mirror of https://gitee.com/openkylin/linux.git
1352 lines
37 KiB
C
1352 lines
37 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright 2002-2005, Instant802 Networks, Inc.
|
|
* Copyright 2005-2006, Devicescape Software, Inc.
|
|
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
|
|
* Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
|
|
* Copyright 2013-2014 Intel Mobile Communications GmbH
|
|
* Copyright 2015-2017 Intel Deutschland GmbH
|
|
* Copyright 2018-2020 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/if_ether.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/list.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <net/mac80211.h>
|
|
#include <crypto/algapi.h>
|
|
#include <asm/unaligned.h>
|
|
#include "ieee80211_i.h"
|
|
#include "driver-ops.h"
|
|
#include "debugfs_key.h"
|
|
#include "aes_ccm.h"
|
|
#include "aes_cmac.h"
|
|
#include "aes_gmac.h"
|
|
#include "aes_gcm.h"
|
|
|
|
|
|
/**
|
|
* DOC: Key handling basics
|
|
*
|
|
* Key handling in mac80211 is done based on per-interface (sub_if_data)
|
|
* keys and per-station keys. Since each station belongs to an interface,
|
|
* each station key also belongs to that interface.
|
|
*
|
|
* Hardware acceleration is done on a best-effort basis for algorithms
|
|
* that are implemented in software, for each key the hardware is asked
|
|
* to enable that key for offloading but if it cannot do that the key is
|
|
* simply kept for software encryption (unless it is for an algorithm
|
|
* that isn't implemented in software).
|
|
* There is currently no way of knowing whether a key is handled in SW
|
|
* or HW except by looking into debugfs.
|
|
*
|
|
* All key management is internally protected by a mutex. Within all
|
|
* other parts of mac80211, key references are, just as STA structure
|
|
* references, protected by RCU. Note, however, that some things are
|
|
* unprotected, namely the key->sta dereferences within the hardware
|
|
* acceleration functions. This means that sta_info_destroy() must
|
|
* remove the key which waits for an RCU grace period.
|
|
*/
|
|
|
|
static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
|
|
|
|
static void assert_key_lock(struct ieee80211_local *local)
|
|
{
|
|
lockdep_assert_held(&local->key_mtx);
|
|
}
|
|
|
|
static void
|
|
update_vlan_tailroom_need_count(struct ieee80211_sub_if_data *sdata, int delta)
|
|
{
|
|
struct ieee80211_sub_if_data *vlan;
|
|
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP)
|
|
return;
|
|
|
|
/* crypto_tx_tailroom_needed_cnt is protected by this */
|
|
assert_key_lock(sdata->local);
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry_rcu(vlan, &sdata->u.ap.vlans, u.vlan.list)
|
|
vlan->crypto_tx_tailroom_needed_cnt += delta;
|
|
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
|
|
{
|
|
/*
|
|
* When this count is zero, SKB resizing for allocating tailroom
|
|
* for IV or MMIC is skipped. But, this check has created two race
|
|
* cases in xmit path while transiting from zero count to one:
|
|
*
|
|
* 1. SKB resize was skipped because no key was added but just before
|
|
* the xmit key is added and SW encryption kicks off.
|
|
*
|
|
* 2. SKB resize was skipped because all the keys were hw planted but
|
|
* just before xmit one of the key is deleted and SW encryption kicks
|
|
* off.
|
|
*
|
|
* In both the above case SW encryption will find not enough space for
|
|
* tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
|
|
*
|
|
* Solution has been explained at
|
|
* http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
|
|
*/
|
|
|
|
assert_key_lock(sdata->local);
|
|
|
|
update_vlan_tailroom_need_count(sdata, 1);
|
|
|
|
if (!sdata->crypto_tx_tailroom_needed_cnt++) {
|
|
/*
|
|
* Flush all XMIT packets currently using HW encryption or no
|
|
* encryption at all if the count transition is from 0 -> 1.
|
|
*/
|
|
synchronize_net();
|
|
}
|
|
}
|
|
|
|
static void decrease_tailroom_need_count(struct ieee80211_sub_if_data *sdata,
|
|
int delta)
|
|
{
|
|
assert_key_lock(sdata->local);
|
|
|
|
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt < delta);
|
|
|
|
update_vlan_tailroom_need_count(sdata, -delta);
|
|
sdata->crypto_tx_tailroom_needed_cnt -= delta;
|
|
}
|
|
|
|
static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = key->sdata;
|
|
struct sta_info *sta;
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
might_sleep();
|
|
|
|
if (key->flags & KEY_FLAG_TAINTED) {
|
|
/* If we get here, it's during resume and the key is
|
|
* tainted so shouldn't be used/programmed any more.
|
|
* However, its flags may still indicate that it was
|
|
* programmed into the device (since we're in resume)
|
|
* so clear that flag now to avoid trying to remove
|
|
* it again later.
|
|
*/
|
|
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
|
|
!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
|
|
IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
|
|
IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
|
|
increment_tailroom_need_count(sdata);
|
|
|
|
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!key->local->ops->set_key)
|
|
goto out_unsupported;
|
|
|
|
assert_key_lock(key->local);
|
|
|
|
sta = key->sta;
|
|
|
|
/*
|
|
* If this is a per-STA GTK, check if it
|
|
* is supported; if not, return.
|
|
*/
|
|
if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
|
|
!ieee80211_hw_check(&key->local->hw, SUPPORTS_PER_STA_GTK))
|
|
goto out_unsupported;
|
|
|
|
if (sta && !sta->uploaded)
|
|
goto out_unsupported;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
|
|
/*
|
|
* The driver doesn't know anything about VLAN interfaces.
|
|
* Hence, don't send GTKs for VLAN interfaces to the driver.
|
|
*/
|
|
if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
|
|
ret = 1;
|
|
goto out_unsupported;
|
|
}
|
|
}
|
|
|
|
ret = drv_set_key(key->local, SET_KEY, sdata,
|
|
sta ? &sta->sta : NULL, &key->conf);
|
|
|
|
if (!ret) {
|
|
key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
|
|
|
|
if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
|
|
IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
|
|
IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
|
|
decrease_tailroom_need_count(sdata, 1);
|
|
|
|
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
|
|
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
|
|
|
|
WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_MIC_SPACE) &&
|
|
(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC));
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (ret != -ENOSPC && ret != -EOPNOTSUPP && ret != 1)
|
|
sdata_err(sdata,
|
|
"failed to set key (%d, %pM) to hardware (%d)\n",
|
|
key->conf.keyidx,
|
|
sta ? sta->sta.addr : bcast_addr, ret);
|
|
|
|
out_unsupported:
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_WEP40:
|
|
case WLAN_CIPHER_SUITE_WEP104:
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
/* all of these we can do in software - if driver can */
|
|
if (ret == 1)
|
|
return 0;
|
|
if (ieee80211_hw_check(&key->local->hw, SW_CRYPTO_CONTROL))
|
|
return -EINVAL;
|
|
return 0;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata;
|
|
struct sta_info *sta;
|
|
int ret;
|
|
|
|
might_sleep();
|
|
|
|
if (!key || !key->local->ops->set_key)
|
|
return;
|
|
|
|
assert_key_lock(key->local);
|
|
|
|
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
|
|
return;
|
|
|
|
sta = key->sta;
|
|
sdata = key->sdata;
|
|
|
|
if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
|
|
IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
|
|
IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
|
|
increment_tailroom_need_count(sdata);
|
|
|
|
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
|
|
ret = drv_set_key(key->local, DISABLE_KEY, sdata,
|
|
sta ? &sta->sta : NULL, &key->conf);
|
|
|
|
if (ret)
|
|
sdata_err(sdata,
|
|
"failed to remove key (%d, %pM) from hardware (%d)\n",
|
|
key->conf.keyidx,
|
|
sta ? sta->sta.addr : bcast_addr, ret);
|
|
}
|
|
|
|
static int _ieee80211_set_tx_key(struct ieee80211_key *key, bool force)
|
|
{
|
|
struct sta_info *sta = key->sta;
|
|
struct ieee80211_local *local = key->local;
|
|
|
|
assert_key_lock(local);
|
|
|
|
set_sta_flag(sta, WLAN_STA_USES_ENCRYPTION);
|
|
|
|
sta->ptk_idx = key->conf.keyidx;
|
|
|
|
if (force || !ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT))
|
|
clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
|
|
ieee80211_check_fast_xmit(sta);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ieee80211_set_tx_key(struct ieee80211_key *key)
|
|
{
|
|
return _ieee80211_set_tx_key(key, false);
|
|
}
|
|
|
|
static void ieee80211_pairwise_rekey(struct ieee80211_key *old,
|
|
struct ieee80211_key *new)
|
|
{
|
|
struct ieee80211_local *local = new->local;
|
|
struct sta_info *sta = new->sta;
|
|
int i;
|
|
|
|
assert_key_lock(local);
|
|
|
|
if (new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX) {
|
|
/* Extended Key ID key install, initial one or rekey */
|
|
|
|
if (sta->ptk_idx != INVALID_PTK_KEYIDX &&
|
|
!ieee80211_hw_check(&local->hw, AMPDU_KEYBORDER_SUPPORT)) {
|
|
/* Aggregation Sessions with Extended Key ID must not
|
|
* mix MPDUs with different keyIDs within one A-MPDU.
|
|
* Tear down running Tx aggregation sessions and block
|
|
* new Rx/Tx aggregation requests during rekey to
|
|
* ensure there are no A-MPDUs when the driver is not
|
|
* supporting A-MPDU key borders. (Blocking Tx only
|
|
* would be sufficient but WLAN_STA_BLOCK_BA gets the
|
|
* job done for the few ms we need it.)
|
|
*/
|
|
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
|
|
mutex_lock(&sta->ampdu_mlme.mtx);
|
|
for (i = 0; i < IEEE80211_NUM_TIDS; i++)
|
|
___ieee80211_stop_tx_ba_session(sta, i,
|
|
AGG_STOP_LOCAL_REQUEST);
|
|
mutex_unlock(&sta->ampdu_mlme.mtx);
|
|
}
|
|
} else if (old) {
|
|
/* Rekey without Extended Key ID.
|
|
* Aggregation sessions are OK when running on SW crypto.
|
|
* A broken remote STA may cause issues not observed with HW
|
|
* crypto, though.
|
|
*/
|
|
if (!(old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
|
|
return;
|
|
|
|
/* Stop Tx till we are on the new key */
|
|
old->flags |= KEY_FLAG_TAINTED;
|
|
ieee80211_clear_fast_xmit(sta);
|
|
if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) {
|
|
set_sta_flag(sta, WLAN_STA_BLOCK_BA);
|
|
ieee80211_sta_tear_down_BA_sessions(sta,
|
|
AGG_STOP_LOCAL_REQUEST);
|
|
}
|
|
if (!wiphy_ext_feature_isset(local->hw.wiphy,
|
|
NL80211_EXT_FEATURE_CAN_REPLACE_PTK0)) {
|
|
pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
|
|
sta->sta.addr);
|
|
/* Flushing the driver queues *may* help prevent
|
|
* the clear text leaks and freezes.
|
|
*/
|
|
ieee80211_flush_queues(local, old->sdata, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
|
|
int idx, bool uni, bool multi)
|
|
{
|
|
struct ieee80211_key *key = NULL;
|
|
|
|
assert_key_lock(sdata->local);
|
|
|
|
if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
|
|
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
|
|
|
|
if (uni) {
|
|
rcu_assign_pointer(sdata->default_unicast_key, key);
|
|
ieee80211_check_fast_xmit_iface(sdata);
|
|
if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
|
|
drv_set_default_unicast_key(sdata->local, sdata, idx);
|
|
}
|
|
|
|
if (multi)
|
|
rcu_assign_pointer(sdata->default_multicast_key, key);
|
|
|
|
ieee80211_debugfs_key_update_default(sdata);
|
|
}
|
|
|
|
void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
|
|
bool uni, bool multi)
|
|
{
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
__ieee80211_set_default_key(sdata, idx, uni, multi);
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
}
|
|
|
|
static void
|
|
__ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
|
|
{
|
|
struct ieee80211_key *key = NULL;
|
|
|
|
assert_key_lock(sdata->local);
|
|
|
|
if (idx >= NUM_DEFAULT_KEYS &&
|
|
idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
|
|
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
|
|
|
|
rcu_assign_pointer(sdata->default_mgmt_key, key);
|
|
|
|
ieee80211_debugfs_key_update_default(sdata);
|
|
}
|
|
|
|
void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
|
|
int idx)
|
|
{
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
__ieee80211_set_default_mgmt_key(sdata, idx);
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
}
|
|
|
|
static void
|
|
__ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata, int idx)
|
|
{
|
|
struct ieee80211_key *key = NULL;
|
|
|
|
assert_key_lock(sdata->local);
|
|
|
|
if (idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS &&
|
|
idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
|
|
NUM_DEFAULT_BEACON_KEYS)
|
|
key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
|
|
|
|
rcu_assign_pointer(sdata->default_beacon_key, key);
|
|
|
|
ieee80211_debugfs_key_update_default(sdata);
|
|
}
|
|
|
|
void ieee80211_set_default_beacon_key(struct ieee80211_sub_if_data *sdata,
|
|
int idx)
|
|
{
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
__ieee80211_set_default_beacon_key(sdata, idx);
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
}
|
|
|
|
static int ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
|
|
struct sta_info *sta,
|
|
bool pairwise,
|
|
struct ieee80211_key *old,
|
|
struct ieee80211_key *new)
|
|
{
|
|
int idx;
|
|
int ret = 0;
|
|
bool defunikey, defmultikey, defmgmtkey, defbeaconkey;
|
|
|
|
/* caller must provide at least one old/new */
|
|
if (WARN_ON(!new && !old))
|
|
return 0;
|
|
|
|
if (new)
|
|
list_add_tail_rcu(&new->list, &sdata->key_list);
|
|
|
|
WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
|
|
|
|
if (new && sta && pairwise) {
|
|
/* Unicast rekey needs special handling. With Extended Key ID
|
|
* old is still NULL for the first rekey.
|
|
*/
|
|
ieee80211_pairwise_rekey(old, new);
|
|
}
|
|
|
|
if (old) {
|
|
idx = old->conf.keyidx;
|
|
|
|
if (old->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
|
|
ieee80211_key_disable_hw_accel(old);
|
|
|
|
if (new)
|
|
ret = ieee80211_key_enable_hw_accel(new);
|
|
}
|
|
} else {
|
|
/* new must be provided in case old is not */
|
|
idx = new->conf.keyidx;
|
|
if (!new->local->wowlan)
|
|
ret = ieee80211_key_enable_hw_accel(new);
|
|
}
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (sta) {
|
|
if (pairwise) {
|
|
rcu_assign_pointer(sta->ptk[idx], new);
|
|
if (new &&
|
|
!(new->conf.flags & IEEE80211_KEY_FLAG_NO_AUTO_TX))
|
|
_ieee80211_set_tx_key(new, true);
|
|
} else {
|
|
rcu_assign_pointer(sta->gtk[idx], new);
|
|
}
|
|
/* Only needed for transition from no key -> key.
|
|
* Still triggers unnecessary when using Extended Key ID
|
|
* and installing the second key ID the first time.
|
|
*/
|
|
if (new && !old)
|
|
ieee80211_check_fast_rx(sta);
|
|
} else {
|
|
defunikey = old &&
|
|
old == key_mtx_dereference(sdata->local,
|
|
sdata->default_unicast_key);
|
|
defmultikey = old &&
|
|
old == key_mtx_dereference(sdata->local,
|
|
sdata->default_multicast_key);
|
|
defmgmtkey = old &&
|
|
old == key_mtx_dereference(sdata->local,
|
|
sdata->default_mgmt_key);
|
|
defbeaconkey = old &&
|
|
old == key_mtx_dereference(sdata->local,
|
|
sdata->default_beacon_key);
|
|
|
|
if (defunikey && !new)
|
|
__ieee80211_set_default_key(sdata, -1, true, false);
|
|
if (defmultikey && !new)
|
|
__ieee80211_set_default_key(sdata, -1, false, true);
|
|
if (defmgmtkey && !new)
|
|
__ieee80211_set_default_mgmt_key(sdata, -1);
|
|
if (defbeaconkey && !new)
|
|
__ieee80211_set_default_beacon_key(sdata, -1);
|
|
|
|
rcu_assign_pointer(sdata->keys[idx], new);
|
|
if (defunikey && new)
|
|
__ieee80211_set_default_key(sdata, new->conf.keyidx,
|
|
true, false);
|
|
if (defmultikey && new)
|
|
__ieee80211_set_default_key(sdata, new->conf.keyidx,
|
|
false, true);
|
|
if (defmgmtkey && new)
|
|
__ieee80211_set_default_mgmt_key(sdata,
|
|
new->conf.keyidx);
|
|
if (defbeaconkey && new)
|
|
__ieee80211_set_default_beacon_key(sdata,
|
|
new->conf.keyidx);
|
|
}
|
|
|
|
if (old)
|
|
list_del_rcu(&old->list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct ieee80211_key *
|
|
ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
|
|
const u8 *key_data,
|
|
size_t seq_len, const u8 *seq,
|
|
const struct ieee80211_cipher_scheme *cs)
|
|
{
|
|
struct ieee80211_key *key;
|
|
int i, j, err;
|
|
|
|
if (WARN_ON(idx < 0 ||
|
|
idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
|
|
NUM_DEFAULT_BEACON_KEYS))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
|
|
if (!key)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Default to software encryption; we'll later upload the
|
|
* key to the hardware if possible.
|
|
*/
|
|
key->conf.flags = 0;
|
|
key->flags = 0;
|
|
|
|
key->conf.cipher = cipher;
|
|
key->conf.keyidx = idx;
|
|
key->conf.keylen = key_len;
|
|
switch (cipher) {
|
|
case WLAN_CIPHER_SUITE_WEP40:
|
|
case WLAN_CIPHER_SUITE_WEP104:
|
|
key->conf.iv_len = IEEE80211_WEP_IV_LEN;
|
|
key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
|
|
key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
|
|
if (seq) {
|
|
for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
|
|
key->u.tkip.rx[i].iv32 =
|
|
get_unaligned_le32(&seq[2]);
|
|
key->u.tkip.rx[i].iv16 =
|
|
get_unaligned_le16(seq);
|
|
}
|
|
}
|
|
spin_lock_init(&key->u.tkip.txlock);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
|
|
key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
|
|
if (seq) {
|
|
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
|
|
for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
|
|
key->u.ccmp.rx_pn[i][j] =
|
|
seq[IEEE80211_CCMP_PN_LEN - j - 1];
|
|
}
|
|
/*
|
|
* Initialize AES key state here as an optimization so that
|
|
* it does not need to be initialized for every packet.
|
|
*/
|
|
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
|
|
key_data, key_len, IEEE80211_CCMP_MIC_LEN);
|
|
if (IS_ERR(key->u.ccmp.tfm)) {
|
|
err = PTR_ERR(key->u.ccmp.tfm);
|
|
kfree(key);
|
|
return ERR_PTR(err);
|
|
}
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
key->conf.iv_len = IEEE80211_CCMP_256_HDR_LEN;
|
|
key->conf.icv_len = IEEE80211_CCMP_256_MIC_LEN;
|
|
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
|
|
for (j = 0; j < IEEE80211_CCMP_256_PN_LEN; j++)
|
|
key->u.ccmp.rx_pn[i][j] =
|
|
seq[IEEE80211_CCMP_256_PN_LEN - j - 1];
|
|
/* Initialize AES key state here as an optimization so that
|
|
* it does not need to be initialized for every packet.
|
|
*/
|
|
key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(
|
|
key_data, key_len, IEEE80211_CCMP_256_MIC_LEN);
|
|
if (IS_ERR(key->u.ccmp.tfm)) {
|
|
err = PTR_ERR(key->u.ccmp.tfm);
|
|
kfree(key);
|
|
return ERR_PTR(err);
|
|
}
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
key->conf.iv_len = 0;
|
|
if (cipher == WLAN_CIPHER_SUITE_AES_CMAC)
|
|
key->conf.icv_len = sizeof(struct ieee80211_mmie);
|
|
else
|
|
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
|
|
if (seq)
|
|
for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
|
|
key->u.aes_cmac.rx_pn[j] =
|
|
seq[IEEE80211_CMAC_PN_LEN - j - 1];
|
|
/*
|
|
* Initialize AES key state here as an optimization so that
|
|
* it does not need to be initialized for every packet.
|
|
*/
|
|
key->u.aes_cmac.tfm =
|
|
ieee80211_aes_cmac_key_setup(key_data, key_len);
|
|
if (IS_ERR(key->u.aes_cmac.tfm)) {
|
|
err = PTR_ERR(key->u.aes_cmac.tfm);
|
|
kfree(key);
|
|
return ERR_PTR(err);
|
|
}
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
key->conf.iv_len = 0;
|
|
key->conf.icv_len = sizeof(struct ieee80211_mmie_16);
|
|
if (seq)
|
|
for (j = 0; j < IEEE80211_GMAC_PN_LEN; j++)
|
|
key->u.aes_gmac.rx_pn[j] =
|
|
seq[IEEE80211_GMAC_PN_LEN - j - 1];
|
|
/* Initialize AES key state here as an optimization so that
|
|
* it does not need to be initialized for every packet.
|
|
*/
|
|
key->u.aes_gmac.tfm =
|
|
ieee80211_aes_gmac_key_setup(key_data, key_len);
|
|
if (IS_ERR(key->u.aes_gmac.tfm)) {
|
|
err = PTR_ERR(key->u.aes_gmac.tfm);
|
|
kfree(key);
|
|
return ERR_PTR(err);
|
|
}
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
key->conf.iv_len = IEEE80211_GCMP_HDR_LEN;
|
|
key->conf.icv_len = IEEE80211_GCMP_MIC_LEN;
|
|
for (i = 0; seq && i < IEEE80211_NUM_TIDS + 1; i++)
|
|
for (j = 0; j < IEEE80211_GCMP_PN_LEN; j++)
|
|
key->u.gcmp.rx_pn[i][j] =
|
|
seq[IEEE80211_GCMP_PN_LEN - j - 1];
|
|
/* Initialize AES key state here as an optimization so that
|
|
* it does not need to be initialized for every packet.
|
|
*/
|
|
key->u.gcmp.tfm = ieee80211_aes_gcm_key_setup_encrypt(key_data,
|
|
key_len);
|
|
if (IS_ERR(key->u.gcmp.tfm)) {
|
|
err = PTR_ERR(key->u.gcmp.tfm);
|
|
kfree(key);
|
|
return ERR_PTR(err);
|
|
}
|
|
break;
|
|
default:
|
|
if (cs) {
|
|
if (seq_len && seq_len != cs->pn_len) {
|
|
kfree(key);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
key->conf.iv_len = cs->hdr_len;
|
|
key->conf.icv_len = cs->mic_len;
|
|
for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
|
|
for (j = 0; j < seq_len; j++)
|
|
key->u.gen.rx_pn[i][j] =
|
|
seq[seq_len - j - 1];
|
|
key->flags |= KEY_FLAG_CIPHER_SCHEME;
|
|
}
|
|
}
|
|
memcpy(key->conf.key, key_data, key_len);
|
|
INIT_LIST_HEAD(&key->list);
|
|
|
|
return key;
|
|
}
|
|
|
|
static void ieee80211_key_free_common(struct ieee80211_key *key)
|
|
{
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
ieee80211_aes_key_free(key->u.ccmp.tfm);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
ieee80211_aes_gmac_key_free(key->u.aes_gmac.tfm);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
ieee80211_aes_gcm_key_free(key->u.gcmp.tfm);
|
|
break;
|
|
}
|
|
kfree_sensitive(key);
|
|
}
|
|
|
|
static void __ieee80211_key_destroy(struct ieee80211_key *key,
|
|
bool delay_tailroom)
|
|
{
|
|
if (key->local) {
|
|
struct ieee80211_sub_if_data *sdata = key->sdata;
|
|
|
|
ieee80211_debugfs_key_remove(key);
|
|
|
|
if (delay_tailroom) {
|
|
/* see ieee80211_delayed_tailroom_dec */
|
|
sdata->crypto_tx_tailroom_pending_dec++;
|
|
schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
|
|
HZ/2);
|
|
} else {
|
|
decrease_tailroom_need_count(sdata, 1);
|
|
}
|
|
}
|
|
|
|
ieee80211_key_free_common(key);
|
|
}
|
|
|
|
static void ieee80211_key_destroy(struct ieee80211_key *key,
|
|
bool delay_tailroom)
|
|
{
|
|
if (!key)
|
|
return;
|
|
|
|
/*
|
|
* Synchronize so the TX path and rcu key iterators
|
|
* can no longer be using this key before we free/remove it.
|
|
*/
|
|
synchronize_net();
|
|
|
|
__ieee80211_key_destroy(key, delay_tailroom);
|
|
}
|
|
|
|
void ieee80211_key_free_unused(struct ieee80211_key *key)
|
|
{
|
|
WARN_ON(key->sdata || key->local);
|
|
ieee80211_key_free_common(key);
|
|
}
|
|
|
|
static bool ieee80211_key_identical(struct ieee80211_sub_if_data *sdata,
|
|
struct ieee80211_key *old,
|
|
struct ieee80211_key *new)
|
|
{
|
|
u8 tkip_old[WLAN_KEY_LEN_TKIP], tkip_new[WLAN_KEY_LEN_TKIP];
|
|
u8 *tk_old, *tk_new;
|
|
|
|
if (!old || new->conf.keylen != old->conf.keylen)
|
|
return false;
|
|
|
|
tk_old = old->conf.key;
|
|
tk_new = new->conf.key;
|
|
|
|
/*
|
|
* In station mode, don't compare the TX MIC key, as it's never used
|
|
* and offloaded rekeying may not care to send it to the host. This
|
|
* is the case in iwlwifi, for example.
|
|
*/
|
|
if (sdata->vif.type == NL80211_IFTYPE_STATION &&
|
|
new->conf.cipher == WLAN_CIPHER_SUITE_TKIP &&
|
|
new->conf.keylen == WLAN_KEY_LEN_TKIP &&
|
|
!(new->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
|
|
memcpy(tkip_old, tk_old, WLAN_KEY_LEN_TKIP);
|
|
memcpy(tkip_new, tk_new, WLAN_KEY_LEN_TKIP);
|
|
memset(tkip_old + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
|
|
memset(tkip_new + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY, 0, 8);
|
|
tk_old = tkip_old;
|
|
tk_new = tkip_new;
|
|
}
|
|
|
|
return !crypto_memneq(tk_old, tk_new, new->conf.keylen);
|
|
}
|
|
|
|
int ieee80211_key_link(struct ieee80211_key *key,
|
|
struct ieee80211_sub_if_data *sdata,
|
|
struct sta_info *sta)
|
|
{
|
|
struct ieee80211_key *old_key;
|
|
int idx = key->conf.keyidx;
|
|
bool pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
|
|
/*
|
|
* We want to delay tailroom updates only for station - in that
|
|
* case it helps roaming speed, but in other cases it hurts and
|
|
* can cause warnings to appear.
|
|
*/
|
|
bool delay_tailroom = sdata->vif.type == NL80211_IFTYPE_STATION;
|
|
int ret = -EOPNOTSUPP;
|
|
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
|
|
if (sta && pairwise) {
|
|
struct ieee80211_key *alt_key;
|
|
|
|
old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
|
|
alt_key = key_mtx_dereference(sdata->local, sta->ptk[idx ^ 1]);
|
|
|
|
/* The rekey code assumes that the old and new key are using
|
|
* the same cipher. Enforce the assumption for pairwise keys.
|
|
*/
|
|
if ((alt_key && alt_key->conf.cipher != key->conf.cipher) ||
|
|
(old_key && old_key->conf.cipher != key->conf.cipher))
|
|
goto out;
|
|
} else if (sta) {
|
|
old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
|
|
} else {
|
|
old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
|
|
}
|
|
|
|
/* Non-pairwise keys must also not switch the cipher on rekey */
|
|
if (!pairwise) {
|
|
if (old_key && old_key->conf.cipher != key->conf.cipher)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Silently accept key re-installation without really installing the
|
|
* new version of the key to avoid nonce reuse or replay issues.
|
|
*/
|
|
if (ieee80211_key_identical(sdata, old_key, key)) {
|
|
ieee80211_key_free_unused(key);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
key->local = sdata->local;
|
|
key->sdata = sdata;
|
|
key->sta = sta;
|
|
|
|
increment_tailroom_need_count(sdata);
|
|
|
|
ret = ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
|
|
|
|
if (!ret) {
|
|
ieee80211_debugfs_key_add(key);
|
|
ieee80211_key_destroy(old_key, delay_tailroom);
|
|
} else {
|
|
ieee80211_key_free(key, delay_tailroom);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
|
|
{
|
|
if (!key)
|
|
return;
|
|
|
|
/*
|
|
* Replace key with nothingness if it was ever used.
|
|
*/
|
|
if (key->sdata)
|
|
ieee80211_key_replace(key->sdata, key->sta,
|
|
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
|
|
key, NULL);
|
|
ieee80211_key_destroy(key, delay_tailroom);
|
|
}
|
|
|
|
void ieee80211_reenable_keys(struct ieee80211_sub_if_data *sdata)
|
|
{
|
|
struct ieee80211_key *key;
|
|
struct ieee80211_sub_if_data *vlan;
|
|
|
|
lockdep_assert_wiphy(sdata->local->hw.wiphy);
|
|
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
|
|
sdata->crypto_tx_tailroom_needed_cnt = 0;
|
|
sdata->crypto_tx_tailroom_pending_dec = 0;
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
|
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list) {
|
|
vlan->crypto_tx_tailroom_needed_cnt = 0;
|
|
vlan->crypto_tx_tailroom_pending_dec = 0;
|
|
}
|
|
}
|
|
|
|
if (ieee80211_sdata_running(sdata)) {
|
|
list_for_each_entry(key, &sdata->key_list, list) {
|
|
increment_tailroom_need_count(sdata);
|
|
ieee80211_key_enable_hw_accel(key);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
}
|
|
|
|
void ieee80211_iter_keys(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
void (*iter)(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key,
|
|
void *data),
|
|
void *iter_data)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct ieee80211_key *key, *tmp;
|
|
struct ieee80211_sub_if_data *sdata;
|
|
|
|
lockdep_assert_wiphy(hw->wiphy);
|
|
|
|
mutex_lock(&local->key_mtx);
|
|
if (vif) {
|
|
sdata = vif_to_sdata(vif);
|
|
list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
|
|
iter(hw, &sdata->vif,
|
|
key->sta ? &key->sta->sta : NULL,
|
|
&key->conf, iter_data);
|
|
} else {
|
|
list_for_each_entry(sdata, &local->interfaces, list)
|
|
list_for_each_entry_safe(key, tmp,
|
|
&sdata->key_list, list)
|
|
iter(hw, &sdata->vif,
|
|
key->sta ? &key->sta->sta : NULL,
|
|
&key->conf, iter_data);
|
|
}
|
|
mutex_unlock(&local->key_mtx);
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_iter_keys);
|
|
|
|
static void
|
|
_ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
|
|
struct ieee80211_sub_if_data *sdata,
|
|
void (*iter)(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key,
|
|
void *data),
|
|
void *iter_data)
|
|
{
|
|
struct ieee80211_key *key;
|
|
|
|
list_for_each_entry_rcu(key, &sdata->key_list, list) {
|
|
/* skip keys of station in removal process */
|
|
if (key->sta && key->sta->removed)
|
|
continue;
|
|
if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
|
|
continue;
|
|
|
|
iter(hw, &sdata->vif,
|
|
key->sta ? &key->sta->sta : NULL,
|
|
&key->conf, iter_data);
|
|
}
|
|
}
|
|
|
|
void ieee80211_iter_keys_rcu(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
void (*iter)(struct ieee80211_hw *hw,
|
|
struct ieee80211_vif *vif,
|
|
struct ieee80211_sta *sta,
|
|
struct ieee80211_key_conf *key,
|
|
void *data),
|
|
void *iter_data)
|
|
{
|
|
struct ieee80211_local *local = hw_to_local(hw);
|
|
struct ieee80211_sub_if_data *sdata;
|
|
|
|
if (vif) {
|
|
sdata = vif_to_sdata(vif);
|
|
_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
|
|
} else {
|
|
list_for_each_entry_rcu(sdata, &local->interfaces, list)
|
|
_ieee80211_iter_keys_rcu(hw, sdata, iter, iter_data);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_iter_keys_rcu);
|
|
|
|
static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
|
|
struct list_head *keys)
|
|
{
|
|
struct ieee80211_key *key, *tmp;
|
|
|
|
decrease_tailroom_need_count(sdata,
|
|
sdata->crypto_tx_tailroom_pending_dec);
|
|
sdata->crypto_tx_tailroom_pending_dec = 0;
|
|
|
|
ieee80211_debugfs_key_remove_mgmt_default(sdata);
|
|
ieee80211_debugfs_key_remove_beacon_default(sdata);
|
|
|
|
list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
|
|
ieee80211_key_replace(key->sdata, key->sta,
|
|
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
|
|
key, NULL);
|
|
list_add_tail(&key->list, keys);
|
|
}
|
|
|
|
ieee80211_debugfs_key_update_default(sdata);
|
|
}
|
|
|
|
void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
|
|
bool force_synchronize)
|
|
{
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_sub_if_data *vlan;
|
|
struct ieee80211_sub_if_data *master;
|
|
struct ieee80211_key *key, *tmp;
|
|
LIST_HEAD(keys);
|
|
|
|
cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
|
|
|
|
mutex_lock(&local->key_mtx);
|
|
|
|
ieee80211_free_keys_iface(sdata, &keys);
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
|
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
|
|
ieee80211_free_keys_iface(vlan, &keys);
|
|
}
|
|
|
|
if (!list_empty(&keys) || force_synchronize)
|
|
synchronize_net();
|
|
list_for_each_entry_safe(key, tmp, &keys, list)
|
|
__ieee80211_key_destroy(key, false);
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
|
|
if (sdata->bss) {
|
|
master = container_of(sdata->bss,
|
|
struct ieee80211_sub_if_data,
|
|
u.ap);
|
|
|
|
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt !=
|
|
master->crypto_tx_tailroom_needed_cnt);
|
|
}
|
|
} else {
|
|
WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
|
|
sdata->crypto_tx_tailroom_pending_dec);
|
|
}
|
|
|
|
if (sdata->vif.type == NL80211_IFTYPE_AP) {
|
|
list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
|
|
WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
|
|
vlan->crypto_tx_tailroom_pending_dec);
|
|
}
|
|
|
|
mutex_unlock(&local->key_mtx);
|
|
}
|
|
|
|
void ieee80211_free_sta_keys(struct ieee80211_local *local,
|
|
struct sta_info *sta)
|
|
{
|
|
struct ieee80211_key *key;
|
|
int i;
|
|
|
|
mutex_lock(&local->key_mtx);
|
|
for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
|
|
key = key_mtx_dereference(local, sta->gtk[i]);
|
|
if (!key)
|
|
continue;
|
|
ieee80211_key_replace(key->sdata, key->sta,
|
|
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
|
|
key, NULL);
|
|
__ieee80211_key_destroy(key, key->sdata->vif.type ==
|
|
NL80211_IFTYPE_STATION);
|
|
}
|
|
|
|
for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
|
|
key = key_mtx_dereference(local, sta->ptk[i]);
|
|
if (!key)
|
|
continue;
|
|
ieee80211_key_replace(key->sdata, key->sta,
|
|
key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
|
|
key, NULL);
|
|
__ieee80211_key_destroy(key, key->sdata->vif.type ==
|
|
NL80211_IFTYPE_STATION);
|
|
}
|
|
|
|
mutex_unlock(&local->key_mtx);
|
|
}
|
|
|
|
void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata;
|
|
|
|
sdata = container_of(wk, struct ieee80211_sub_if_data,
|
|
dec_tailroom_needed_wk.work);
|
|
|
|
/*
|
|
* The reason for the delayed tailroom needed decrementing is to
|
|
* make roaming faster: during roaming, all keys are first deleted
|
|
* and then new keys are installed. The first new key causes the
|
|
* crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
|
|
* the cost of synchronize_net() (which can be slow). Avoid this
|
|
* by deferring the crypto_tx_tailroom_needed_cnt decrementing on
|
|
* key removal for a while, so if we roam the value is larger than
|
|
* zero and no 0->1 transition happens.
|
|
*
|
|
* The cost is that if the AP switching was from an AP with keys
|
|
* to one without, we still allocate tailroom while it would no
|
|
* longer be needed. However, in the typical (fast) roaming case
|
|
* within an ESS this usually won't happen.
|
|
*/
|
|
|
|
mutex_lock(&sdata->local->key_mtx);
|
|
decrease_tailroom_need_count(sdata,
|
|
sdata->crypto_tx_tailroom_pending_dec);
|
|
sdata->crypto_tx_tailroom_pending_dec = 0;
|
|
mutex_unlock(&sdata->local->key_mtx);
|
|
}
|
|
|
|
void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
|
|
const u8 *replay_ctr, gfp_t gfp)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
|
|
|
trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
|
|
|
|
cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
|
|
|
|
void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
|
|
int tid, struct ieee80211_key_seq *seq)
|
|
{
|
|
struct ieee80211_key *key;
|
|
const u8 *pn;
|
|
|
|
key = container_of(keyconf, struct ieee80211_key, conf);
|
|
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
|
|
seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
if (tid < 0)
|
|
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
|
|
else
|
|
pn = key->u.ccmp.rx_pn[tid];
|
|
memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
if (WARN_ON(tid != 0))
|
|
return;
|
|
pn = key->u.aes_cmac.rx_pn;
|
|
memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
if (WARN_ON(tid != 0))
|
|
return;
|
|
pn = key->u.aes_gmac.rx_pn;
|
|
memcpy(seq->aes_gmac.pn, pn, IEEE80211_GMAC_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
if (tid < 0)
|
|
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
|
|
else
|
|
pn = key->u.gcmp.rx_pn[tid];
|
|
memcpy(seq->gcmp.pn, pn, IEEE80211_GCMP_PN_LEN);
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
|
|
|
|
void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
|
|
int tid, struct ieee80211_key_seq *seq)
|
|
{
|
|
struct ieee80211_key *key;
|
|
u8 *pn;
|
|
|
|
key = container_of(keyconf, struct ieee80211_key, conf);
|
|
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_TKIP:
|
|
if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
|
|
key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
if (tid < 0)
|
|
pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
|
|
else
|
|
pn = key->u.ccmp.rx_pn[tid];
|
|
memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
if (WARN_ON(tid != 0))
|
|
return;
|
|
pn = key->u.aes_cmac.rx_pn;
|
|
memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
if (WARN_ON(tid != 0))
|
|
return;
|
|
pn = key->u.aes_gmac.rx_pn;
|
|
memcpy(pn, seq->aes_gmac.pn, IEEE80211_GMAC_PN_LEN);
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
|
|
return;
|
|
if (tid < 0)
|
|
pn = key->u.gcmp.rx_pn[IEEE80211_NUM_TIDS];
|
|
else
|
|
pn = key->u.gcmp.rx_pn[tid];
|
|
memcpy(pn, seq->gcmp.pn, IEEE80211_GCMP_PN_LEN);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
|
|
|
|
void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
|
|
{
|
|
struct ieee80211_key *key;
|
|
|
|
key = container_of(keyconf, struct ieee80211_key, conf);
|
|
|
|
assert_key_lock(key->local);
|
|
|
|
/*
|
|
* if key was uploaded, we assume the driver will/has remove(d)
|
|
* it, so adjust bookkeeping accordingly
|
|
*/
|
|
if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
|
|
key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
|
|
|
|
if (!(key->conf.flags & (IEEE80211_KEY_FLAG_GENERATE_MMIC |
|
|
IEEE80211_KEY_FLAG_PUT_MIC_SPACE |
|
|
IEEE80211_KEY_FLAG_RESERVE_TAILROOM)))
|
|
increment_tailroom_need_count(key->sdata);
|
|
}
|
|
|
|
ieee80211_key_free(key, false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_remove_key);
|
|
|
|
struct ieee80211_key_conf *
|
|
ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
|
|
struct ieee80211_key_conf *keyconf)
|
|
{
|
|
struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
|
|
struct ieee80211_local *local = sdata->local;
|
|
struct ieee80211_key *key;
|
|
int err;
|
|
|
|
if (WARN_ON(!local->wowlan))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
|
|
keyconf->keylen, keyconf->key,
|
|
0, NULL, NULL);
|
|
if (IS_ERR(key))
|
|
return ERR_CAST(key);
|
|
|
|
if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
|
|
key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
|
|
|
|
err = ieee80211_key_link(key, sdata, NULL);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
return &key->conf;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
|
|
|
|
void ieee80211_key_mic_failure(struct ieee80211_key_conf *keyconf)
|
|
{
|
|
struct ieee80211_key *key;
|
|
|
|
key = container_of(keyconf, struct ieee80211_key, conf);
|
|
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
key->u.aes_cmac.icverrors++;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
key->u.aes_gmac.icverrors++;
|
|
break;
|
|
default:
|
|
/* ignore the others for now, we don't keep counters now */
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_key_mic_failure);
|
|
|
|
void ieee80211_key_replay(struct ieee80211_key_conf *keyconf)
|
|
{
|
|
struct ieee80211_key *key;
|
|
|
|
key = container_of(keyconf, struct ieee80211_key, conf);
|
|
|
|
switch (key->conf.cipher) {
|
|
case WLAN_CIPHER_SUITE_CCMP:
|
|
case WLAN_CIPHER_SUITE_CCMP_256:
|
|
key->u.ccmp.replays++;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_AES_CMAC:
|
|
case WLAN_CIPHER_SUITE_BIP_CMAC_256:
|
|
key->u.aes_cmac.replays++;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_128:
|
|
case WLAN_CIPHER_SUITE_BIP_GMAC_256:
|
|
key->u.aes_gmac.replays++;
|
|
break;
|
|
case WLAN_CIPHER_SUITE_GCMP:
|
|
case WLAN_CIPHER_SUITE_GCMP_256:
|
|
key->u.gcmp.replays++;
|
|
break;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(ieee80211_key_replay);
|