|
struct iwl4965_error_resp {
|
|
__le32 error_type;
|
|
u8 cmd_id;
|
|
u8 reserved1;
|
|
__le16 bad_cmd_seq_num;
|
|
__le32 error_info;
|
|
union tsf timestamp;
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (1)
|
|
* RXON Commands & Responses:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Rx config defines & structure
|
|
*/
|
|
/* rx_config device types */
|
|
enum {
|
|
RXON_DEV_TYPE_AP = 1,
|
|
RXON_DEV_TYPE_ESS = 3,
|
|
RXON_DEV_TYPE_IBSS = 4,
|
|
RXON_DEV_TYPE_SNIFFER = 6,
|
|
};
|
|
|
|
|
|
#define RXON_RX_CHAIN_DRIVER_FORCE_MSK __constant_cpu_to_le16(0x1 << 0)
|
|
#define RXON_RX_CHAIN_VALID_MSK __constant_cpu_to_le16(0x7 << 1)
|
|
#define RXON_RX_CHAIN_VALID_POS (1)
|
|
#define RXON_RX_CHAIN_FORCE_SEL_MSK __constant_cpu_to_le16(0x7 << 4)
|
|
#define RXON_RX_CHAIN_FORCE_SEL_POS (4)
|
|
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK __constant_cpu_to_le16(0x7 << 7)
|
|
#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
|
|
#define RXON_RX_CHAIN_CNT_MSK __constant_cpu_to_le16(0x3 << 10)
|
|
#define RXON_RX_CHAIN_CNT_POS (10)
|
|
#define RXON_RX_CHAIN_MIMO_CNT_MSK __constant_cpu_to_le16(0x3 << 12)
|
|
#define RXON_RX_CHAIN_MIMO_CNT_POS (12)
|
|
#define RXON_RX_CHAIN_MIMO_FORCE_MSK __constant_cpu_to_le16(0x1 << 14)
|
|
#define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
|
|
|
|
/* rx_config flags */
|
|
/* band & modulation selection */
|
|
#define RXON_FLG_BAND_24G_MSK __constant_cpu_to_le32(1 << 0)
|
|
#define RXON_FLG_CCK_MSK __constant_cpu_to_le32(1 << 1)
|
|
/* auto detection enable */
|
|
#define RXON_FLG_AUTO_DETECT_MSK __constant_cpu_to_le32(1 << 2)
|
|
/* TGg protection when tx */
|
|
#define RXON_FLG_TGG_PROTECT_MSK __constant_cpu_to_le32(1 << 3)
|
|
/* cck short slot & preamble */
|
|
#define RXON_FLG_SHORT_SLOT_MSK __constant_cpu_to_le32(1 << 4)
|
|
#define RXON_FLG_SHORT_PREAMBLE_MSK __constant_cpu_to_le32(1 << 5)
|
|
/* antenna selection */
|
|
#define RXON_FLG_DIS_DIV_MSK __constant_cpu_to_le32(1 << 7)
|
|
#define RXON_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0x0f00)
|
|
#define RXON_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
|
|
#define RXON_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
|
|
/* radar detection enable */
|
|
#define RXON_FLG_RADAR_DETECT_MSK __constant_cpu_to_le32(1 << 12)
|
|
#define RXON_FLG_TGJ_NARROW_BAND_MSK __constant_cpu_to_le32(1 << 13)
|
|
/* rx response to host with 8-byte TSF
|
|
* (according to ON_AIR deassertion) */
|
|
#define RXON_FLG_TSF2HOST_MSK __constant_cpu_to_le32(1 << 15)
|
|
|
|
|
|
/* HT flags */
|
|
#define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
|
|
#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK __constant_cpu_to_le32(0x1 << 22)
|
|
|
|
#define RXON_FLG_HT_OPERATING_MODE_POS (23)
|
|
|
|
#define RXON_FLG_HT_PROT_MSK __constant_cpu_to_le32(0x1 << 23)
|
|
#define RXON_FLG_FAT_PROT_MSK __constant_cpu_to_le32(0x2 << 23)
|
|
|
|
#define RXON_FLG_CHANNEL_MODE_POS (25)
|
|
#define RXON_FLG_CHANNEL_MODE_MSK __constant_cpu_to_le32(0x3 << 25)
|
|
#define RXON_FLG_CHANNEL_MODE_PURE_40_MSK __constant_cpu_to_le32(0x1 << 25)
|
|
#define RXON_FLG_CHANNEL_MODE_MIXED_MSK __constant_cpu_to_le32(0x2 << 25)
|
|
|
|
/* rx_config filter flags */
|
|
/* accept all data frames */
|
|
#define RXON_FILTER_PROMISC_MSK __constant_cpu_to_le32(1 << 0)
|
|
/* pass control & management to host */
|
|
#define RXON_FILTER_CTL2HOST_MSK __constant_cpu_to_le32(1 << 1)
|
|
/* accept multi-cast */
|
|
#define RXON_FILTER_ACCEPT_GRP_MSK __constant_cpu_to_le32(1 << 2)
|
|
/* don't decrypt uni-cast frames */
|
|
#define RXON_FILTER_DIS_DECRYPT_MSK __constant_cpu_to_le32(1 << 3)
|
|
/* don't decrypt multi-cast frames */
|
|
#define RXON_FILTER_DIS_GRP_DECRYPT_MSK __constant_cpu_to_le32(1 << 4)
|
|
/* STA is associated */
|
|
#define RXON_FILTER_ASSOC_MSK __constant_cpu_to_le32(1 << 5)
|
|
/* transfer to host non bssid beacons in associated state */
|
|
#define RXON_FILTER_BCON_AWARE_MSK __constant_cpu_to_le32(1 << 6)
|
|
|
|
/**
|
|
* REPLY_RXON = 0x10 (command, has simple generic response)
|
|
*
|
|
* RXON tunes the radio tuner to a service channel, and sets up a number
|
|
* of parameters that are used primarily for Rx, but also for Tx operations.
|
|
*
|
|
* NOTE: When tuning to a new channel, driver must set the
|
|
* RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
|
|
* info within the device, including the station tables, tx retry
|
|
* rate tables, and txpower tables. Driver must build a new station
|
|
* table and txpower table before transmitting anything on the RXON
|
|
* channel.
|
|
*
|
|
* NOTE: All RXONs wipe clean the internal txpower table. Driver must
|
|
* issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
|
|
* regardless of whether RXON_FILTER_ASSOC_MSK is set.
|
|
*/
|
|
struct iwl4965_rxon_cmd {
|
|
u8 node_addr[6];
|
|
__le16 reserved1;
|
|
u8 bssid_addr[6];
|
|
__le16 reserved2;
|
|
u8 wlap_bssid_addr[6];
|
|
__le16 reserved3;
|
|
u8 dev_type;
|
|
u8 air_propagation;
|
|
__le16 rx_chain;
|
|
u8 ofdm_basic_rates;
|
|
u8 cck_basic_rates;
|
|
__le16 assoc_id;
|
|
__le32 flags;
|
|
__le32 filter_flags;
|
|
__le16 channel;
|
|
u8 ofdm_ht_single_stream_basic_rates;
|
|
u8 ofdm_ht_dual_stream_basic_rates;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
|
|
*/
|
|
struct iwl4965_rxon_assoc_cmd {
|
|
__le32 flags;
|
|
__le32 filter_flags;
|
|
u8 ofdm_basic_rates;
|
|
u8 cck_basic_rates;
|
|
u8 ofdm_ht_single_stream_basic_rates;
|
|
u8 ofdm_ht_dual_stream_basic_rates;
|
|
__le16 rx_chain_select_flags;
|
|
__le16 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
|
|
*/
|
|
struct iwl4965_rxon_time_cmd {
|
|
union tsf timestamp;
|
|
__le16 beacon_interval;
|
|
__le16 atim_window;
|
|
__le32 beacon_init_val;
|
|
__le16 listen_interval;
|
|
__le16 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
|
|
*/
|
|
struct iwl4965_channel_switch_cmd {
|
|
u8 band;
|
|
u8 expect_beacon;
|
|
__le16 channel;
|
|
__le32 rxon_flags;
|
|
__le32 rxon_filter_flags;
|
|
__le32 switch_time;
|
|
struct iwl4965_tx_power_db tx_power;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_csa_notification {
|
|
__le16 band;
|
|
__le16 channel;
|
|
__le32 status; /* 0 - OK, 1 - fail */
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (2)
|
|
* Quality-of-Service (QOS) Commands & Responses:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
|
|
* One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
|
|
*
|
|
* @cw_min: Contention window, start value in numbers of slots.
|
|
* Should be a power-of-2, minus 1. Device's default is 0x0f.
|
|
* @cw_max: Contention window, max value in numbers of slots.
|
|
* Should be a power-of-2, minus 1. Device's default is 0x3f.
|
|
* @aifsn: Number of slots in Arbitration Interframe Space (before
|
|
* performing random backoff timing prior to Tx). Device default 1.
|
|
* @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
|
|
*
|
|
* Device will automatically increase contention window by (2*CW) + 1 for each
|
|
* transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
|
|
* value, to cap the CW value.
|
|
*/
|
|
struct iwl4965_ac_qos {
|
|
__le16 cw_min;
|
|
__le16 cw_max;
|
|
u8 aifsn;
|
|
u8 reserved1;
|
|
__le16 edca_txop;
|
|
} __attribute__ ((packed));
|
|
|
|
/* QoS flags defines */
|
|
#define QOS_PARAM_FLG_UPDATE_EDCA_MSK __constant_cpu_to_le32(0x01)
|
|
#define QOS_PARAM_FLG_TGN_MSK __constant_cpu_to_le32(0x02)
|
|
#define QOS_PARAM_FLG_TXOP_TYPE_MSK __constant_cpu_to_le32(0x10)
|
|
|
|
/* Number of Access Categories (AC) (EDCA), queues 0..3 */
|
|
#define AC_NUM 4
|
|
|
|
/*
|
|
* REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
|
|
*
|
|
* This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
|
|
* 0: Background, 1: Best Effort, 2: Video, 3: Voice.
|
|
*/
|
|
struct iwl4965_qosparam_cmd {
|
|
__le32 qos_flags;
|
|
struct iwl4965_ac_qos ac[AC_NUM];
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (3)
|
|
* Add/Modify Stations Commands & Responses:
|
|
*
|
|
*****************************************************************************/
|
|
/*
|
|
* Multi station support
|
|
*/
|
|
|
|
/* Special, dedicated locations within device's station table */
|
|
#define IWL_AP_ID 0
|
|
#define IWL_MULTICAST_ID 1
|
|
#define IWL_STA_ID 2
|
|
#define IWL4965_BROADCAST_ID 31
|
|
#define IWL4965_STATION_COUNT 32
|
|
|
|
#define IWL_STATION_COUNT 32 /* MAX(3945,4965)*/
|
|
#define IWL_INVALID_STATION 255
|
|
|
|
#define STA_FLG_PWR_SAVE_MSK __constant_cpu_to_le32(1 << 8);
|
|
#define STA_FLG_RTS_MIMO_PROT_MSK __constant_cpu_to_le32(1 << 17)
|
|
#define STA_FLG_AGG_MPDU_8US_MSK __constant_cpu_to_le32(1 << 18)
|
|
#define STA_FLG_MAX_AGG_SIZE_POS (19)
|
|
#define STA_FLG_MAX_AGG_SIZE_MSK __constant_cpu_to_le32(3 << 19)
|
|
#define STA_FLG_FAT_EN_MSK __constant_cpu_to_le32(1 << 21)
|
|
#define STA_FLG_MIMO_DIS_MSK __constant_cpu_to_le32(1 << 22)
|
|
#define STA_FLG_AGG_MPDU_DENSITY_POS (23)
|
|
#define STA_FLG_AGG_MPDU_DENSITY_MSK __constant_cpu_to_le32(7 << 23)
|
|
|
|
/* Use in mode field. 1: modify existing entry, 0: add new station entry */
|
|
#define STA_CONTROL_MODIFY_MSK 0x01
|
|
|
|
/* key flags __le16*/
|
|
#define STA_KEY_FLG_ENCRYPT_MSK __constant_cpu_to_le16(0x0007)
|
|
#define STA_KEY_FLG_NO_ENC __constant_cpu_to_le16(0x0000)
|
|
#define STA_KEY_FLG_WEP __constant_cpu_to_le16(0x0001)
|
|
#define STA_KEY_FLG_CCMP __constant_cpu_to_le16(0x0002)
|
|
#define STA_KEY_FLG_TKIP __constant_cpu_to_le16(0x0003)
|
|
|
|
#define STA_KEY_FLG_KEYID_POS 8
|
|
#define STA_KEY_FLG_INVALID __constant_cpu_to_le16(0x0800)
|
|
/* wep key is either from global key (0) or from station info array (1) */
|
|
#define STA_KEY_FLG_MAP_KEY_MSK __constant_cpu_to_le16(0x0008)
|
|
|
|
/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
|
|
#define STA_KEY_FLG_KEY_SIZE_MSK __constant_cpu_to_le16(0x1000)
|
|
#define STA_KEY_MULTICAST_MSK __constant_cpu_to_le16(0x4000)
|
|
|
|
/* Flags indicate whether to modify vs. don't change various station params */
|
|
#define STA_MODIFY_KEY_MASK 0x01
|
|
#define STA_MODIFY_TID_DISABLE_TX 0x02
|
|
#define STA_MODIFY_TX_RATE_MSK 0x04
|
|
#define STA_MODIFY_ADDBA_TID_MSK 0x08
|
|
#define STA_MODIFY_DELBA_TID_MSK 0x10
|
|
|
|
/* Receiver address (actually, Rx station's index into station table),
|
|
* combined with Traffic ID (QOS priority), in format used by Tx Scheduler */
|
|
#define BUILD_RAxTID(sta_id, tid) (((sta_id) << 4) + (tid))
|
|
|
|
struct iwl4965_keyinfo {
|
|
__le16 key_flags;
|
|
u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
|
|
u8 reserved1;
|
|
__le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
|
|
u8 key_offset;
|
|
u8 reserved2;
|
|
u8 key[16]; /* 16-byte unicast decryption key */
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* struct sta_id_modify
|
|
* @addr[ETH_ALEN]: station's MAC address
|
|
* @sta_id: index of station in uCode's station table
|
|
* @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
|
|
*
|
|
* Driver selects unused table index when adding new station,
|
|
* or the index to a pre-existing station entry when modifying that station.
|
|
* Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
|
|
*
|
|
* modify_mask flags select which parameters to modify vs. leave alone.
|
|
*/
|
|
struct sta_id_modify {
|
|
u8 addr[ETH_ALEN];
|
|
__le16 reserved1;
|
|
u8 sta_id;
|
|
u8 modify_mask;
|
|
__le16 reserved2;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_ADD_STA = 0x18 (command)
|
|
*
|
|
* The device contains an internal table of per-station information,
|
|
* with info on security keys, aggregation parameters, and Tx rates for
|
|
* initial Tx attempt and any retries (4965 uses REPLY_TX_LINK_QUALITY_CMD,
|
|
* 3945 uses REPLY_RATE_SCALE to set up rate tables).
|
|
*
|
|
* REPLY_ADD_STA sets up the table entry for one station, either creating
|
|
* a new entry, or modifying a pre-existing one.
|
|
*
|
|
* NOTE: RXON command (without "associated" bit set) wipes the station table
|
|
* clean. Moving into RF_KILL state does this also. Driver must set up
|
|
* new station table before transmitting anything on the RXON channel
|
|
* (except active scans or active measurements; those commands carry
|
|
* their own txpower/rate setup data).
|
|
*
|
|
* When getting started on a new channel, driver must set up the
|
|
* IWL_BROADCAST_ID entry (last entry in the table). For a client
|
|
* station in a BSS, once an AP is selected, driver sets up the AP STA
|
|
* in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
|
|
* are all that are needed for a BSS client station. If the device is
|
|
* used as AP, or in an IBSS network, driver must set up station table
|
|
* entries for all STAs in network, starting with index IWL_STA_ID.
|
|
*/
|
|
struct iwl4965_addsta_cmd {
|
|
u8 mode; /* 1: modify existing, 0: add new station */
|
|
u8 reserved[3];
|
|
struct sta_id_modify sta;
|
|
struct iwl4965_keyinfo key;
|
|
__le32 station_flags; /* STA_FLG_* */
|
|
__le32 station_flags_msk; /* STA_FLG_* */
|
|
|
|
/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
|
|
* corresponding to bit (e.g. bit 5 controls TID 5).
|
|
* Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
|
|
__le16 tid_disable_tx;
|
|
|
|
__le16 reserved1;
|
|
|
|
/* TID for which to add block-ack support.
|
|
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
|
|
u8 add_immediate_ba_tid;
|
|
|
|
/* TID for which to remove block-ack support.
|
|
* Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
|
|
u8 remove_immediate_ba_tid;
|
|
|
|
/* Starting Sequence Number for added block-ack support.
|
|
* Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
|
|
__le16 add_immediate_ba_ssn;
|
|
|
|
__le32 reserved2;
|
|
} __attribute__ ((packed));
|
|
|
|
#define ADD_STA_SUCCESS_MSK 0x1
|
|
#define ADD_STA_NO_ROOM_IN_TABLE 0x2
|
|
#define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
|
|
#define ADD_STA_MODIFY_NON_EXIST_STA 0x8
|
|
/*
|
|
* REPLY_ADD_STA = 0x18 (response)
|
|
*/
|
|
struct iwl4965_add_sta_resp {
|
|
u8 status; /* ADD_STA_* */
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/******************************************************************************
|
|
* (4)
|
|
* Rx Responses:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
struct iwl4965_rx_frame_stats {
|
|
u8 phy_count;
|
|
u8 id;
|
|
u8 rssi;
|
|
u8 agc;
|
|
__le16 sig_avg;
|
|
__le16 noise_diff;
|
|
u8 payload[0];
|
|
} __attribute__ ((packed));
|
|
|
|
struct iwl4965_rx_frame_hdr {
|
|
__le16 channel;
|
|
__le16 phy_flags;
|
|
u8 reserved1;
|
|
u8 rate;
|
|
__le16 len;
|
|
u8 payload[0];
|
|
} __attribute__ ((packed));
|
|
|
|
#define RX_RES_STATUS_NO_CRC32_ERROR __constant_cpu_to_le32(1 << 0)
|
|
#define RX_RES_STATUS_NO_RXE_OVERFLOW __constant_cpu_to_le32(1 << 1)
|
|
|
|
#define RX_RES_PHY_FLAGS_BAND_24_MSK __constant_cpu_to_le16(1 << 0)
|
|
#define RX_RES_PHY_FLAGS_MOD_CCK_MSK __constant_cpu_to_le16(1 << 1)
|
|
#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK __constant_cpu_to_le16(1 << 2)
|
|
#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK __constant_cpu_to_le16(1 << 3)
|
|
#define RX_RES_PHY_FLAGS_ANTENNA_MSK __constant_cpu_to_le16(0xf0)
|
|
|
|
#define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
|
|
#define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
|
|
#define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
|
|
#define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
|
|
#define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
|
|
|
|
#define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
|
|
#define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
|
|
#define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
|
|
#define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
|
|
#define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
|
|
|
|
struct iwl4965_rx_frame_end {
|
|
__le32 status;
|
|
__le64 timestamp;
|
|
__le32 beacon_timestamp;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_3945_RX = 0x1b (response only, not a command)
|
|
*
|
|
* NOTE: DO NOT dereference from casts to this structure
|
|
* It is provided only for calculating minimum data set size.
|
|
* The actual offsets of the hdr and end are dynamic based on
|
|
* stats.phy_count
|
|
*/
|
|
struct iwl4965_rx_frame {
|
|
struct iwl4965_rx_frame_stats stats;
|
|
struct iwl4965_rx_frame_hdr hdr;
|
|
struct iwl4965_rx_frame_end end;
|
|
} __attribute__ ((packed));
|
|
|
|
/* Fixed (non-configurable) rx data from phy */
|
|
#define RX_PHY_FLAGS_ANTENNAE_OFFSET (4)
|
|
#define RX_PHY_FLAGS_ANTENNAE_MASK (0x70)
|
|
#define IWL_AGC_DB_MASK (0x3f80) /* MASK(7,13) */
|
|
#define IWL_AGC_DB_POS (7)
|
|
struct iwl4965_rx_non_cfg_phy {
|
|
__le16 ant_selection; /* ant A bit 4, ant B bit 5, ant C bit 6 */
|
|
__le16 agc_info; /* agc code 0:6, agc dB 7:13, reserved 14:15 */
|
|
u8 rssi_info[6]; /* we use even entries, 0/2/4 for A/B/C rssi */
|
|
u8 pad[0];
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_4965_RX = 0xc3 (response only, not a command)
|
|
* Used only for legacy (non 11n) frames.
|
|
*/
|
|
#define RX_RES_PHY_CNT 14
|
|
struct iwl4965_rx_phy_res {
|
|
u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
|
|
u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
|
|
u8 stat_id; /* configurable DSP phy data set ID */
|
|
u8 reserved1;
|
|
__le64 timestamp; /* TSF at on air rise */
|
|
__le32 beacon_time_stamp; /* beacon at on-air rise */
|
|
__le16 phy_flags; /* general phy flags: band, modulation, ... */
|
|
__le16 channel; /* channel number */
|
|
__le16 non_cfg_phy[RX_RES_PHY_CNT]; /* upto 14 phy entries */
|
|
__le32 reserved2;
|
|
__le32 rate_n_flags; /* RATE_MCS_* */
|
|
__le16 byte_count; /* frame's byte-count */
|
|
__le16 reserved3;
|
|
} __attribute__ ((packed));
|
|
|
|
struct iwl4965_rx_mpdu_res_start {
|
|
__le16 byte_count;
|
|
__le16 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/******************************************************************************
|
|
* (5)
|
|
* Tx Commands & Responses:
|
|
*
|
|
* Driver must place each REPLY_TX command into one of the prioritized Tx
|
|
* queues in host DRAM, shared between driver and device (see comments for
|
|
* SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
|
|
* are preparing to transmit, the device pulls the Tx command over the PCI
|
|
* bus via one of the device's Tx DMA channels, to fill an internal FIFO
|
|
* from which data will be transmitted.
|
|
*
|
|
* uCode handles all timing and protocol related to control frames
|
|
* (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
|
|
* handle reception of block-acks; uCode updates the host driver via
|
|
* REPLY_COMPRESSED_BA (4965).
|
|
*
|
|
* uCode handles retrying Tx when an ACK is expected but not received.
|
|
* This includes trying lower data rates than the one requested in the Tx
|
|
* command, as set up by the REPLY_RATE_SCALE (for 3945) or
|
|
* REPLY_TX_LINK_QUALITY_CMD (4965).
|
|
*
|
|
* Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
|
|
* This command must be executed after every RXON command, before Tx can occur.
|
|
*****************************************************************************/
|
|
|
|
/* REPLY_TX Tx flags field */
|
|
|
|
/* 1: Use Request-To-Send protocol before this frame.
|
|
* Mutually exclusive vs. TX_CMD_FLG_CTS_MSK. */
|
|
#define TX_CMD_FLG_RTS_MSK __constant_cpu_to_le32(1 << 1)
|
|
|
|
/* 1: Transmit Clear-To-Send to self before this frame.
|
|
* Driver should set this for AUTH/DEAUTH/ASSOC-REQ/REASSOC mgmnt frames.
|
|
* Mutually exclusive vs. TX_CMD_FLG_RTS_MSK. */
|
|
#define TX_CMD_FLG_CTS_MSK __constant_cpu_to_le32(1 << 2)
|
|
|
|
/* 1: Expect ACK from receiving station
|
|
* 0: Don't expect ACK (MAC header's duration field s/b 0)
|
|
* Set this for unicast frames, but not broadcast/multicast. */
|
|
#define TX_CMD_FLG_ACK_MSK __constant_cpu_to_le32(1 << 3)
|
|
|
|
/* For 4965:
|
|
* 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
|
|
* Tx command's initial_rate_index indicates first rate to try;
|
|
* uCode walks through table for additional Tx attempts.
|
|
* 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
|
|
* This rate will be used for all Tx attempts; it will not be scaled. */
|
|
#define TX_CMD_FLG_STA_RATE_MSK __constant_cpu_to_le32(1 << 4)
|
|
|
|
/* 1: Expect immediate block-ack.
|
|
* Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
|
|
#define TX_CMD_FLG_IMM_BA_RSP_MASK __constant_cpu_to_le32(1 << 6)
|
|
|
|
/* 1: Frame requires full Tx-Op protection.
|
|
* Set this if either RTS or CTS Tx Flag gets set. */
|
|
#define TX_CMD_FLG_FULL_TXOP_PROT_MSK __constant_cpu_to_le32(1 << 7)
|
|
|
|
/* Tx antenna selection field; used only for 3945, reserved (0) for 4965.
|
|
* Set field to "0" to allow 3945 uCode to select antenna (normal usage). */
|
|
#define TX_CMD_FLG_ANT_SEL_MSK __constant_cpu_to_le32(0xf00)
|
|
#define TX_CMD_FLG_ANT_A_MSK __constant_cpu_to_le32(1 << 8)
|
|
#define TX_CMD_FLG_ANT_B_MSK __constant_cpu_to_le32(1 << 9)
|
|
|
|
/* 1: Ignore Bluetooth priority for this frame.
|
|
* 0: Delay Tx until Bluetooth device is done (normal usage). */
|
|
#define TX_CMD_FLG_BT_DIS_MSK __constant_cpu_to_le32(1 << 12)
|
|
|
|
/* 1: uCode overrides sequence control field in MAC header.
|
|
* 0: Driver provides sequence control field in MAC header.
|
|
* Set this for management frames, non-QOS data frames, non-unicast frames,
|
|
* and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
|
|
#define TX_CMD_FLG_SEQ_CTL_MSK __constant_cpu_to_le32(1 << 13)
|
|
|
|
/* 1: This frame is non-last MPDU; more fragments are coming.
|
|
* 0: Last fragment, or not using fragmentation. */
|
|
#define TX_CMD_FLG_MORE_FRAG_MSK __constant_cpu_to_le32(1 << 14)
|
|
|
|
/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
|
|
* 0: No TSF required in outgoing frame.
|
|
* Set this for transmitting beacons and probe responses. */
|
|
#define TX_CMD_FLG_TSF_MSK __constant_cpu_to_le32(1 << 16)
|
|
|
|
/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
|
|
* alignment of frame's payload data field.
|
|
* 0: No pad
|
|
* Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
|
|
* field (but not both). Driver must align frame data (i.e. data following
|
|
* MAC header) to DWORD boundary. */
|
|
#define TX_CMD_FLG_MH_PAD_MSK __constant_cpu_to_le32(1 << 20)
|
|
|
|
/* HCCA-AP - disable duration overwriting. */
|
|
#define TX_CMD_FLG_DUR_MSK __constant_cpu_to_le32(1 << 25)
|
|
|
|
|
|
/*
|
|
* TX command security control
|
|
*/
|
|
#define TX_CMD_SEC_WEP 0x01
|
|
#define TX_CMD_SEC_CCM 0x02
|
|
#define TX_CMD_SEC_TKIP 0x03
|
|
#define TX_CMD_SEC_MSK 0x03
|
|
#define TX_CMD_SEC_SHIFT 6
|
|
#define TX_CMD_SEC_KEY128 0x08
|
|
|
|
/*
|
|
* 4965 uCode updates these Tx attempt count values in host DRAM.
|
|
* Used for managing Tx retries when expecting block-acks.
|
|
* Driver should set these fields to 0.
|
|
*/
|
|
struct iwl4965_dram_scratch {
|
|
u8 try_cnt; /* Tx attempts */
|
|
u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
|
|
__le16 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_TX = 0x1c (command)
|
|
*/
|
|
struct iwl4965_tx_cmd {
|
|
/*
|
|
* MPDU byte count:
|
|
* MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
|
|
* + 8 byte IV for CCM or TKIP (not used for WEP)
|
|
* + Data payload
|
|
* + 8-byte MIC (not used for CCM/WEP)
|
|
* NOTE: Does not include Tx command bytes, post-MAC pad bytes,
|
|
* MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
|
|
* Range: 14-2342 bytes.
|
|
*/
|
|
__le16 len;
|
|
|
|
/*
|
|
* MPDU or MSDU byte count for next frame.
|
|
* Used for fragmentation and bursting, but not 11n aggregation.
|
|
* Same as "len", but for next frame. Set to 0 if not applicable.
|
|
*/
|
|
__le16 next_frame_len;
|
|
|
|
__le32 tx_flags; /* TX_CMD_FLG_* */
|
|
|
|
/* 4965's uCode may modify this field of the Tx command (in host DRAM!).
|
|
* Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
|
|
struct iwl4965_dram_scratch scratch;
|
|
|
|
/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
|
|
__le32 rate_n_flags; /* RATE_MCS_* */
|
|
|
|
/* Index of destination station in uCode's station table */
|
|
u8 sta_id;
|
|
|
|
/* Type of security encryption: CCM or TKIP */
|
|
u8 sec_ctl; /* TX_CMD_SEC_* */
|
|
|
|
/*
|
|
* Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
|
|
* Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
|
|
* data frames, this field may be used to selectively reduce initial
|
|
* rate (via non-0 value) for special frames (e.g. management), while
|
|
* still supporting rate scaling for all frames.
|
|
*/
|
|
u8 initial_rate_index;
|
|
u8 reserved;
|
|
u8 key[16];
|
|
__le16 next_frame_flags;
|
|
__le16 reserved2;
|
|
union {
|
|
__le32 life_time;
|
|
__le32 attempt;
|
|
} stop_time;
|
|
|
|
/* Host DRAM physical address pointer to "scratch" in this command.
|
|
* Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
|
|
__le32 dram_lsb_ptr;
|
|
u8 dram_msb_ptr;
|
|
|
|
u8 rts_retry_limit; /*byte 50 */
|
|
u8 data_retry_limit; /*byte 51 */
|
|
u8 tid_tspec;
|
|
union {
|
|
__le16 pm_frame_timeout;
|
|
__le16 attempt_duration;
|
|
} timeout;
|
|
|
|
/*
|
|
* Duration of EDCA burst Tx Opportunity, in 32-usec units.
|
|
* Set this if txop time is not specified by HCCA protocol (e.g. by AP).
|
|
*/
|
|
__le16 driver_txop;
|
|
|
|
/*
|
|
* MAC header goes here, followed by 2 bytes padding if MAC header
|
|
* length is 26 or 30 bytes, followed by payload data
|
|
*/
|
|
u8 payload[0];
|
|
struct ieee80211_hdr hdr[0];
|
|
} __attribute__ ((packed));
|
|
|
|
/* TX command response is sent after *all* transmission attempts.
|
|
*
|
|
* NOTES:
|
|
*
|
|
* TX_STATUS_FAIL_NEXT_FRAG
|
|
*
|
|
* If the fragment flag in the MAC header for the frame being transmitted
|
|
* is set and there is insufficient time to transmit the next frame, the
|
|
* TX status will be returned with 'TX_STATUS_FAIL_NEXT_FRAG'.
|
|
*
|
|
* TX_STATUS_FIFO_UNDERRUN
|
|
*
|
|
* Indicates the host did not provide bytes to the FIFO fast enough while
|
|
* a TX was in progress.
|
|
*
|
|
* TX_STATUS_FAIL_MGMNT_ABORT
|
|
*
|
|
* This status is only possible if the ABORT ON MGMT RX parameter was
|
|
* set to true with the TX command.
|
|
*
|
|
* If the MSB of the status parameter is set then an abort sequence is
|
|
* required. This sequence consists of the host activating the TX Abort
|
|
* control line, and then waiting for the TX Abort command response. This
|
|
* indicates that a the device is no longer in a transmit state, and that the
|
|
* command FIFO has been cleared. The host must then deactivate the TX Abort
|
|
* control line. Receiving is still allowed in this case.
|
|
*/
|
|
enum {
|
|
TX_STATUS_SUCCESS = 0x01,
|
|
TX_STATUS_DIRECT_DONE = 0x02,
|
|
TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
|
|
TX_STATUS_FAIL_LONG_LIMIT = 0x83,
|
|
TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
|
|
TX_STATUS_FAIL_MGMNT_ABORT = 0x85,
|
|
TX_STATUS_FAIL_NEXT_FRAG = 0x86,
|
|
TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
|
|
TX_STATUS_FAIL_DEST_PS = 0x88,
|
|
TX_STATUS_FAIL_ABORTED = 0x89,
|
|
TX_STATUS_FAIL_BT_RETRY = 0x8a,
|
|
TX_STATUS_FAIL_STA_INVALID = 0x8b,
|
|
TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
|
|
TX_STATUS_FAIL_TID_DISABLE = 0x8d,
|
|
TX_STATUS_FAIL_FRAME_FLUSHED = 0x8e,
|
|
TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
|
|
TX_STATUS_FAIL_TX_LOCKED = 0x90,
|
|
TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
|
|
};
|
|
|
|
#define TX_PACKET_MODE_REGULAR 0x0000
|
|
#define TX_PACKET_MODE_BURST_SEQ 0x0100
|
|
#define TX_PACKET_MODE_BURST_FIRST 0x0200
|
|
|
|
enum {
|
|
TX_POWER_PA_NOT_ACTIVE = 0x0,
|
|
};
|
|
|
|
enum {
|
|
TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
|
|
TX_STATUS_DELAY_MSK = 0x00000040,
|
|
TX_STATUS_ABORT_MSK = 0x00000080,
|
|
TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
|
|
TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
|
|
TX_RESERVED = 0x00780000, /* bits 19:22 */
|
|
TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
|
|
TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
|
|
};
|
|
|
|
/* *******************************
|
|
* TX aggregation status
|
|
******************************* */
|
|
|
|
enum {
|
|
AGG_TX_STATE_TRANSMITTED = 0x00,
|
|
AGG_TX_STATE_UNDERRUN_MSK = 0x01,
|
|
AGG_TX_STATE_BT_PRIO_MSK = 0x02,
|
|
AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
|
|
AGG_TX_STATE_ABORT_MSK = 0x08,
|
|
AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
|
|
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
|
|
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
|
|
AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
|
|
AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
|
|
AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
|
|
AGG_TX_STATE_DUMP_TX_MSK = 0x200,
|
|
AGG_TX_STATE_DELAY_TX_MSK = 0x400
|
|
};
|
|
|
|
#define AGG_TX_STATE_LAST_SENT_MSK \
|
|
(AGG_TX_STATE_LAST_SENT_TTL_MSK | \
|
|
AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
|
|
AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
|
|
|
|
/* # tx attempts for first frame in aggregation */
|
|
#define AGG_TX_STATE_TRY_CNT_POS 12
|
|
#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
|
|
|
|
/* Command ID and sequence number of Tx command for this frame */
|
|
#define AGG_TX_STATE_SEQ_NUM_POS 16
|
|
#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
|
|
|
|
/*
|
|
* REPLY_TX = 0x1c (response)
|
|
*
|
|
* This response may be in one of two slightly different formats, indicated
|
|
* by the frame_count field:
|
|
*
|
|
* 1) No aggregation (frame_count == 1). This reports Tx results for
|
|
* a single frame. Multiple attempts, at various bit rates, may have
|
|
* been made for this frame.
|
|
*
|
|
* 2) Aggregation (frame_count > 1). This reports Tx results for
|
|
* 2 or more frames that used block-acknowledge. All frames were
|
|
* transmitted at same rate. Rate scaling may have been used if first
|
|
* frame in this new agg block failed in previous agg block(s).
|
|
*
|
|
* Note that, for aggregation, ACK (block-ack) status is not delivered here;
|
|
* block-ack has not been received by the time the 4965 records this status.
|
|
* This status relates to reasons the tx might have been blocked or aborted
|
|
* within the sending station (this 4965), rather than whether it was
|
|
* received successfully by the destination station.
|
|
*/
|
|
struct iwl4965_tx_resp {
|
|
u8 frame_count; /* 1 no aggregation, >1 aggregation */
|
|
u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
|
|
u8 failure_rts; /* # failures due to unsuccessful RTS */
|
|
u8 failure_frame; /* # failures due to no ACK (unused for agg) */
|
|
|
|
/* For non-agg: Rate at which frame was successful.
|
|
* For agg: Rate at which all frames were transmitted. */
|
|
__le32 rate_n_flags; /* RATE_MCS_* */
|
|
|
|
/* For non-agg: RTS + CTS + frame tx attempts time + ACK.
|
|
* For agg: RTS + CTS + aggregation tx time + block-ack time. */
|
|
__le16 wireless_media_time; /* uSecs */
|
|
|
|
__le16 reserved;
|
|
__le32 pa_power1; /* RF power amplifier measurement (not used) */
|
|
__le32 pa_power2;
|
|
|
|
/*
|
|
* For non-agg: frame status TX_STATUS_*
|
|
* For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
|
|
* fields follow this one, up to frame_count.
|
|
* Bit fields:
|
|
* 11- 0: AGG_TX_STATE_* status code
|
|
* 15-12: Retry count for 1st frame in aggregation (retries
|
|
* occur if tx failed for this frame when it was a
|
|
* member of a previous aggregation block). If rate
|
|
* scaling is used, retry count indicates the rate
|
|
* table entry used for all frames in the new agg.
|
|
* 31-16: Sequence # for this frame's Tx cmd (not SSN!)
|
|
*/
|
|
__le32 status; /* TX status (for aggregation status of 1st frame) */
|
|
} __attribute__ ((packed));
|
|
|
|
struct agg_tx_status {
|
|
__le16 status;
|
|
__le16 sequence;
|
|
} __attribute__ ((packed));
|
|
|
|
struct iwl4965_tx_resp_agg {
|
|
u8 frame_count; /* 1 no aggregation, >1 aggregation */
|
|
u8 reserved1;
|
|
u8 failure_rts;
|
|
u8 failure_frame;
|
|
__le32 rate_n_flags;
|
|
__le16 wireless_media_time;
|
|
__le16 reserved3;
|
|
__le32 pa_power1;
|
|
__le32 pa_power2;
|
|
struct agg_tx_status status; /* TX status (for aggregation status */
|
|
/* of 1st frame) */
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
|
|
*
|
|
* Reports Block-Acknowledge from recipient station
|
|
*/
|
|
struct iwl4965_compressed_ba_resp {
|
|
__le32 sta_addr_lo32;
|
|
__le16 sta_addr_hi16;
|
|
__le16 reserved;
|
|
|
|
/* Index of recipient (BA-sending) station in uCode's station table */
|
|
u8 sta_id;
|
|
u8 tid;
|
|
__le16 seq_ctl;
|
|
__le64 bitmap;
|
|
__le16 scd_flow;
|
|
__le16 scd_ssn;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
|
|
*
|
|
* See details under "TXPOWER" in iwl-4965-hw.h.
|
|
*/
|
|
struct iwl4965_txpowertable_cmd {
|
|
u8 band; /* 0: 5 GHz, 1: 2.4 GHz */
|
|
u8 reserved;
|
|
__le16 channel;
|
|
struct iwl4965_tx_power_db tx_power;
|
|
} __attribute__ ((packed));
|
|
|
|
/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
|
|
#define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
|
|
|
|
/* # of EDCA prioritized tx fifos */
|
|
#define LINK_QUAL_AC_NUM AC_NUM
|
|
|
|
/* # entries in rate scale table to support Tx retries */
|
|
#define LINK_QUAL_MAX_RETRY_NUM 16
|
|
|
|
/* Tx antenna selection values */
|
|
#define LINK_QUAL_ANT_A_MSK (1 << 0)
|
|
#define LINK_QUAL_ANT_B_MSK (1 << 1)
|
|
#define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
|
|
|
|
|
|
/**
|
|
* struct iwl4965_link_qual_general_params
|
|
*
|
|
* Used in REPLY_TX_LINK_QUALITY_CMD
|
|
*/
|
|
struct iwl4965_link_qual_general_params {
|
|
u8 flags;
|
|
|
|
/* No entries at or above this (driver chosen) index contain MIMO */
|
|
u8 mimo_delimiter;
|
|
|
|
/* Best single antenna to use for single stream (legacy, SISO). */
|
|
u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
|
|
|
|
/* Best antennas to use for MIMO (unused for 4965, assumes both). */
|
|
u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
|
|
|
|
/*
|
|
* If driver needs to use different initial rates for different
|
|
* EDCA QOS access categories (as implemented by tx fifos 0-3),
|
|
* this table will set that up, by indicating the indexes in the
|
|
* rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
|
|
* Otherwise, driver should set all entries to 0.
|
|
*
|
|
* Entry usage:
|
|
* 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
|
|
* TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
|
|
*/
|
|
u8 start_rate_index[LINK_QUAL_AC_NUM];
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* struct iwl4965_link_qual_agg_params
|
|
*
|
|
* Used in REPLY_TX_LINK_QUALITY_CMD
|
|
*/
|
|
struct iwl4965_link_qual_agg_params {
|
|
|
|
/* Maximum number of uSec in aggregation.
|
|
* Driver should set this to 4000 (4 milliseconds). */
|
|
__le16 agg_time_limit;
|
|
|
|
/*
|
|
* Number of Tx retries allowed for a frame, before that frame will
|
|
* no longer be considered for the start of an aggregation sequence
|
|
* (scheduler will then try to tx it as single frame).
|
|
* Driver should set this to 3.
|
|
*/
|
|
u8 agg_dis_start_th;
|
|
|
|
/*
|
|
* Maximum number of frames in aggregation.
|
|
* 0 = no limit (default). 1 = no aggregation.
|
|
* Other values = max # frames in aggregation.
|
|
*/
|
|
u8 agg_frame_cnt_limit;
|
|
|
|
__le32 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
|
|
*
|
|
* For 4965 only; 3945 uses REPLY_RATE_SCALE.
|
|
*
|
|
* Each station in the 4965's internal station table has its own table of 16
|
|
* Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
|
|
* an ACK is not received. This command replaces the entire table for
|
|
* one station.
|
|
*
|
|
* NOTE: Station must already be in 4965's station table. Use REPLY_ADD_STA.
|
|
*
|
|
* The rate scaling procedures described below work well. Of course, other
|
|
* procedures are possible, and may work better for particular environments.
|
|
*
|
|
*
|
|
* FILLING THE RATE TABLE
|
|
*
|
|
* Given a particular initial rate and mode, as determined by the rate
|
|
* scaling algorithm described below, the Linux driver uses the following
|
|
* formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
|
|
* Link Quality command:
|
|
*
|
|
*
|
|
* 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
|
|
* a) Use this same initial rate for first 3 entries.
|
|
* b) Find next lower available rate using same mode (SISO or MIMO),
|
|
* use for next 3 entries. If no lower rate available, switch to
|
|
* legacy mode (no FAT channel, no MIMO, no short guard interval).
|
|
* c) If using MIMO, set command's mimo_delimiter to number of entries
|
|
* using MIMO (3 or 6).
|
|
* d) After trying 2 HT rates, switch to legacy mode (no FAT channel,
|
|
* no MIMO, no short guard interval), at the next lower bit rate
|
|
* (e.g. if second HT bit rate was 54, try 48 legacy), and follow
|
|
* legacy procedure for remaining table entries.
|
|
*
|
|
* 2) If using legacy initial rate:
|
|
* a) Use the initial rate for only one entry.
|
|
* b) For each following entry, reduce the rate to next lower available
|
|
* rate, until reaching the lowest available rate.
|
|
* c) When reducing rate, also switch antenna selection.
|
|
* d) Once lowest available rate is reached, repeat this rate until
|
|
* rate table is filled (16 entries), switching antenna each entry.
|
|
*
|
|
*
|
|
* ACCUMULATING HISTORY
|
|
*
|
|
* The rate scaling algorithm for 4965, as implemented in Linux driver, uses
|
|
* two sets of frame Tx success history: One for the current/active modulation
|
|
* mode, and one for a speculative/search mode that is being attempted. If the
|
|
* speculative mode turns out to be more effective (i.e. actual transfer
|
|
* rate is better), then the driver continues to use the speculative mode
|
|
* as the new current active mode.
|
|
*
|
|
* Each history set contains, separately for each possible rate, data for a
|
|
* sliding window of the 62 most recent tx attempts at that rate. The data
|
|
* includes a shifting bitmap of success(1)/failure(0), and sums of successful
|
|
* and attempted frames, from which the driver can additionally calculate a
|
|
* success ratio (success / attempted) and number of failures
|
|
* (attempted - success), and control the size of the window (attempted).
|
|
* The driver uses the bit map to remove successes from the success sum, as
|
|
* the oldest tx attempts fall out of the window.
|
|
*
|
|
* When the 4965 makes multiple tx attempts for a given frame, each attempt
|
|
* might be at a different rate, and have different modulation characteristics
|
|
* (e.g. antenna, fat channel, short guard interval), as set up in the rate
|
|
* scaling table in the Link Quality command. The driver must determine
|
|
* which rate table entry was used for each tx attempt, to determine which
|
|
* rate-specific history to update, and record only those attempts that
|
|
* match the modulation characteristics of the history set.
|
|
*
|
|
* When using block-ack (aggregation), all frames are transmitted at the same
|
|
* rate, since there is no per-attempt acknowledgement from the destination
|
|
* station. The Tx response struct iwl_tx_resp indicates the Tx rate in
|
|
* rate_n_flags field. After receiving a block-ack, the driver can update
|
|
* history for the entire block all at once.
|
|
*
|
|
*
|
|
* FINDING BEST STARTING RATE:
|
|
*
|
|
* When working with a selected initial modulation mode (see below), the
|
|
* driver attempts to find a best initial rate. The initial rate is the
|
|
* first entry in the Link Quality command's rate table.
|
|
*
|
|
* 1) Calculate actual throughput (success ratio * expected throughput, see
|
|
* table below) for current initial rate. Do this only if enough frames
|
|
* have been attempted to make the value meaningful: at least 6 failed
|
|
* tx attempts, or at least 8 successes. If not enough, don't try rate
|
|
* scaling yet.
|
|
*
|
|
* 2) Find available rates adjacent to current initial rate. Available means:
|
|
* a) supported by hardware &&
|
|
* b) supported by association &&
|
|
* c) within any constraints selected by user
|
|
*
|
|
* 3) Gather measured throughputs for adjacent rates. These might not have
|
|
* enough history to calculate a throughput. That's okay, we might try
|
|
* using one of them anyway!
|
|
*
|
|
* 4) Try decreasing rate if, for current rate:
|
|
* a) success ratio is < 15% ||
|
|
* b) lower adjacent rate has better measured throughput ||
|
|
* c) higher adjacent rate has worse throughput, and lower is unmeasured
|
|
*
|
|
* As a sanity check, if decrease was determined above, leave rate
|
|
* unchanged if:
|
|
* a) lower rate unavailable
|
|
* b) success ratio at current rate > 85% (very good)
|
|
* c) current measured throughput is better than expected throughput
|
|
* of lower rate (under perfect 100% tx conditions, see table below)
|
|
*
|
|
* 5) Try increasing rate if, for current rate:
|
|
* a) success ratio is < 15% ||
|
|
* b) both adjacent rates' throughputs are unmeasured (try it!) ||
|
|
* b) higher adjacent rate has better measured throughput ||
|
|
* c) lower adjacent rate has worse throughput, and higher is unmeasured
|
|
*
|
|
* As a sanity check, if increase was determined above, leave rate
|
|
* unchanged if:
|
|
* a) success ratio at current rate < 70%. This is not particularly
|
|
* good performance; higher rate is sure to have poorer success.
|
|
*
|
|
* 6) Re-evaluate the rate after each tx frame. If working with block-
|
|
* acknowledge, history and statistics may be calculated for the entire
|
|
* block (including prior history that fits within the history windows),
|
|
* before re-evaluation.
|
|
*
|
|
* FINDING BEST STARTING MODULATION MODE:
|
|
*
|
|
* After working with a modulation mode for a "while" (and doing rate scaling),
|
|
* the driver searches for a new initial mode in an attempt to improve
|
|
* throughput. The "while" is measured by numbers of attempted frames:
|
|
*
|
|
* For legacy mode, search for new mode after:
|
|
* 480 successful frames, or 160 failed frames
|
|
* For high-throughput modes (SISO or MIMO), search for new mode after:
|
|
* 4500 successful frames, or 400 failed frames
|
|
*
|
|
* Mode switch possibilities are (3 for each mode):
|
|
*
|
|
* For legacy:
|
|
* Change antenna, try SISO (if HT association), try MIMO (if HT association)
|
|
* For SISO:
|
|
* Change antenna, try MIMO, try shortened guard interval (SGI)
|
|
* For MIMO:
|
|
* Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
|
|
*
|
|
* When trying a new mode, use the same bit rate as the old/current mode when
|
|
* trying antenna switches and shortened guard interval. When switching to
|
|
* SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
|
|
* for which the expected throughput (under perfect conditions) is about the
|
|
* same or slightly better than the actual measured throughput delivered by
|
|
* the old/current mode.
|
|
*
|
|
* Actual throughput can be estimated by multiplying the expected throughput
|
|
* by the success ratio (successful / attempted tx frames). Frame size is
|
|
* not considered in this calculation; it assumes that frame size will average
|
|
* out to be fairly consistent over several samples. The following are
|
|
* metric values for expected throughput assuming 100% success ratio.
|
|
* Only G band has support for CCK rates:
|
|
*
|
|
* RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
|
|
*
|
|
* G: 7 13 35 58 40 57 72 98 121 154 177 186 186
|
|
* A: 0 0 0 0 40 57 72 98 121 154 177 186 186
|
|
* SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
|
|
* SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
|
|
* MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
|
|
* SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
|
|
* SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
|
|
* SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
|
|
* MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
|
|
* SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
|
|
*
|
|
* After the new mode has been tried for a short while (minimum of 6 failed
|
|
* frames or 8 successful frames), compare success ratio and actual throughput
|
|
* estimate of the new mode with the old. If either is better with the new
|
|
* mode, continue to use the new mode.
|
|
*
|
|
* Continue comparing modes until all 3 possibilities have been tried.
|
|
* If moving from legacy to HT, try all 3 possibilities from the new HT
|
|
* mode. After trying all 3, a best mode is found. Continue to use this mode
|
|
* for the longer "while" described above (e.g. 480 successful frames for
|
|
* legacy), and then repeat the search process.
|
|
*
|
|
*/
|
|
struct iwl4965_link_quality_cmd {
|
|
|
|
/* Index of destination/recipient station in uCode's station table */
|
|
u8 sta_id;
|
|
u8 reserved1;
|
|
__le16 control; /* not used */
|
|
struct iwl4965_link_qual_general_params general_params;
|
|
struct iwl4965_link_qual_agg_params agg_params;
|
|
|
|
/*
|
|
* Rate info; when using rate-scaling, Tx command's initial_rate_index
|
|
* specifies 1st Tx rate attempted, via index into this table.
|
|
* 4965 works its way through table when retrying Tx.
|
|
*/
|
|
struct {
|
|
__le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
|
|
} rs_table[LINK_QUAL_MAX_RETRY_NUM];
|
|
__le32 reserved2;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
|
|
*
|
|
* 3945 and 4965 support hardware handshake with Bluetooth device on
|
|
* same platform. Bluetooth device alerts wireless device when it will Tx;
|
|
* wireless device can delay or kill its own Tx to accomodate.
|
|
*/
|
|
struct iwl4965_bt_cmd {
|
|
u8 flags;
|
|
u8 lead_time;
|
|
u8 max_kill;
|
|
u8 reserved;
|
|
__le32 kill_ack_mask;
|
|
__le32 kill_cts_mask;
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (6)
|
|
* Spectrum Management (802.11h) Commands, Responses, Notifications:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* Spectrum Management
|
|
*/
|
|
#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
|
|
RXON_FILTER_CTL2HOST_MSK | \
|
|
RXON_FILTER_ACCEPT_GRP_MSK | \
|
|
RXON_FILTER_DIS_DECRYPT_MSK | \
|
|
RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
|
|
RXON_FILTER_ASSOC_MSK | \
|
|
RXON_FILTER_BCON_AWARE_MSK)
|
|
|
|
struct iwl4965_measure_channel {
|
|
__le32 duration; /* measurement duration in extended beacon
|
|
* format */
|
|
u8 channel; /* channel to measure */
|
|
u8 type; /* see enum iwl4965_measure_type */
|
|
__le16 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
|
|
*/
|
|
struct iwl4965_spectrum_cmd {
|
|
__le16 len; /* number of bytes starting from token */
|
|
u8 token; /* token id */
|
|
u8 id; /* measurement id -- 0 or 1 */
|
|
u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
|
|
u8 periodic; /* 1 = periodic */
|
|
__le16 path_loss_timeout;
|
|
__le32 start_time; /* start time in extended beacon format */
|
|
__le32 reserved2;
|
|
__le32 flags; /* rxon flags */
|
|
__le32 filter_flags; /* rxon filter flags */
|
|
__le16 channel_count; /* minimum 1, maximum 10 */
|
|
__le16 reserved3;
|
|
struct iwl4965_measure_channel channels[10];
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
|
|
*/
|
|
struct iwl4965_spectrum_resp {
|
|
u8 token;
|
|
u8 id; /* id of the prior command replaced, or 0xff */
|
|
__le16 status; /* 0 - command will be handled
|
|
* 1 - cannot handle (conflicts with another
|
|
* measurement) */
|
|
} __attribute__ ((packed));
|
|
|
|
enum iwl4965_measurement_state {
|
|
IWL_MEASUREMENT_START = 0,
|
|
IWL_MEASUREMENT_STOP = 1,
|
|
};
|
|
|
|
enum iwl4965_measurement_status {
|
|
IWL_MEASUREMENT_OK = 0,
|
|
IWL_MEASUREMENT_CONCURRENT = 1,
|
|
IWL_MEASUREMENT_CSA_CONFLICT = 2,
|
|
IWL_MEASUREMENT_TGH_CONFLICT = 3,
|
|
/* 4-5 reserved */
|
|
IWL_MEASUREMENT_STOPPED = 6,
|
|
IWL_MEASUREMENT_TIMEOUT = 7,
|
|
IWL_MEASUREMENT_PERIODIC_FAILED = 8,
|
|
};
|
|
|
|
#define NUM_ELEMENTS_IN_HISTOGRAM 8
|
|
|
|
struct iwl4965_measurement_histogram {
|
|
__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
|
|
__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
|
|
} __attribute__ ((packed));
|
|
|
|
/* clear channel availability counters */
|
|
struct iwl4965_measurement_cca_counters {
|
|
__le32 ofdm;
|
|
__le32 cck;
|
|
} __attribute__ ((packed));
|
|
|
|
enum iwl4965_measure_type {
|
|
IWL_MEASURE_BASIC = (1 << 0),
|
|
IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
|
|
IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
|
|
IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
|
|
IWL_MEASURE_FRAME = (1 << 4),
|
|
/* bits 5:6 are reserved */
|
|
IWL_MEASURE_IDLE = (1 << 7),
|
|
};
|
|
|
|
/*
|
|
* SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_spectrum_notification {
|
|
u8 id; /* measurement id -- 0 or 1 */
|
|
u8 token;
|
|
u8 channel_index; /* index in measurement channel list */
|
|
u8 state; /* 0 - start, 1 - stop */
|
|
__le32 start_time; /* lower 32-bits of TSF */
|
|
u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
|
|
u8 channel;
|
|
u8 type; /* see enum iwl4965_measurement_type */
|
|
u8 reserved1;
|
|
/* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
|
|
* valid if applicable for measurement type requested. */
|
|
__le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
|
|
__le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
|
|
__le32 cca_time; /* channel load time in usecs */
|
|
u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
|
|
* unidentified */
|
|
u8 reserved2[3];
|
|
struct iwl4965_measurement_histogram histogram;
|
|
__le32 stop_time; /* lower 32-bits of TSF */
|
|
__le32 status; /* see iwl4965_measurement_status */
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (7)
|
|
* Power Management Commands, Responses, Notifications:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* struct iwl4965_powertable_cmd - Power Table Command
|
|
* @flags: See below:
|
|
*
|
|
* POWER_TABLE_CMD = 0x77 (command, has simple generic response)
|
|
*
|
|
* PM allow:
|
|
* bit 0 - '0' Driver not allow power management
|
|
* '1' Driver allow PM (use rest of parameters)
|
|
* uCode send sleep notifications:
|
|
* bit 1 - '0' Don't send sleep notification
|
|
* '1' send sleep notification (SEND_PM_NOTIFICATION)
|
|
* Sleep over DTIM
|
|
* bit 2 - '0' PM have to walk up every DTIM
|
|
* '1' PM could sleep over DTIM till listen Interval.
|
|
* PCI power managed
|
|
* bit 3 - '0' (PCI_LINK_CTRL & 0x1)
|
|
* '1' !(PCI_LINK_CTRL & 0x1)
|
|
* Force sleep Modes
|
|
* bit 31/30- '00' use both mac/xtal sleeps
|
|
* '01' force Mac sleep
|
|
* '10' force xtal sleep
|
|
* '11' Illegal set
|
|
*
|
|
* NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
|
|
* ucode assume sleep over DTIM is allowed and we don't need to wakeup
|
|
* for every DTIM.
|
|
*/
|
|
#define IWL_POWER_VEC_SIZE 5
|
|
|
|
#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK __constant_cpu_to_le16(1 << 0)
|
|
#define IWL_POWER_SLEEP_OVER_DTIM_MSK __constant_cpu_to_le16(1 << 2)
|
|
#define IWL_POWER_PCI_PM_MSK __constant_cpu_to_le16(1 << 3)
|
|
|
|
struct iwl4965_powertable_cmd {
|
|
__le16 flags;
|
|
u8 keep_alive_seconds;
|
|
u8 debug_flags;
|
|
__le32 rx_data_timeout;
|
|
__le32 tx_data_timeout;
|
|
__le32 sleep_interval[IWL_POWER_VEC_SIZE];
|
|
__le32 keep_alive_beacons;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
|
|
* 3945 and 4965 identical.
|
|
*/
|
|
struct iwl4965_sleep_notification {
|
|
u8 pm_sleep_mode;
|
|
u8 pm_wakeup_src;
|
|
__le16 reserved;
|
|
__le32 sleep_time;
|
|
__le32 tsf_low;
|
|
__le32 bcon_timer;
|
|
} __attribute__ ((packed));
|
|
|
|
/* Sleep states. 3945 and 4965 identical. */
|
|
enum {
|
|
IWL_PM_NO_SLEEP = 0,
|
|
IWL_PM_SLP_MAC = 1,
|
|
IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
|
|
IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
|
|
IWL_PM_SLP_PHY = 4,
|
|
IWL_PM_SLP_REPENT = 5,
|
|
IWL_PM_WAKEUP_BY_TIMER = 6,
|
|
IWL_PM_WAKEUP_BY_DRIVER = 7,
|
|
IWL_PM_WAKEUP_BY_RFKILL = 8,
|
|
/* 3 reserved */
|
|
IWL_PM_NUM_OF_MODES = 12,
|
|
};
|
|
|
|
/*
|
|
* REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
|
|
*/
|
|
#define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
|
|
#define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
|
|
#define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
|
|
struct iwl4965_card_state_cmd {
|
|
__le32 status; /* CARD_STATE_CMD_* request new power state */
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_card_state_notif {
|
|
__le32 flags;
|
|
} __attribute__ ((packed));
|
|
|
|
#define HW_CARD_DISABLED 0x01
|
|
#define SW_CARD_DISABLED 0x02
|
|
#define RF_CARD_DISABLED 0x04
|
|
#define RXON_CARD_DISABLED 0x10
|
|
|
|
struct iwl4965_ct_kill_config {
|
|
__le32 reserved;
|
|
__le32 critical_temperature_M;
|
|
__le32 critical_temperature_R;
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (8)
|
|
* Scan Commands, Responses, Notifications:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* struct iwl4965_scan_channel - entry in REPLY_SCAN_CMD channel table
|
|
*
|
|
* One for each channel in the scan list.
|
|
* Each channel can independently select:
|
|
* 1) SSID for directed active scans
|
|
* 2) Txpower setting (for rate specified within Tx command)
|
|
* 3) How long to stay on-channel (behavior may be modified by quiet_time,
|
|
* quiet_plcp_th, good_CRC_th)
|
|
*
|
|
* To avoid uCode errors, make sure the following are true (see comments
|
|
* under struct iwl4965_scan_cmd about max_out_time and quiet_time):
|
|
* 1) If using passive_dwell (i.e. passive_dwell != 0):
|
|
* active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
|
|
* 2) quiet_time <= active_dwell
|
|
* 3) If restricting off-channel time (i.e. max_out_time !=0):
|
|
* passive_dwell < max_out_time
|
|
* active_dwell < max_out_time
|
|
*/
|
|
struct iwl4965_scan_channel {
|
|
/*
|
|
* type is defined as:
|
|
* 0:0 1 = active, 0 = passive
|
|
* 1:4 SSID direct bit map; if a bit is set, then corresponding
|
|
* SSID IE is transmitted in probe request.
|
|
* 5:7 reserved
|
|
*/
|
|
u8 type;
|
|
u8 channel; /* band is selected by iwl4965_scan_cmd "flags" field */
|
|
struct iwl4965_tx_power tpc;
|
|
__le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
|
|
__le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
|
|
} __attribute__ ((packed));
|
|
|
|
/**
|
|
* struct iwl4965_ssid_ie - directed scan network information element
|
|
*
|
|
* Up to 4 of these may appear in REPLY_SCAN_CMD, selected by "type" field
|
|
* in struct iwl4965_scan_channel; each channel may select different ssids from
|
|
* among the 4 entries. SSID IEs get transmitted in reverse order of entry.
|
|
*/
|
|
struct iwl4965_ssid_ie {
|
|
u8 id;
|
|
u8 len;
|
|
u8 ssid[32];
|
|
} __attribute__ ((packed));
|
|
|
|
#define PROBE_OPTION_MAX 0x4
|
|
#define TX_CMD_LIFE_TIME_INFINITE __constant_cpu_to_le32(0xFFFFFFFF)
|
|
#define IWL_GOOD_CRC_TH __constant_cpu_to_le16(1)
|
|
#define IWL_MAX_SCAN_SIZE 1024
|
|
|
|
/*
|
|
* REPLY_SCAN_CMD = 0x80 (command)
|
|
*
|
|
* The hardware scan command is very powerful; the driver can set it up to
|
|
* maintain (relatively) normal network traffic while doing a scan in the
|
|
* background. The max_out_time and suspend_time control the ratio of how
|
|
* long the device stays on an associated network channel ("service channel")
|
|
* vs. how long it's away from the service channel, i.e. tuned to other channels
|
|
* for scanning.
|
|
*
|
|
* max_out_time is the max time off-channel (in usec), and suspend_time
|
|
* is how long (in "extended beacon" format) that the scan is "suspended"
|
|
* after returning to the service channel. That is, suspend_time is the
|
|
* time that we stay on the service channel, doing normal work, between
|
|
* scan segments. The driver may set these parameters differently to support
|
|
* scanning when associated vs. not associated, and light vs. heavy traffic
|
|
* loads when associated.
|
|
*
|
|
* After receiving this command, the device's scan engine does the following;
|
|
*
|
|
* 1) Sends SCAN_START notification to driver
|
|
* 2) Checks to see if it has time to do scan for one channel
|
|
* 3) Sends NULL packet, with power-save (PS) bit set to 1,
|
|
* to tell AP that we're going off-channel
|
|
* 4) Tunes to first channel in scan list, does active or passive scan
|
|
* 5) Sends SCAN_RESULT notification to driver
|
|
* 6) Checks to see if it has time to do scan on *next* channel in list
|
|
* 7) Repeats 4-6 until it no longer has time to scan the next channel
|
|
* before max_out_time expires
|
|
* 8) Returns to service channel
|
|
* 9) Sends NULL packet with PS=0 to tell AP that we're back
|
|
* 10) Stays on service channel until suspend_time expires
|
|
* 11) Repeats entire process 2-10 until list is complete
|
|
* 12) Sends SCAN_COMPLETE notification
|
|
*
|
|
* For fast, efficient scans, the scan command also has support for staying on
|
|
* a channel for just a short time, if doing active scanning and getting no
|
|
* responses to the transmitted probe request. This time is controlled by
|
|
* quiet_time, and the number of received packets below which a channel is
|
|
* considered "quiet" is controlled by quiet_plcp_threshold.
|
|
*
|
|
* For active scanning on channels that have regulatory restrictions against
|
|
* blindly transmitting, the scan can listen before transmitting, to make sure
|
|
* that there is already legitimate activity on the channel. If enough
|
|
* packets are cleanly received on the channel (controlled by good_CRC_th,
|
|
* typical value 1), the scan engine starts transmitting probe requests.
|
|
*
|
|
* Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
|
|
*
|
|
* To avoid uCode errors, see timing restrictions described under
|
|
* struct iwl4965_scan_channel.
|
|
*/
|
|
struct iwl4965_scan_cmd {
|
|
__le16 len;
|
|
u8 reserved0;
|
|
u8 channel_count; /* # channels in channel list */
|
|
__le16 quiet_time; /* dwell only this # millisecs on quiet channel
|
|
* (only for active scan) */
|
|
__le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
|
|
__le16 good_CRC_th; /* passive -> active promotion threshold */
|
|
__le16 rx_chain; /* RXON_RX_CHAIN_* */
|
|
__le32 max_out_time; /* max usec to be away from associated (service)
|
|
* channel */
|
|
__le32 suspend_time; /* pause scan this long (in "extended beacon
|
|
* format") when returning to service chnl:
|
|
* 3945; 31:24 # beacons, 19:0 additional usec,
|
|
* 4965; 31:22 # beacons, 21:0 additional usec.
|
|
*/
|
|
__le32 flags; /* RXON_FLG_* */
|
|
__le32 filter_flags; /* RXON_FILTER_* */
|
|
|
|
/* For active scans (set to all-0s for passive scans).
|
|
* Does not include payload. Must specify Tx rate; no rate scaling. */
|
|
struct iwl4965_tx_cmd tx_cmd;
|
|
|
|
/* For directed active scans (set to all-0s otherwise) */
|
|
struct iwl4965_ssid_ie direct_scan[PROBE_OPTION_MAX];
|
|
|
|
/*
|
|
* Probe request frame, followed by channel list.
|
|
*
|
|
* Size of probe request frame is specified by byte count in tx_cmd.
|
|
* Channel list follows immediately after probe request frame.
|
|
* Number of channels in list is specified by channel_count.
|
|
* Each channel in list is of type:
|
|
*
|
|
* struct iwl4965_scan_channel channels[0];
|
|
*
|
|
* NOTE: Only one band of channels can be scanned per pass. You
|
|
* must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
|
|
* for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
|
|
* before requesting another scan.
|
|
*/
|
|
u8 data[0];
|
|
} __attribute__ ((packed));
|
|
|
|
/* Can abort will notify by complete notification with abort status. */
|
|
#define CAN_ABORT_STATUS __constant_cpu_to_le32(0x1)
|
|
/* complete notification statuses */
|
|
#define ABORT_STATUS 0x2
|
|
|
|
/*
|
|
* REPLY_SCAN_CMD = 0x80 (response)
|
|
*/
|
|
struct iwl4965_scanreq_notification {
|
|
__le32 status; /* 1: okay, 2: cannot fulfill request */
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_scanstart_notification {
|
|
__le32 tsf_low;
|
|
__le32 tsf_high;
|
|
__le32 beacon_timer;
|
|
u8 channel;
|
|
u8 band;
|
|
u8 reserved[2];
|
|
__le32 status;
|
|
} __attribute__ ((packed));
|
|
|
|
#define SCAN_OWNER_STATUS 0x1;
|
|
#define MEASURE_OWNER_STATUS 0x2;
|
|
|
|
#define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
|
|
/*
|
|
* SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_scanresults_notification {
|
|
u8 channel;
|
|
u8 band;
|
|
u8 reserved[2];
|
|
__le32 tsf_low;
|
|
__le32 tsf_high;
|
|
__le32 statistics[NUMBER_OF_STATISTICS];
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_scancomplete_notification {
|
|
u8 scanned_channels;
|
|
u8 status;
|
|
u8 reserved;
|
|
u8 last_channel;
|
|
__le32 tsf_low;
|
|
__le32 tsf_high;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/******************************************************************************
|
|
* (9)
|
|
* IBSS/AP Commands and Notifications:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* BEACON_NOTIFICATION = 0x90 (notification only, not a command)
|
|
*/
|
|
struct iwl4965_beacon_notif {
|
|
struct iwl4965_tx_resp beacon_notify_hdr;
|
|
__le32 low_tsf;
|
|
__le32 high_tsf;
|
|
__le32 ibss_mgr_status;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_TX_BEACON = 0x91 (command, has simple generic response)
|
|
*/
|
|
struct iwl4965_tx_beacon_cmd {
|
|
struct iwl4965_tx_cmd tx;
|
|
__le16 tim_idx;
|
|
u8 tim_size;
|
|
u8 reserved1;
|
|
struct ieee80211_hdr frame[0]; /* beacon frame */
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (10)
|
|
* Statistics Commands and Notifications:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
#define IWL_TEMP_CONVERT 260
|
|
|
|
#define SUP_RATE_11A_MAX_NUM_CHANNELS 8
|
|
#define SUP_RATE_11B_MAX_NUM_CHANNELS 4
|
|
#define SUP_RATE_11G_MAX_NUM_CHANNELS 12
|
|
|
|
/* Used for passing to driver number of successes and failures per rate */
|
|
struct rate_histogram {
|
|
union {
|
|
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
|
|
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
|
|
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
|
|
} success;
|
|
union {
|
|
__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
|
|
__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
|
|
__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
|
|
} failed;
|
|
} __attribute__ ((packed));
|
|
|
|
/* statistics command response */
|
|
|
|
struct statistics_rx_phy {
|
|
__le32 ina_cnt;
|
|
__le32 fina_cnt;
|
|
__le32 plcp_err;
|
|
__le32 crc32_err;
|
|
__le32 overrun_err;
|
|
__le32 early_overrun_err;
|
|
__le32 crc32_good;
|
|
__le32 false_alarm_cnt;
|
|
__le32 fina_sync_err_cnt;
|
|
__le32 sfd_timeout;
|
|
__le32 fina_timeout;
|
|
__le32 unresponded_rts;
|
|
__le32 rxe_frame_limit_overrun;
|
|
__le32 sent_ack_cnt;
|
|
__le32 sent_cts_cnt;
|
|
__le32 sent_ba_rsp_cnt;
|
|
__le32 dsp_self_kill;
|
|
__le32 mh_format_err;
|
|
__le32 re_acq_main_rssi_sum;
|
|
__le32 reserved3;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_rx_ht_phy {
|
|
__le32 plcp_err;
|
|
__le32 overrun_err;
|
|
__le32 early_overrun_err;
|
|
__le32 crc32_good;
|
|
__le32 crc32_err;
|
|
__le32 mh_format_err;
|
|
__le32 agg_crc32_good;
|
|
__le32 agg_mpdu_cnt;
|
|
__le32 agg_cnt;
|
|
__le32 reserved2;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_rx_non_phy {
|
|
__le32 bogus_cts; /* CTS received when not expecting CTS */
|
|
__le32 bogus_ack; /* ACK received when not expecting ACK */
|
|
__le32 non_bssid_frames; /* number of frames with BSSID that
|
|
* doesn't belong to the STA BSSID */
|
|
__le32 filtered_frames; /* count frames that were dumped in the
|
|
* filtering process */
|
|
__le32 non_channel_beacons; /* beacons with our bss id but not on
|
|
* our serving channel */
|
|
__le32 channel_beacons; /* beacons with our bss id and in our
|
|
* serving channel */
|
|
__le32 num_missed_bcon; /* number of missed beacons */
|
|
__le32 adc_rx_saturation_time; /* count in 0.8us units the time the
|
|
* ADC was in saturation */
|
|
__le32 ina_detection_search_time;/* total time (in 0.8us) searched
|
|
* for INA */
|
|
__le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
|
|
__le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
|
|
__le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
|
|
__le32 interference_data_flag; /* flag for interference data
|
|
* availability. 1 when data is
|
|
* available. */
|
|
__le32 channel_load; /* counts RX Enable time in uSec */
|
|
__le32 dsp_false_alarms; /* DSP false alarm (both OFDM
|
|
* and CCK) counter */
|
|
__le32 beacon_rssi_a;
|
|
__le32 beacon_rssi_b;
|
|
__le32 beacon_rssi_c;
|
|
__le32 beacon_energy_a;
|
|
__le32 beacon_energy_b;
|
|
__le32 beacon_energy_c;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_rx {
|
|
struct statistics_rx_phy ofdm;
|
|
struct statistics_rx_phy cck;
|
|
struct statistics_rx_non_phy general;
|
|
struct statistics_rx_ht_phy ofdm_ht;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_tx_non_phy_agg {
|
|
__le32 ba_timeout;
|
|
__le32 ba_reschedule_frames;
|
|
__le32 scd_query_agg_frame_cnt;
|
|
__le32 scd_query_no_agg;
|
|
__le32 scd_query_agg;
|
|
__le32 scd_query_mismatch;
|
|
__le32 frame_not_ready;
|
|
__le32 underrun;
|
|
__le32 bt_prio_kill;
|
|
__le32 rx_ba_rsp_cnt;
|
|
__le32 reserved2;
|
|
__le32 reserved3;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_tx {
|
|
__le32 preamble_cnt;
|
|
__le32 rx_detected_cnt;
|
|
__le32 bt_prio_defer_cnt;
|
|
__le32 bt_prio_kill_cnt;
|
|
__le32 few_bytes_cnt;
|
|
__le32 cts_timeout;
|
|
__le32 ack_timeout;
|
|
__le32 expected_ack_cnt;
|
|
__le32 actual_ack_cnt;
|
|
__le32 dump_msdu_cnt;
|
|
__le32 burst_abort_next_frame_mismatch_cnt;
|
|
__le32 burst_abort_missing_next_frame_cnt;
|
|
__le32 cts_timeout_collision;
|
|
__le32 ack_or_ba_timeout_collision;
|
|
struct statistics_tx_non_phy_agg agg;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_dbg {
|
|
__le32 burst_check;
|
|
__le32 burst_count;
|
|
__le32 reserved[4];
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_div {
|
|
__le32 tx_on_a;
|
|
__le32 tx_on_b;
|
|
__le32 exec_time;
|
|
__le32 probe_time;
|
|
__le32 reserved1;
|
|
__le32 reserved2;
|
|
} __attribute__ ((packed));
|
|
|
|
struct statistics_general {
|
|
__le32 temperature;
|
|
__le32 temperature_m;
|
|
struct statistics_dbg dbg;
|
|
__le32 sleep_time;
|
|
__le32 slots_out;
|
|
__le32 slots_idle;
|
|
__le32 ttl_timestamp;
|
|
struct statistics_div div;
|
|
__le32 rx_enable_counter;
|
|
__le32 reserved1;
|
|
__le32 reserved2;
|
|
__le32 reserved3;
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* REPLY_STATISTICS_CMD = 0x9c,
|
|
* 3945 and 4965 identical.
|
|
*
|
|
* This command triggers an immediate response containing uCode statistics.
|
|
* The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
|
|
*
|
|
* If the CLEAR_STATS configuration flag is set, uCode will clear its
|
|
* internal copy of the statistics (counters) after issuing the response.
|
|
* This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
|
|
*
|
|
* If the DISABLE_NOTIF configuration flag is set, uCode will not issue
|
|
* STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
|
|
* does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
|
|
*/
|
|
#define IWL_STATS_CONF_CLEAR_STATS __constant_cpu_to_le32(0x1) /* see above */
|
|
#define IWL_STATS_CONF_DISABLE_NOTIF __constant_cpu_to_le32(0x2)/* see above */
|
|
struct iwl4965_statistics_cmd {
|
|
__le32 configuration_flags; /* IWL_STATS_CONF_* */
|
|
} __attribute__ ((packed));
|
|
|
|
/*
|
|
* STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
|
|
*
|
|
* By default, uCode issues this notification after receiving a beacon
|
|
* while associated. To disable this behavior, set DISABLE_NOTIF flag in the
|
|
* REPLY_STATISTICS_CMD 0x9c, above.
|
|
*
|
|
* Statistics counters continue to increment beacon after beacon, but are
|
|
* cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
|
|
* 0x9c with CLEAR_STATS bit set (see above).
|
|
*
|
|
* uCode also issues this notification during scans. uCode clears statistics
|
|
* appropriately so that each notification contains statistics for only the
|
|
* one channel that has just been scanned.
|
|
*/
|
|
#define STATISTICS_REPLY_FLG_BAND_24G_MSK __constant_cpu_to_le32(0x2)
|
|
#define STATISTICS_REPLY_FLG_FAT_MODE_MSK __constant_cpu_to_le32(0x8)
|
|
struct iwl4965_notif_statistics {
|
|
__le32 flag;
|
|
struct statistics_rx rx;
|
|
struct statistics_tx tx;
|
|
struct statistics_general general;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/*
|
|
* MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
|
|
*/
|
|
/* if ucode missed CONSECUTIVE_MISSED_BCONS_TH beacons in a row,
|
|
* then this notification will be sent. */
|
|
#define CONSECUTIVE_MISSED_BCONS_TH 20
|
|
|
|
struct iwl4965_missed_beacon_notif {
|
|
__le32 consequtive_missed_beacons;
|
|
__le32 total_missed_becons;
|
|
__le32 num_expected_beacons;
|
|
__le32 num_recvd_beacons;
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/******************************************************************************
|
|
* (11)
|
|
* Rx Calibration Commands:
|
|
*
|
|
* With the uCode used for open source drivers, most Tx calibration (except
|
|
* for Tx Power) and most Rx calibration is done by uCode during the
|
|
* "initialize" phase of uCode boot. Driver must calibrate only:
|
|
*
|
|
* 1) Tx power (depends on temperature), described elsewhere
|
|
* 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
|
|
* 3) Receiver sensitivity (to optimize signal detection)
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/**
|
|
* SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
|
|
*
|
|
* This command sets up the Rx signal detector for a sensitivity level that
|
|
* is high enough to lock onto all signals within the associated network,
|
|
* but low enough to ignore signals that are below a certain threshold, so as
|
|
* not to have too many "false alarms". False alarms are signals that the
|
|
* Rx DSP tries to lock onto, but then discards after determining that they
|
|
* are noise.
|
|
*
|
|
* The optimum number of false alarms is between 5 and 50 per 200 TUs
|
|
* (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
|
|
* time listening, not transmitting). Driver must adjust sensitivity so that
|
|
* the ratio of actual false alarms to actual Rx time falls within this range.
|
|
*
|
|
* While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
|
|
* received beacon. These provide information to the driver to analyze the
|
|
* sensitivity. Don't analyze statistics that come in from scanning, or any
|
|
* other non-associated-network source. Pertinent statistics include:
|
|
*
|
|
* From "general" statistics (struct statistics_rx_non_phy):
|
|
*
|
|
* (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
|
|
* Measure of energy of desired signal. Used for establishing a level
|
|
* below which the device does not detect signals.
|
|
*
|
|
* (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
|
|
* Measure of background noise in silent period after beacon.
|
|
*
|
|
* channel_load
|
|
* uSecs of actual Rx time during beacon period (varies according to
|
|
* how much time was spent transmitting).
|
|
*
|
|
* From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
|
|
*
|
|
* false_alarm_cnt
|
|
* Signal locks abandoned early (before phy-level header).
|
|
*
|
|
* plcp_err
|
|
* Signal locks abandoned late (during phy-level header).
|
|
*
|
|
* NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
|
|
* beacon to beacon, i.e. each value is an accumulation of all errors
|
|
* before and including the latest beacon. Values will wrap around to 0
|
|
* after counting up to 2^32 - 1. Driver must differentiate vs.
|
|
* previous beacon's values to determine # false alarms in the current
|
|
* beacon period.
|
|
*
|
|
* Total number of false alarms = false_alarms + plcp_errs
|
|
*
|
|
* For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
|
|
* (notice that the start points for OFDM are at or close to settings for
|
|
* maximum sensitivity):
|
|
*
|
|
* START / MIN / MAX
|
|
* HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
|
|
* HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
|
|
* HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
|
|
* HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
|
|
*
|
|
* If actual rate of OFDM false alarms (+ plcp_errors) is too high
|
|
* (greater than 50 for each 204.8 msecs listening), reduce sensitivity
|
|
* by *adding* 1 to all 4 of the table entries above, up to the max for
|
|
* each entry. Conversely, if false alarm rate is too low (less than 5
|
|
* for each 204.8 msecs listening), *subtract* 1 from each entry to
|
|
* increase sensitivity.
|
|
*
|
|
* For CCK sensitivity, keep track of the following:
|
|
*
|
|
* 1). 20-beacon history of maximum background noise, indicated by
|
|
* (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
|
|
* 3 receivers. For any given beacon, the "silence reference" is
|
|
* the maximum of last 60 samples (20 beacons * 3 receivers).
|
|
*
|
|
* 2). 10-beacon history of strongest signal level, as indicated
|
|
* by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
|
|
* i.e. the strength of the signal through the best receiver at the
|
|
* moment. These measurements are "upside down", with lower values
|
|
* for stronger signals, so max energy will be *minimum* value.
|
|
*
|
|
* Then for any given beacon, the driver must determine the *weakest*
|
|
* of the strongest signals; this is the minimum level that needs to be
|
|
* successfully detected, when using the best receiver at the moment.
|
|
* "Max cck energy" is the maximum (higher value means lower energy!)
|
|
* of the last 10 minima. Once this is determined, driver must add
|
|
* a little margin by adding "6" to it.
|
|
*
|
|
* 3). Number of consecutive beacon periods with too few false alarms.
|
|
* Reset this to 0 at the first beacon period that falls within the
|
|
* "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
|
|
*
|
|
* Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
|
|
* (notice that the start points for CCK are at maximum sensitivity):
|
|
*
|
|
* START / MIN / MAX
|
|
* HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
|
|
* HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
|
|
* HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
|
|
*
|
|
* If actual rate of CCK false alarms (+ plcp_errors) is too high
|
|
* (greater than 50 for each 204.8 msecs listening), method for reducing
|
|
* sensitivity is:
|
|
*
|
|
* 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
|
|
* up to max 400.
|
|
*
|
|
* 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
|
|
* sensitivity has been reduced a significant amount; bring it up to
|
|
* a moderate 161. Otherwise, *add* 3, up to max 200.
|
|
*
|
|
* 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
|
|
* sensitivity has been reduced only a moderate or small amount;
|
|
* *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
|
|
* down to min 0. Otherwise (if gain has been significantly reduced),
|
|
* don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
|
|
*
|
|
* b) Save a snapshot of the "silence reference".
|
|
*
|
|
* If actual rate of CCK false alarms (+ plcp_errors) is too low
|
|
* (less than 5 for each 204.8 msecs listening), method for increasing
|
|
* sensitivity is used only if:
|
|
*
|
|
* 1a) Previous beacon did not have too many false alarms
|
|
* 1b) AND difference between previous "silence reference" and current
|
|
* "silence reference" (prev - current) is 2 or more,
|
|
* OR 2) 100 or more consecutive beacon periods have had rate of
|
|
* less than 5 false alarms per 204.8 milliseconds rx time.
|
|
*
|
|
* Method for increasing sensitivity:
|
|
*
|
|
* 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
|
|
* down to min 125.
|
|
*
|
|
* 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
|
|
* down to min 200.
|
|
*
|
|
* 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
|
|
*
|
|
* If actual rate of CCK false alarms (+ plcp_errors) is within good range
|
|
* (between 5 and 50 for each 204.8 msecs listening):
|
|
*
|
|
* 1) Save a snapshot of the silence reference.
|
|
*
|
|
* 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
|
|
* give some extra margin to energy threshold by *subtracting* 8
|
|
* from value in HD_MIN_ENERGY_CCK_DET_INDEX.
|
|
*
|
|
* For all cases (too few, too many, good range), make sure that the CCK
|
|
* detection threshold (energy) is below the energy level for robust
|
|
* detection over the past 10 beacon periods, the "Max cck energy".
|
|
* Lower values mean higher energy; this means making sure that the value
|
|
* in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
|
|
*
|
|
* Driver should set the following entries to fixed values:
|
|
*
|
|
* HD_MIN_ENERGY_OFDM_DET_INDEX 100
|
|
* HD_BARKER_CORR_TH_ADD_MIN_INDEX 190
|
|
* HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX 390
|
|
* HD_OFDM_ENERGY_TH_IN_INDEX 62
|
|
*/
|
|
|
|
/*
|
|
* Table entries in SENSITIVITY_CMD (struct iwl4965_sensitivity_cmd)
|
|
*/
|
|
#define HD_TABLE_SIZE (11) /* number of entries */
|
|
#define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
|
|
#define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
|
|
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
|
|
#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
|
|
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
|
|
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
|
|
#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
|
|
#define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
|
|
#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
|
|
#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
|
|
#define HD_OFDM_ENERGY_TH_IN_INDEX (10)
|
|
|
|
/* Control field in struct iwl4965_sensitivity_cmd */
|
|
#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE __constant_cpu_to_le16(0)
|
|
#define SENSITIVITY_CMD_CONTROL_WORK_TABLE __constant_cpu_to_le16(1)
|
|
|
|
/**
|
|
* struct iwl4965_sensitivity_cmd
|
|
* @control: (1) updates working table, (0) updates default table
|
|
* @table: energy threshold values, use HD_* as index into table
|
|
*
|
|
* Always use "1" in "control" to update uCode's working table and DSP.
|
|
*/
|
|
struct iwl4965_sensitivity_cmd {
|
|
__le16 control; /* always use "1" */
|
|
__le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
|
|
} __attribute__ ((packed));
|
|
|
|
|
|
/**
|
|
* REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
|
|
*
|
|
* This command sets the relative gains of 4965's 3 radio receiver chains.
|
|
*
|
|
* After the first association, driver should accumulate signal and noise
|
|
* statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
|
|
* beacons from the associated network (don't collect statistics that come
|
|
* in from scanning, or any other non-network source).
|
|
*
|
|
* DISCONNECTED ANTENNA:
|
|
*
|
|
* Driver should determine which antennas are actually connected, by comparing
|
|
* average beacon signal levels for the 3 Rx chains. Accumulate (add) the
|
|
* following values over 20 beacons, one accumulator for each of the chains
|
|
* a/b/c, from struct statistics_rx_non_phy:
|
|
*
|
|
* beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
|
|
*
|
|
* Find the strongest signal from among a/b/c. Compare the other two to the
|
|
* strongest. If any signal is more than 15 dB (times 20, unless you
|
|
* divide the accumulated values by 20) below the strongest, the driver
|
|
* considers that antenna to be disconnected, and should not try to use that
|
|
* antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
|
|
* driver should declare the stronger one as connected, and attempt to use it
|
|
* (A and B are the only 2 Tx chains!).
|
|
*
|
|
*
|
|
* RX BALANCE:
|
|
*
|
|
* Driver should balance the 3 receivers (but just the ones that are connected
|
|
* to antennas, see above) for gain, by comparing the average signal levels
|
|
* detected during the silence after each beacon (background noise).
|
|
* Accumulate (add) the following values over 20 beacons, one accumulator for
|
|
* each of the chains a/b/c, from struct statistics_rx_non_phy:
|
|
*
|
|
* beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
|
|
*
|
|
* Find the weakest background noise level from among a/b/c. This Rx chain
|
|
* will be the reference, with 0 gain adjustment. Attenuate other channels by
|
|
* finding noise difference:
|
|
*
|
|
* (accum_noise[i] - accum_noise[reference]) / 30
|
|
*
|
|
* The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
|
|
* For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
|
|
* driver should limit the difference results to a range of 0-3 (0-4.5 dB),
|
|
* and set bit 2 to indicate "reduce gain". The value for the reference
|
|
* (weakest) chain should be "0".
|
|
*
|
|
* diff_gain_[abc] bit fields:
|
|
* 2: (1) reduce gain, (0) increase gain
|
|
* 1-0: amount of gain, units of 1.5 dB
|
|
*/
|
|
|
|
/* "Differential Gain" opcode used in REPLY_PHY_CALIBRATION_CMD. */
|
|
#define PHY_CALIBRATE_DIFF_GAIN_CMD (7)
|
|
|
|
struct iwl4965_calibration_cmd {
|
|
u8 opCode; /* PHY_CALIBRATE_DIFF_GAIN_CMD (7) */
|
|
u8 flags; /* not used */
|
|
__le16 reserved;
|
|
s8 diff_gain_a; /* see above */
|
|
s8 diff_gain_b;
|
|
s8 diff_gain_c;
|
|
u8 reserved1;
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (12)
|
|
* Miscellaneous Commands:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*
|
|
* LEDs Command & Response
|
|
* REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
|
|
*
|
|
* For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
|
|
* this command turns it on or off, or sets up a periodic blinking cycle.
|
|
*/
|
|
struct iwl4965_led_cmd {
|
|
__le32 interval; /* "interval" in uSec */
|
|
u8 id; /* 1: Activity, 2: Link, 3: Tech */
|
|
u8 off; /* # intervals off while blinking;
|
|
* "0", with >0 "on" value, turns LED on */
|
|
u8 on; /* # intervals on while blinking;
|
|
* "0", regardless of "off", turns LED off */
|
|
u8 reserved;
|
|
} __attribute__ ((packed));
|
|
|
|
/******************************************************************************
|
|
* (13)
|
|
* Union of all expected notifications/responses:
|
|
*
|
|
*****************************************************************************/
|
|
|
|
struct iwl4965_rx_packet {
|
|
__le32 len;
|
|
struct iwl4965_cmd_header hdr;
|
|
union {
|
|
struct iwl4965_alive_resp alive_frame;
|
|
struct iwl4965_rx_frame rx_frame;
|
|
struct iwl4965_tx_resp tx_resp;
|
|
struct iwl4965_spectrum_notification spectrum_notif;
|
|
struct iwl4965_csa_notification csa_notif;
|
|
struct iwl4965_error_resp err_resp;
|
|
struct iwl4965_card_state_notif card_state_notif;
|
|
struct iwl4965_beacon_notif beacon_status;
|
|
struct iwl4965_add_sta_resp add_sta;
|
|
struct iwl4965_sleep_notification sleep_notif;
|
|
struct iwl4965_spectrum_resp spectrum;
|
|
struct iwl4965_notif_statistics stats;
|
|
struct iwl4965_compressed_ba_resp compressed_ba;
|
|
struct iwl4965_missed_beacon_notif missed_beacon;
|
|
__le32 status;
|
|
u8 raw[0];
|
|
} u;
|
|
} __attribute__ ((packed));
|
|
|
|
#define IWL_RX_FRAME_SIZE (4 + sizeof(struct iwl4965_rx_frame))
|
|
|
|
#endif /* __iwl4965_commands_h__ */
|