linux/drivers/video/fbdev/da8xx-fb.c

1670 lines
42 KiB
C

/*
* Copyright (C) 2008-2009 MontaVista Software Inc.
* Copyright (C) 2008-2009 Texas Instruments Inc
*
* Based on the LCD driver for TI Avalanche processors written by
* Ajay Singh and Shalom Hai.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option)any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/uaccess.h>
#include <linux/pm_runtime.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/clk.h>
#include <linux/cpufreq.h>
#include <linux/console.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/lcm.h>
#include <video/da8xx-fb.h>
#include <asm/div64.h>
#define DRIVER_NAME "da8xx_lcdc"
#define LCD_VERSION_1 1
#define LCD_VERSION_2 2
/* LCD Status Register */
#define LCD_END_OF_FRAME1 BIT(9)
#define LCD_END_OF_FRAME0 BIT(8)
#define LCD_PL_LOAD_DONE BIT(6)
#define LCD_FIFO_UNDERFLOW BIT(5)
#define LCD_SYNC_LOST BIT(2)
#define LCD_FRAME_DONE BIT(0)
/* LCD DMA Control Register */
#define LCD_DMA_BURST_SIZE(x) ((x) << 4)
#define LCD_DMA_BURST_1 0x0
#define LCD_DMA_BURST_2 0x1
#define LCD_DMA_BURST_4 0x2
#define LCD_DMA_BURST_8 0x3
#define LCD_DMA_BURST_16 0x4
#define LCD_V1_END_OF_FRAME_INT_ENA BIT(2)
#define LCD_V2_END_OF_FRAME0_INT_ENA BIT(8)
#define LCD_V2_END_OF_FRAME1_INT_ENA BIT(9)
#define LCD_DUAL_FRAME_BUFFER_ENABLE BIT(0)
/* LCD Control Register */
#define LCD_CLK_DIVISOR(x) ((x) << 8)
#define LCD_RASTER_MODE 0x01
/* LCD Raster Control Register */
#define LCD_PALETTE_LOAD_MODE(x) ((x) << 20)
#define PALETTE_AND_DATA 0x00
#define PALETTE_ONLY 0x01
#define DATA_ONLY 0x02
#define LCD_MONO_8BIT_MODE BIT(9)
#define LCD_RASTER_ORDER BIT(8)
#define LCD_TFT_MODE BIT(7)
#define LCD_V1_UNDERFLOW_INT_ENA BIT(6)
#define LCD_V2_UNDERFLOW_INT_ENA BIT(5)
#define LCD_V1_PL_INT_ENA BIT(4)
#define LCD_V2_PL_INT_ENA BIT(6)
#define LCD_MONOCHROME_MODE BIT(1)
#define LCD_RASTER_ENABLE BIT(0)
#define LCD_TFT_ALT_ENABLE BIT(23)
#define LCD_STN_565_ENABLE BIT(24)
#define LCD_V2_DMA_CLK_EN BIT(2)
#define LCD_V2_LIDD_CLK_EN BIT(1)
#define LCD_V2_CORE_CLK_EN BIT(0)
#define LCD_V2_LPP_B10 26
#define LCD_V2_TFT_24BPP_MODE BIT(25)
#define LCD_V2_TFT_24BPP_UNPACK BIT(26)
/* LCD Raster Timing 2 Register */
#define LCD_AC_BIAS_TRANSITIONS_PER_INT(x) ((x) << 16)
#define LCD_AC_BIAS_FREQUENCY(x) ((x) << 8)
#define LCD_SYNC_CTRL BIT(25)
#define LCD_SYNC_EDGE BIT(24)
#define LCD_INVERT_PIXEL_CLOCK BIT(22)
#define LCD_INVERT_LINE_CLOCK BIT(21)
#define LCD_INVERT_FRAME_CLOCK BIT(20)
/* LCD Block */
#define LCD_PID_REG 0x0
#define LCD_CTRL_REG 0x4
#define LCD_STAT_REG 0x8
#define LCD_RASTER_CTRL_REG 0x28
#define LCD_RASTER_TIMING_0_REG 0x2C
#define LCD_RASTER_TIMING_1_REG 0x30
#define LCD_RASTER_TIMING_2_REG 0x34
#define LCD_DMA_CTRL_REG 0x40
#define LCD_DMA_FRM_BUF_BASE_ADDR_0_REG 0x44
#define LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG 0x48
#define LCD_DMA_FRM_BUF_BASE_ADDR_1_REG 0x4C
#define LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG 0x50
/* Interrupt Registers available only in Version 2 */
#define LCD_RAW_STAT_REG 0x58
#define LCD_MASKED_STAT_REG 0x5c
#define LCD_INT_ENABLE_SET_REG 0x60
#define LCD_INT_ENABLE_CLR_REG 0x64
#define LCD_END_OF_INT_IND_REG 0x68
/* Clock registers available only on Version 2 */
#define LCD_CLK_ENABLE_REG 0x6c
#define LCD_CLK_RESET_REG 0x70
#define LCD_CLK_MAIN_RESET BIT(3)
#define LCD_NUM_BUFFERS 2
#define PALETTE_SIZE 256
#define CLK_MIN_DIV 2
#define CLK_MAX_DIV 255
static void __iomem *da8xx_fb_reg_base;
static unsigned int lcd_revision;
static irq_handler_t lcdc_irq_handler;
static wait_queue_head_t frame_done_wq;
static int frame_done_flag;
static unsigned int lcdc_read(unsigned int addr)
{
return (unsigned int)__raw_readl(da8xx_fb_reg_base + (addr));
}
static void lcdc_write(unsigned int val, unsigned int addr)
{
__raw_writel(val, da8xx_fb_reg_base + (addr));
}
struct da8xx_fb_par {
struct device *dev;
dma_addr_t p_palette_base;
unsigned char *v_palette_base;
dma_addr_t vram_phys;
unsigned long vram_size;
void *vram_virt;
unsigned int dma_start;
unsigned int dma_end;
struct clk *lcdc_clk;
int irq;
unsigned int palette_sz;
int blank;
wait_queue_head_t vsync_wait;
int vsync_flag;
int vsync_timeout;
spinlock_t lock_for_chan_update;
/*
* LCDC has 2 ping pong DMA channels, channel 0
* and channel 1.
*/
unsigned int which_dma_channel_done;
#ifdef CONFIG_CPU_FREQ
struct notifier_block freq_transition;
#endif
unsigned int lcdc_clk_rate;
void (*panel_power_ctrl)(int);
u32 pseudo_palette[16];
struct fb_videomode mode;
struct lcd_ctrl_config cfg;
};
static struct fb_var_screeninfo da8xx_fb_var;
static struct fb_fix_screeninfo da8xx_fb_fix = {
.id = "DA8xx FB Drv",
.type = FB_TYPE_PACKED_PIXELS,
.type_aux = 0,
.visual = FB_VISUAL_PSEUDOCOLOR,
.xpanstep = 0,
.ypanstep = 1,
.ywrapstep = 0,
.accel = FB_ACCEL_NONE
};
static struct fb_videomode known_lcd_panels[] = {
/* Sharp LCD035Q3DG01 */
[0] = {
.name = "Sharp_LCD035Q3DG01",
.xres = 320,
.yres = 240,
.pixclock = KHZ2PICOS(4607),
.left_margin = 6,
.right_margin = 8,
.upper_margin = 2,
.lower_margin = 2,
.hsync_len = 0,
.vsync_len = 0,
.sync = FB_SYNC_CLK_INVERT,
},
/* Sharp LK043T1DG01 */
[1] = {
.name = "Sharp_LK043T1DG01",
.xres = 480,
.yres = 272,
.pixclock = KHZ2PICOS(7833),
.left_margin = 2,
.right_margin = 2,
.upper_margin = 2,
.lower_margin = 2,
.hsync_len = 41,
.vsync_len = 10,
.sync = 0,
.flag = 0,
},
[2] = {
/* Hitachi SP10Q010 */
.name = "SP10Q010",
.xres = 320,
.yres = 240,
.pixclock = KHZ2PICOS(7833),
.left_margin = 10,
.right_margin = 10,
.upper_margin = 10,
.lower_margin = 10,
.hsync_len = 10,
.vsync_len = 10,
.sync = 0,
.flag = 0,
},
[3] = {
/* Densitron 84-0023-001T */
.name = "Densitron_84-0023-001T",
.xres = 320,
.yres = 240,
.pixclock = KHZ2PICOS(6400),
.left_margin = 0,
.right_margin = 0,
.upper_margin = 0,
.lower_margin = 0,
.hsync_len = 30,
.vsync_len = 3,
.sync = 0,
},
};
static bool da8xx_fb_is_raster_enabled(void)
{
return !!(lcdc_read(LCD_RASTER_CTRL_REG) & LCD_RASTER_ENABLE);
}
/* Enable the Raster Engine of the LCD Controller */
static void lcd_enable_raster(void)
{
u32 reg;
/* Put LCDC in reset for several cycles */
if (lcd_revision == LCD_VERSION_2)
/* Write 1 to reset LCDC */
lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG);
mdelay(1);
/* Bring LCDC out of reset */
if (lcd_revision == LCD_VERSION_2)
lcdc_write(0, LCD_CLK_RESET_REG);
mdelay(1);
/* Above reset sequence doesnot reset register context */
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (!(reg & LCD_RASTER_ENABLE))
lcdc_write(reg | LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
}
/* Disable the Raster Engine of the LCD Controller */
static void lcd_disable_raster(enum da8xx_frame_complete wait_for_frame_done)
{
u32 reg;
int ret;
reg = lcdc_read(LCD_RASTER_CTRL_REG);
if (reg & LCD_RASTER_ENABLE)
lcdc_write(reg & ~LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG);
else
/* return if already disabled */
return;
if ((wait_for_frame_done == DA8XX_FRAME_WAIT) &&
(lcd_revision == LCD_VERSION_2)) {
frame_done_flag = 0;
ret = wait_event_interruptible_timeout(frame_done_wq,
frame_done_flag != 0,
msecs_to_jiffies(50));
if (ret == 0)
pr_err("LCD Controller timed out\n");
}
}
static void lcd_blit(int load_mode, struct da8xx_fb_par *par)
{
u32 start;
u32 end;
u32 reg_ras;
u32 reg_dma;
u32 reg_int;
/* init reg to clear PLM (loading mode) fields */
reg_ras = lcdc_read(LCD_RASTER_CTRL_REG);
reg_ras &= ~(3 << 20);
reg_dma = lcdc_read(LCD_DMA_CTRL_REG);
if (load_mode == LOAD_DATA) {
start = par->dma_start;
end = par->dma_end;
reg_ras |= LCD_PALETTE_LOAD_MODE(DATA_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_dma |= LCD_V1_END_OF_FRAME_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_END_OF_FRAME0_INT_ENA |
LCD_V2_END_OF_FRAME1_INT_ENA |
LCD_FRAME_DONE | LCD_SYNC_LOST;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
reg_dma |= LCD_DUAL_FRAME_BUFFER_ENABLE;
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
} else if (load_mode == LOAD_PALETTE) {
start = par->p_palette_base;
end = start + par->palette_sz - 1;
reg_ras |= LCD_PALETTE_LOAD_MODE(PALETTE_ONLY);
if (lcd_revision == LCD_VERSION_1) {
reg_ras |= LCD_V1_PL_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_PL_INT_ENA;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
}
lcdc_write(reg_dma, LCD_DMA_CTRL_REG);
lcdc_write(reg_ras, LCD_RASTER_CTRL_REG);
/*
* The Raster enable bit must be set after all other control fields are
* set.
*/
lcd_enable_raster();
}
/* Configure the Burst Size and fifo threhold of DMA */
static int lcd_cfg_dma(int burst_size, int fifo_th)
{
u32 reg;
reg = lcdc_read(LCD_DMA_CTRL_REG) & 0x00000001;
switch (burst_size) {
case 1:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_1);
break;
case 2:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_2);
break;
case 4:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_4);
break;
case 8:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_8);
break;
case 16:
default:
reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_16);
break;
}
reg |= (fifo_th << 8);
lcdc_write(reg, LCD_DMA_CTRL_REG);
return 0;
}
static void lcd_cfg_ac_bias(int period, int transitions_per_int)
{
u32 reg;
/* Set the AC Bias Period and Number of Transisitons per Interrupt */
reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & 0xFFF00000;
reg |= LCD_AC_BIAS_FREQUENCY(period) |
LCD_AC_BIAS_TRANSITIONS_PER_INT(transitions_per_int);
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
static void lcd_cfg_horizontal_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_0_REG) & 0x3ff;
reg |= (((back_porch-1) & 0xff) << 24)
| (((front_porch-1) & 0xff) << 16)
| (((pulse_width-1) & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
/*
* LCDC Version 2 adds some extra bits that increase the allowable
* size of the horizontal timing registers.
* remember that the registers use 0 to represent 1 so all values
* that get set into register need to be decremented by 1
*/
if (lcd_revision == LCD_VERSION_2) {
/* Mask off the bits we want to change */
reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & ~0x780000ff;
reg |= ((front_porch-1) & 0x300) >> 8;
reg |= ((back_porch-1) & 0x300) >> 4;
reg |= ((pulse_width-1) & 0x3c0) << 21;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
}
static void lcd_cfg_vertical_sync(int back_porch, int pulse_width,
int front_porch)
{
u32 reg;
reg = lcdc_read(LCD_RASTER_TIMING_1_REG) & 0x3ff;
reg |= ((back_porch & 0xff) << 24)
| ((front_porch & 0xff) << 16)
| (((pulse_width-1) & 0x3f) << 10);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
}
static int lcd_cfg_display(const struct lcd_ctrl_config *cfg,
struct fb_videomode *panel)
{
u32 reg;
u32 reg_int;
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(LCD_TFT_MODE |
LCD_MONO_8BIT_MODE |
LCD_MONOCHROME_MODE);
switch (cfg->panel_shade) {
case MONOCHROME:
reg |= LCD_MONOCHROME_MODE;
if (cfg->mono_8bit_mode)
reg |= LCD_MONO_8BIT_MODE;
break;
case COLOR_ACTIVE:
reg |= LCD_TFT_MODE;
if (cfg->tft_alt_mode)
reg |= LCD_TFT_ALT_ENABLE;
break;
case COLOR_PASSIVE:
/* AC bias applicable only for Pasive panels */
lcd_cfg_ac_bias(cfg->ac_bias, cfg->ac_bias_intrpt);
if (cfg->bpp == 12 && cfg->stn_565_mode)
reg |= LCD_STN_565_ENABLE;
break;
default:
return -EINVAL;
}
/* enable additional interrupts here */
if (lcd_revision == LCD_VERSION_1) {
reg |= LCD_V1_UNDERFLOW_INT_ENA;
} else {
reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) |
LCD_V2_UNDERFLOW_INT_ENA;
lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(reg, LCD_RASTER_CTRL_REG);
reg = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg |= LCD_SYNC_CTRL;
if (cfg->sync_edge)
reg |= LCD_SYNC_EDGE;
else
reg &= ~LCD_SYNC_EDGE;
if ((panel->sync & FB_SYNC_HOR_HIGH_ACT) == 0)
reg |= LCD_INVERT_LINE_CLOCK;
else
reg &= ~LCD_INVERT_LINE_CLOCK;
if ((panel->sync & FB_SYNC_VERT_HIGH_ACT) == 0)
reg |= LCD_INVERT_FRAME_CLOCK;
else
reg &= ~LCD_INVERT_FRAME_CLOCK;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
return 0;
}
static int lcd_cfg_frame_buffer(struct da8xx_fb_par *par, u32 width, u32 height,
u32 bpp, u32 raster_order)
{
u32 reg;
if (bpp > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
/* Set the Panel Width */
/* Pixels per line = (PPL + 1)*16 */
if (lcd_revision == LCD_VERSION_1) {
/*
* 0x3F in bits 4..9 gives max horizontal resolution = 1024
* pixels.
*/
width &= 0x3f0;
} else {
/*
* 0x7F in bits 4..10 gives max horizontal resolution = 2048
* pixels.
*/
width &= 0x7f0;
}
reg = lcdc_read(LCD_RASTER_TIMING_0_REG);
reg &= 0xfffffc00;
if (lcd_revision == LCD_VERSION_1) {
reg |= ((width >> 4) - 1) << 4;
} else {
width = (width >> 4) - 1;
reg |= ((width & 0x3f) << 4) | ((width & 0x40) >> 3);
}
lcdc_write(reg, LCD_RASTER_TIMING_0_REG);
/* Set the Panel Height */
/* Set bits 9:0 of Lines Per Pixel */
reg = lcdc_read(LCD_RASTER_TIMING_1_REG);
reg = ((height - 1) & 0x3ff) | (reg & 0xfffffc00);
lcdc_write(reg, LCD_RASTER_TIMING_1_REG);
/* Set bit 10 of Lines Per Pixel */
if (lcd_revision == LCD_VERSION_2) {
reg = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg |= ((height - 1) & 0x400) << 16;
lcdc_write(reg, LCD_RASTER_TIMING_2_REG);
}
/* Set the Raster Order of the Frame Buffer */
reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(1 << 8);
if (raster_order)
reg |= LCD_RASTER_ORDER;
par->palette_sz = 16 * 2;
switch (bpp) {
case 1:
case 2:
case 4:
case 16:
break;
case 24:
reg |= LCD_V2_TFT_24BPP_MODE;
break;
case 32:
reg |= LCD_V2_TFT_24BPP_MODE;
reg |= LCD_V2_TFT_24BPP_UNPACK;
break;
case 8:
par->palette_sz = 256 * 2;
break;
default:
return -EINVAL;
}
lcdc_write(reg, LCD_RASTER_CTRL_REG);
return 0;
}
#define CNVT_TOHW(val, width) ((((val) << (width)) + 0x7FFF - (val)) >> 16)
static int fb_setcolreg(unsigned regno, unsigned red, unsigned green,
unsigned blue, unsigned transp,
struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
unsigned short *palette = (unsigned short *) par->v_palette_base;
u_short pal;
int update_hw = 0;
if (regno > 255)
return 1;
if (info->fix.visual == FB_VISUAL_DIRECTCOLOR)
return 1;
if (info->var.bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
switch (info->fix.visual) {
case FB_VISUAL_TRUECOLOR:
red = CNVT_TOHW(red, info->var.red.length);
green = CNVT_TOHW(green, info->var.green.length);
blue = CNVT_TOHW(blue, info->var.blue.length);
break;
case FB_VISUAL_PSEUDOCOLOR:
switch (info->var.bits_per_pixel) {
case 4:
if (regno > 15)
return -EINVAL;
if (info->var.grayscale) {
pal = regno;
} else {
red >>= 4;
green >>= 8;
blue >>= 12;
pal = red & 0x0f00;
pal |= green & 0x00f0;
pal |= blue & 0x000f;
}
if (regno == 0)
pal |= 0x2000;
palette[regno] = pal;
break;
case 8:
red >>= 4;
green >>= 8;
blue >>= 12;
pal = (red & 0x0f00);
pal |= (green & 0x00f0);
pal |= (blue & 0x000f);
if (palette[regno] != pal) {
update_hw = 1;
palette[regno] = pal;
}
break;
}
break;
}
/* Truecolor has hardware independent palette */
if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
u32 v;
if (regno > 15)
return -EINVAL;
v = (red << info->var.red.offset) |
(green << info->var.green.offset) |
(blue << info->var.blue.offset);
((u32 *) (info->pseudo_palette))[regno] = v;
if (palette[0] != 0x4000) {
update_hw = 1;
palette[0] = 0x4000;
}
}
/* Update the palette in the h/w as needed. */
if (update_hw)
lcd_blit(LOAD_PALETTE, par);
return 0;
}
#undef CNVT_TOHW
static void da8xx_fb_lcd_reset(void)
{
/* DMA has to be disabled */
lcdc_write(0, LCD_DMA_CTRL_REG);
lcdc_write(0, LCD_RASTER_CTRL_REG);
if (lcd_revision == LCD_VERSION_2) {
lcdc_write(0, LCD_INT_ENABLE_SET_REG);
/* Write 1 to reset */
lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG);
lcdc_write(0, LCD_CLK_RESET_REG);
}
}
static int da8xx_fb_config_clk_divider(struct da8xx_fb_par *par,
unsigned lcdc_clk_div,
unsigned lcdc_clk_rate)
{
int ret;
if (par->lcdc_clk_rate != lcdc_clk_rate) {
ret = clk_set_rate(par->lcdc_clk, lcdc_clk_rate);
if (ret) {
dev_err(par->dev,
"unable to set clock rate at %u\n",
lcdc_clk_rate);
return ret;
}
par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk);
}
/* Configure the LCD clock divisor. */
lcdc_write(LCD_CLK_DIVISOR(lcdc_clk_div) |
(LCD_RASTER_MODE & 0x1), LCD_CTRL_REG);
if (lcd_revision == LCD_VERSION_2)
lcdc_write(LCD_V2_DMA_CLK_EN | LCD_V2_LIDD_CLK_EN |
LCD_V2_CORE_CLK_EN, LCD_CLK_ENABLE_REG);
return 0;
}
static unsigned int da8xx_fb_calc_clk_divider(struct da8xx_fb_par *par,
unsigned pixclock,
unsigned *lcdc_clk_rate)
{
unsigned lcdc_clk_div;
pixclock = PICOS2KHZ(pixclock) * 1000;
*lcdc_clk_rate = par->lcdc_clk_rate;
if (pixclock < (*lcdc_clk_rate / CLK_MAX_DIV)) {
*lcdc_clk_rate = clk_round_rate(par->lcdc_clk,
pixclock * CLK_MAX_DIV);
lcdc_clk_div = CLK_MAX_DIV;
} else if (pixclock > (*lcdc_clk_rate / CLK_MIN_DIV)) {
*lcdc_clk_rate = clk_round_rate(par->lcdc_clk,
pixclock * CLK_MIN_DIV);
lcdc_clk_div = CLK_MIN_DIV;
} else {
lcdc_clk_div = *lcdc_clk_rate / pixclock;
}
return lcdc_clk_div;
}
static int da8xx_fb_calc_config_clk_divider(struct da8xx_fb_par *par,
struct fb_videomode *mode)
{
unsigned lcdc_clk_rate;
unsigned lcdc_clk_div = da8xx_fb_calc_clk_divider(par, mode->pixclock,
&lcdc_clk_rate);
return da8xx_fb_config_clk_divider(par, lcdc_clk_div, lcdc_clk_rate);
}
static unsigned da8xx_fb_round_clk(struct da8xx_fb_par *par,
unsigned pixclock)
{
unsigned lcdc_clk_div, lcdc_clk_rate;
lcdc_clk_div = da8xx_fb_calc_clk_divider(par, pixclock, &lcdc_clk_rate);
return KHZ2PICOS(lcdc_clk_rate / (1000 * lcdc_clk_div));
}
static int lcd_init(struct da8xx_fb_par *par, const struct lcd_ctrl_config *cfg,
struct fb_videomode *panel)
{
u32 bpp;
int ret = 0;
ret = da8xx_fb_calc_config_clk_divider(par, panel);
if (ret) {
dev_err(par->dev, "unable to configure clock\n");
return ret;
}
if (panel->sync & FB_SYNC_CLK_INVERT)
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) |
LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
else
lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) &
~LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG);
/* Configure the DMA burst size and fifo threshold. */
ret = lcd_cfg_dma(cfg->dma_burst_sz, cfg->fifo_th);
if (ret < 0)
return ret;
/* Configure the vertical and horizontal sync properties. */
lcd_cfg_vertical_sync(panel->upper_margin, panel->vsync_len,
panel->lower_margin);
lcd_cfg_horizontal_sync(panel->left_margin, panel->hsync_len,
panel->right_margin);
/* Configure for disply */
ret = lcd_cfg_display(cfg, panel);
if (ret < 0)
return ret;
bpp = cfg->bpp;
if (bpp == 12)
bpp = 16;
ret = lcd_cfg_frame_buffer(par, (unsigned int)panel->xres,
(unsigned int)panel->yres, bpp,
cfg->raster_order);
if (ret < 0)
return ret;
/* Configure FDD */
lcdc_write((lcdc_read(LCD_RASTER_CTRL_REG) & 0xfff00fff) |
(cfg->fdd << 12), LCD_RASTER_CTRL_REG);
return 0;
}
/* IRQ handler for version 2 of LCDC */
static irqreturn_t lcdc_irq_handler_rev02(int irq, void *arg)
{
struct da8xx_fb_par *par = arg;
u32 stat = lcdc_read(LCD_MASKED_STAT_REG);
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
lcd_disable_raster(DA8XX_FRAME_NOWAIT);
lcdc_write(stat, LCD_MASKED_STAT_REG);
lcd_enable_raster();
} else if (stat & LCD_PL_LOAD_DONE) {
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(DA8XX_FRAME_NOWAIT);
lcdc_write(stat, LCD_MASKED_STAT_REG);
/* Disable PL completion interrupt */
lcdc_write(LCD_V2_PL_INT_ENA, LCD_INT_ENABLE_CLR_REG);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
} else {
lcdc_write(stat, LCD_MASKED_STAT_REG);
if (stat & LCD_END_OF_FRAME0) {
par->which_dma_channel_done = 0;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
if (stat & LCD_END_OF_FRAME1) {
par->which_dma_channel_done = 1;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
/* Set only when controller is disabled and at the end of
* active frame
*/
if (stat & BIT(0)) {
frame_done_flag = 1;
wake_up_interruptible(&frame_done_wq);
}
}
lcdc_write(0, LCD_END_OF_INT_IND_REG);
return IRQ_HANDLED;
}
/* IRQ handler for version 1 LCDC */
static irqreturn_t lcdc_irq_handler_rev01(int irq, void *arg)
{
struct da8xx_fb_par *par = arg;
u32 stat = lcdc_read(LCD_STAT_REG);
u32 reg_ras;
if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) {
lcd_disable_raster(DA8XX_FRAME_NOWAIT);
lcdc_write(stat, LCD_STAT_REG);
lcd_enable_raster();
} else if (stat & LCD_PL_LOAD_DONE) {
/*
* Must disable raster before changing state of any control bit.
* And also must be disabled before clearing the PL loading
* interrupt via the following write to the status register. If
* this is done after then one gets multiple PL done interrupts.
*/
lcd_disable_raster(DA8XX_FRAME_NOWAIT);
lcdc_write(stat, LCD_STAT_REG);
/* Disable PL completion inerrupt */
reg_ras = lcdc_read(LCD_RASTER_CTRL_REG);
reg_ras &= ~LCD_V1_PL_INT_ENA;
lcdc_write(reg_ras, LCD_RASTER_CTRL_REG);
/* Setup and start data loading mode */
lcd_blit(LOAD_DATA, par);
} else {
lcdc_write(stat, LCD_STAT_REG);
if (stat & LCD_END_OF_FRAME0) {
par->which_dma_channel_done = 0;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
if (stat & LCD_END_OF_FRAME1) {
par->which_dma_channel_done = 1;
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
par->vsync_flag = 1;
wake_up_interruptible(&par->vsync_wait);
}
}
return IRQ_HANDLED;
}
static int fb_check_var(struct fb_var_screeninfo *var,
struct fb_info *info)
{
int err = 0;
struct da8xx_fb_par *par = info->par;
int bpp = var->bits_per_pixel >> 3;
unsigned long line_size = var->xres_virtual * bpp;
if (var->bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1)
return -EINVAL;
switch (var->bits_per_pixel) {
case 1:
case 8:
var->red.offset = 0;
var->red.length = 8;
var->green.offset = 0;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = 0;
break;
case 4:
var->red.offset = 0;
var->red.length = 4;
var->green.offset = 0;
var->green.length = 4;
var->blue.offset = 0;
var->blue.length = 4;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = FB_NONSTD_REV_PIX_IN_B;
break;
case 16: /* RGB 565 */
var->red.offset = 11;
var->red.length = 5;
var->green.offset = 5;
var->green.length = 6;
var->blue.offset = 0;
var->blue.length = 5;
var->transp.offset = 0;
var->transp.length = 0;
var->nonstd = 0;
break;
case 24:
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->nonstd = 0;
break;
case 32:
var->transp.offset = 24;
var->transp.length = 8;
var->red.offset = 16;
var->red.length = 8;
var->green.offset = 8;
var->green.length = 8;
var->blue.offset = 0;
var->blue.length = 8;
var->nonstd = 0;
break;
default:
err = -EINVAL;
}
var->red.msb_right = 0;
var->green.msb_right = 0;
var->blue.msb_right = 0;
var->transp.msb_right = 0;
if (line_size * var->yres_virtual > par->vram_size)
var->yres_virtual = par->vram_size / line_size;
if (var->yres > var->yres_virtual)
var->yres = var->yres_virtual;
if (var->xres > var->xres_virtual)
var->xres = var->xres_virtual;
if (var->xres + var->xoffset > var->xres_virtual)
var->xoffset = var->xres_virtual - var->xres;
if (var->yres + var->yoffset > var->yres_virtual)
var->yoffset = var->yres_virtual - var->yres;
var->pixclock = da8xx_fb_round_clk(par, var->pixclock);
return err;
}
#ifdef CONFIG_CPU_FREQ
static int lcd_da8xx_cpufreq_transition(struct notifier_block *nb,
unsigned long val, void *data)
{
struct da8xx_fb_par *par;
par = container_of(nb, struct da8xx_fb_par, freq_transition);
if (val == CPUFREQ_POSTCHANGE) {
if (par->lcdc_clk_rate != clk_get_rate(par->lcdc_clk)) {
par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk);
lcd_disable_raster(DA8XX_FRAME_WAIT);
da8xx_fb_calc_config_clk_divider(par, &par->mode);
if (par->blank == FB_BLANK_UNBLANK)
lcd_enable_raster();
}
}
return 0;
}
static int lcd_da8xx_cpufreq_register(struct da8xx_fb_par *par)
{
par->freq_transition.notifier_call = lcd_da8xx_cpufreq_transition;
return cpufreq_register_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
static void lcd_da8xx_cpufreq_deregister(struct da8xx_fb_par *par)
{
cpufreq_unregister_notifier(&par->freq_transition,
CPUFREQ_TRANSITION_NOTIFIER);
}
#endif
static int fb_remove(struct platform_device *dev)
{
struct fb_info *info = dev_get_drvdata(&dev->dev);
if (info) {
struct da8xx_fb_par *par = info->par;
#ifdef CONFIG_CPU_FREQ
lcd_da8xx_cpufreq_deregister(par);
#endif
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster(DA8XX_FRAME_WAIT);
lcdc_write(0, LCD_RASTER_CTRL_REG);
/* disable DMA */
lcdc_write(0, LCD_DMA_CTRL_REG);
unregister_framebuffer(info);
fb_dealloc_cmap(&info->cmap);
dma_free_coherent(par->dev, PALETTE_SIZE, par->v_palette_base,
par->p_palette_base);
dma_free_coherent(par->dev, par->vram_size, par->vram_virt,
par->vram_phys);
pm_runtime_put_sync(&dev->dev);
pm_runtime_disable(&dev->dev);
framebuffer_release(info);
}
return 0;
}
/*
* Function to wait for vertical sync which for this LCD peripheral
* translates into waiting for the current raster frame to complete.
*/
static int fb_wait_for_vsync(struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret;
/*
* Set flag to 0 and wait for isr to set to 1. It would seem there is a
* race condition here where the ISR could have occurred just before or
* just after this set. But since we are just coarsely waiting for
* a frame to complete then that's OK. i.e. if the frame completed
* just before this code executed then we have to wait another full
* frame time but there is no way to avoid such a situation. On the
* other hand if the frame completed just after then we don't need
* to wait long at all. Either way we are guaranteed to return to the
* user immediately after a frame completion which is all that is
* required.
*/
par->vsync_flag = 0;
ret = wait_event_interruptible_timeout(par->vsync_wait,
par->vsync_flag != 0,
par->vsync_timeout);
if (ret < 0)
return ret;
if (ret == 0)
return -ETIMEDOUT;
return 0;
}
static int fb_ioctl(struct fb_info *info, unsigned int cmd,
unsigned long arg)
{
struct lcd_sync_arg sync_arg;
switch (cmd) {
case FBIOGET_CONTRAST:
case FBIOPUT_CONTRAST:
case FBIGET_BRIGHTNESS:
case FBIPUT_BRIGHTNESS:
case FBIGET_COLOR:
case FBIPUT_COLOR:
return -ENOTTY;
case FBIPUT_HSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_horizontal_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
case FBIPUT_VSYNC:
if (copy_from_user(&sync_arg, (char *)arg,
sizeof(struct lcd_sync_arg)))
return -EFAULT;
lcd_cfg_vertical_sync(sync_arg.back_porch,
sync_arg.pulse_width,
sync_arg.front_porch);
break;
case FBIO_WAITFORVSYNC:
return fb_wait_for_vsync(info);
default:
return -EINVAL;
}
return 0;
}
static int cfb_blank(int blank, struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret = 0;
if (par->blank == blank)
return 0;
par->blank = blank;
switch (blank) {
case FB_BLANK_UNBLANK:
lcd_enable_raster();
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
break;
case FB_BLANK_NORMAL:
case FB_BLANK_VSYNC_SUSPEND:
case FB_BLANK_HSYNC_SUSPEND:
case FB_BLANK_POWERDOWN:
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
lcd_disable_raster(DA8XX_FRAME_WAIT);
break;
default:
ret = -EINVAL;
}
return ret;
}
/*
* Set new x,y offsets in the virtual display for the visible area and switch
* to the new mode.
*/
static int da8xx_pan_display(struct fb_var_screeninfo *var,
struct fb_info *fbi)
{
int ret = 0;
struct fb_var_screeninfo new_var;
struct da8xx_fb_par *par = fbi->par;
struct fb_fix_screeninfo *fix = &fbi->fix;
unsigned int end;
unsigned int start;
unsigned long irq_flags;
if (var->xoffset != fbi->var.xoffset ||
var->yoffset != fbi->var.yoffset) {
memcpy(&new_var, &fbi->var, sizeof(new_var));
new_var.xoffset = var->xoffset;
new_var.yoffset = var->yoffset;
if (fb_check_var(&new_var, fbi))
ret = -EINVAL;
else {
memcpy(&fbi->var, &new_var, sizeof(new_var));
start = fix->smem_start +
new_var.yoffset * fix->line_length +
new_var.xoffset * fbi->var.bits_per_pixel / 8;
end = start + fbi->var.yres * fix->line_length - 1;
par->dma_start = start;
par->dma_end = end;
spin_lock_irqsave(&par->lock_for_chan_update,
irq_flags);
if (par->which_dma_channel_done == 0) {
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
} else if (par->which_dma_channel_done == 1) {
lcdc_write(par->dma_start,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
}
spin_unlock_irqrestore(&par->lock_for_chan_update,
irq_flags);
}
}
return ret;
}
static int da8xxfb_set_par(struct fb_info *info)
{
struct da8xx_fb_par *par = info->par;
int ret;
bool raster = da8xx_fb_is_raster_enabled();
if (raster)
lcd_disable_raster(DA8XX_FRAME_WAIT);
fb_var_to_videomode(&par->mode, &info->var);
par->cfg.bpp = info->var.bits_per_pixel;
info->fix.visual = (par->cfg.bpp <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
info->fix.line_length = (par->mode.xres * par->cfg.bpp) / 8;
ret = lcd_init(par, &par->cfg, &par->mode);
if (ret < 0) {
dev_err(par->dev, "lcd init failed\n");
return ret;
}
par->dma_start = info->fix.smem_start +
info->var.yoffset * info->fix.line_length +
info->var.xoffset * info->var.bits_per_pixel / 8;
par->dma_end = par->dma_start +
info->var.yres * info->fix.line_length - 1;
lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
if (raster)
lcd_enable_raster();
return 0;
}
static struct fb_ops da8xx_fb_ops = {
.owner = THIS_MODULE,
.fb_check_var = fb_check_var,
.fb_set_par = da8xxfb_set_par,
.fb_setcolreg = fb_setcolreg,
.fb_pan_display = da8xx_pan_display,
.fb_ioctl = fb_ioctl,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = cfb_blank,
};
static struct fb_videomode *da8xx_fb_get_videomode(struct platform_device *dev)
{
struct da8xx_lcdc_platform_data *fb_pdata = dev_get_platdata(&dev->dev);
struct fb_videomode *lcdc_info;
int i;
for (i = 0, lcdc_info = known_lcd_panels;
i < ARRAY_SIZE(known_lcd_panels); i++, lcdc_info++) {
if (strcmp(fb_pdata->type, lcdc_info->name) == 0)
break;
}
if (i == ARRAY_SIZE(known_lcd_panels)) {
dev_err(&dev->dev, "no panel found\n");
return NULL;
}
dev_info(&dev->dev, "found %s panel\n", lcdc_info->name);
return lcdc_info;
}
static int fb_probe(struct platform_device *device)
{
struct da8xx_lcdc_platform_data *fb_pdata =
dev_get_platdata(&device->dev);
struct resource *lcdc_regs;
struct lcd_ctrl_config *lcd_cfg;
struct fb_videomode *lcdc_info;
struct fb_info *da8xx_fb_info;
struct da8xx_fb_par *par;
struct clk *tmp_lcdc_clk;
int ret;
unsigned long ulcm;
if (fb_pdata == NULL) {
dev_err(&device->dev, "Can not get platform data\n");
return -ENOENT;
}
lcdc_info = da8xx_fb_get_videomode(device);
if (lcdc_info == NULL)
return -ENODEV;
lcdc_regs = platform_get_resource(device, IORESOURCE_MEM, 0);
da8xx_fb_reg_base = devm_ioremap_resource(&device->dev, lcdc_regs);
if (IS_ERR(da8xx_fb_reg_base))
return PTR_ERR(da8xx_fb_reg_base);
tmp_lcdc_clk = devm_clk_get(&device->dev, "fck");
if (IS_ERR(tmp_lcdc_clk)) {
dev_err(&device->dev, "Can not get device clock\n");
return PTR_ERR(tmp_lcdc_clk);
}
pm_runtime_enable(&device->dev);
pm_runtime_get_sync(&device->dev);
/* Determine LCD IP Version */
switch (lcdc_read(LCD_PID_REG)) {
case 0x4C100102:
lcd_revision = LCD_VERSION_1;
break;
case 0x4F200800:
case 0x4F201000:
lcd_revision = LCD_VERSION_2;
break;
default:
dev_warn(&device->dev, "Unknown PID Reg value 0x%x, "
"defaulting to LCD revision 1\n",
lcdc_read(LCD_PID_REG));
lcd_revision = LCD_VERSION_1;
break;
}
lcd_cfg = (struct lcd_ctrl_config *)fb_pdata->controller_data;
if (!lcd_cfg) {
ret = -EINVAL;
goto err_pm_runtime_disable;
}
da8xx_fb_info = framebuffer_alloc(sizeof(struct da8xx_fb_par),
&device->dev);
if (!da8xx_fb_info) {
dev_dbg(&device->dev, "Memory allocation failed for fb_info\n");
ret = -ENOMEM;
goto err_pm_runtime_disable;
}
par = da8xx_fb_info->par;
par->dev = &device->dev;
par->lcdc_clk = tmp_lcdc_clk;
par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk);
if (fb_pdata->panel_power_ctrl) {
par->panel_power_ctrl = fb_pdata->panel_power_ctrl;
par->panel_power_ctrl(1);
}
fb_videomode_to_var(&da8xx_fb_var, lcdc_info);
par->cfg = *lcd_cfg;
da8xx_fb_lcd_reset();
/* allocate frame buffer */
par->vram_size = lcdc_info->xres * lcdc_info->yres * lcd_cfg->bpp;
ulcm = lcm((lcdc_info->xres * lcd_cfg->bpp)/8, PAGE_SIZE);
par->vram_size = roundup(par->vram_size/8, ulcm);
par->vram_size = par->vram_size * LCD_NUM_BUFFERS;
par->vram_virt = dma_alloc_coherent(par->dev,
par->vram_size,
&par->vram_phys,
GFP_KERNEL | GFP_DMA);
if (!par->vram_virt) {
dev_err(&device->dev,
"GLCD: kmalloc for frame buffer failed\n");
ret = -EINVAL;
goto err_release_fb;
}
da8xx_fb_info->screen_base = (char __iomem *) par->vram_virt;
da8xx_fb_fix.smem_start = par->vram_phys;
da8xx_fb_fix.smem_len = par->vram_size;
da8xx_fb_fix.line_length = (lcdc_info->xres * lcd_cfg->bpp) / 8;
par->dma_start = par->vram_phys;
par->dma_end = par->dma_start + lcdc_info->yres *
da8xx_fb_fix.line_length - 1;
/* allocate palette buffer */
par->v_palette_base = dma_alloc_coherent(par->dev, PALETTE_SIZE,
&par->p_palette_base,
GFP_KERNEL | GFP_DMA);
if (!par->v_palette_base) {
dev_err(&device->dev,
"GLCD: kmalloc for palette buffer failed\n");
ret = -EINVAL;
goto err_release_fb_mem;
}
par->irq = platform_get_irq(device, 0);
if (par->irq < 0) {
ret = -ENOENT;
goto err_release_pl_mem;
}
da8xx_fb_var.grayscale =
lcd_cfg->panel_shade == MONOCHROME ? 1 : 0;
da8xx_fb_var.bits_per_pixel = lcd_cfg->bpp;
/* Initialize fbinfo */
da8xx_fb_info->flags = FBINFO_FLAG_DEFAULT;
da8xx_fb_info->fix = da8xx_fb_fix;
da8xx_fb_info->var = da8xx_fb_var;
da8xx_fb_info->fbops = &da8xx_fb_ops;
da8xx_fb_info->pseudo_palette = par->pseudo_palette;
da8xx_fb_info->fix.visual = (da8xx_fb_info->var.bits_per_pixel <= 8) ?
FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
ret = fb_alloc_cmap(&da8xx_fb_info->cmap, PALETTE_SIZE, 0);
if (ret)
goto err_release_pl_mem;
da8xx_fb_info->cmap.len = par->palette_sz;
/* initialize var_screeninfo */
da8xx_fb_var.activate = FB_ACTIVATE_FORCE;
fb_set_var(da8xx_fb_info, &da8xx_fb_var);
dev_set_drvdata(&device->dev, da8xx_fb_info);
/* initialize the vsync wait queue */
init_waitqueue_head(&par->vsync_wait);
par->vsync_timeout = HZ / 5;
par->which_dma_channel_done = -1;
spin_lock_init(&par->lock_for_chan_update);
/* Register the Frame Buffer */
if (register_framebuffer(da8xx_fb_info) < 0) {
dev_err(&device->dev,
"GLCD: Frame Buffer Registration Failed!\n");
ret = -EINVAL;
goto err_dealloc_cmap;
}
#ifdef CONFIG_CPU_FREQ
ret = lcd_da8xx_cpufreq_register(par);
if (ret) {
dev_err(&device->dev, "failed to register cpufreq\n");
goto err_cpu_freq;
}
#endif
if (lcd_revision == LCD_VERSION_1)
lcdc_irq_handler = lcdc_irq_handler_rev01;
else {
init_waitqueue_head(&frame_done_wq);
lcdc_irq_handler = lcdc_irq_handler_rev02;
}
ret = devm_request_irq(&device->dev, par->irq, lcdc_irq_handler, 0,
DRIVER_NAME, par);
if (ret)
goto irq_freq;
return 0;
irq_freq:
#ifdef CONFIG_CPU_FREQ
lcd_da8xx_cpufreq_deregister(par);
err_cpu_freq:
#endif
unregister_framebuffer(da8xx_fb_info);
err_dealloc_cmap:
fb_dealloc_cmap(&da8xx_fb_info->cmap);
err_release_pl_mem:
dma_free_coherent(par->dev, PALETTE_SIZE, par->v_palette_base,
par->p_palette_base);
err_release_fb_mem:
dma_free_coherent(par->dev, par->vram_size, par->vram_virt,
par->vram_phys);
err_release_fb:
framebuffer_release(da8xx_fb_info);
err_pm_runtime_disable:
pm_runtime_put_sync(&device->dev);
pm_runtime_disable(&device->dev);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static struct lcdc_context {
u32 clk_enable;
u32 ctrl;
u32 dma_ctrl;
u32 raster_timing_0;
u32 raster_timing_1;
u32 raster_timing_2;
u32 int_enable_set;
u32 dma_frm_buf_base_addr_0;
u32 dma_frm_buf_ceiling_addr_0;
u32 dma_frm_buf_base_addr_1;
u32 dma_frm_buf_ceiling_addr_1;
u32 raster_ctrl;
} reg_context;
static void lcd_context_save(void)
{
if (lcd_revision == LCD_VERSION_2) {
reg_context.clk_enable = lcdc_read(LCD_CLK_ENABLE_REG);
reg_context.int_enable_set = lcdc_read(LCD_INT_ENABLE_SET_REG);
}
reg_context.ctrl = lcdc_read(LCD_CTRL_REG);
reg_context.dma_ctrl = lcdc_read(LCD_DMA_CTRL_REG);
reg_context.raster_timing_0 = lcdc_read(LCD_RASTER_TIMING_0_REG);
reg_context.raster_timing_1 = lcdc_read(LCD_RASTER_TIMING_1_REG);
reg_context.raster_timing_2 = lcdc_read(LCD_RASTER_TIMING_2_REG);
reg_context.dma_frm_buf_base_addr_0 =
lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
reg_context.dma_frm_buf_ceiling_addr_0 =
lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
reg_context.dma_frm_buf_base_addr_1 =
lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
reg_context.dma_frm_buf_ceiling_addr_1 =
lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
reg_context.raster_ctrl = lcdc_read(LCD_RASTER_CTRL_REG);
return;
}
static void lcd_context_restore(void)
{
if (lcd_revision == LCD_VERSION_2) {
lcdc_write(reg_context.clk_enable, LCD_CLK_ENABLE_REG);
lcdc_write(reg_context.int_enable_set, LCD_INT_ENABLE_SET_REG);
}
lcdc_write(reg_context.ctrl, LCD_CTRL_REG);
lcdc_write(reg_context.dma_ctrl, LCD_DMA_CTRL_REG);
lcdc_write(reg_context.raster_timing_0, LCD_RASTER_TIMING_0_REG);
lcdc_write(reg_context.raster_timing_1, LCD_RASTER_TIMING_1_REG);
lcdc_write(reg_context.raster_timing_2, LCD_RASTER_TIMING_2_REG);
lcdc_write(reg_context.dma_frm_buf_base_addr_0,
LCD_DMA_FRM_BUF_BASE_ADDR_0_REG);
lcdc_write(reg_context.dma_frm_buf_ceiling_addr_0,
LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG);
lcdc_write(reg_context.dma_frm_buf_base_addr_1,
LCD_DMA_FRM_BUF_BASE_ADDR_1_REG);
lcdc_write(reg_context.dma_frm_buf_ceiling_addr_1,
LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG);
lcdc_write(reg_context.raster_ctrl, LCD_RASTER_CTRL_REG);
return;
}
static int fb_suspend(struct device *dev)
{
struct fb_info *info = dev_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
console_lock();
if (par->panel_power_ctrl)
par->panel_power_ctrl(0);
fb_set_suspend(info, 1);
lcd_disable_raster(DA8XX_FRAME_WAIT);
lcd_context_save();
pm_runtime_put_sync(dev);
console_unlock();
return 0;
}
static int fb_resume(struct device *dev)
{
struct fb_info *info = dev_get_drvdata(dev);
struct da8xx_fb_par *par = info->par;
console_lock();
pm_runtime_get_sync(dev);
lcd_context_restore();
if (par->blank == FB_BLANK_UNBLANK) {
lcd_enable_raster();
if (par->panel_power_ctrl)
par->panel_power_ctrl(1);
}
fb_set_suspend(info, 0);
console_unlock();
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(fb_pm_ops, fb_suspend, fb_resume);
static struct platform_driver da8xx_fb_driver = {
.probe = fb_probe,
.remove = fb_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &fb_pm_ops,
},
};
module_platform_driver(da8xx_fb_driver);
MODULE_DESCRIPTION("Framebuffer driver for TI da8xx/omap-l1xx");
MODULE_AUTHOR("Texas Instruments");
MODULE_LICENSE("GPL");