linux/drivers/pci/controller/pcie-rcar-host.c

1054 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PCIe driver for Renesas R-Car SoCs
* Copyright (C) 2014-2020 Renesas Electronics Europe Ltd
*
* Based on:
* arch/sh/drivers/pci/pcie-sh7786.c
* arch/sh/drivers/pci/ops-sh7786.c
* Copyright (C) 2009 - 2011 Paul Mundt
*
* Author: Phil Edworthy <phil.edworthy@renesas.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/msi.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "pcie-rcar.h"
struct rcar_msi {
DECLARE_BITMAP(used, INT_PCI_MSI_NR);
struct irq_domain *domain;
struct msi_controller chip;
unsigned long pages;
struct mutex lock;
int irq1;
int irq2;
};
static inline struct rcar_msi *to_rcar_msi(struct msi_controller *chip)
{
return container_of(chip, struct rcar_msi, chip);
}
/* Structure representing the PCIe interface */
struct rcar_pcie_host {
struct rcar_pcie pcie;
struct device *dev;
struct phy *phy;
void __iomem *base;
struct clk *bus_clk;
struct rcar_msi msi;
int (*phy_init_fn)(struct rcar_pcie_host *host);
};
static u32 rcar_read_conf(struct rcar_pcie *pcie, int where)
{
unsigned int shift = BITS_PER_BYTE * (where & 3);
u32 val = rcar_pci_read_reg(pcie, where & ~3);
return val >> shift;
}
/* Serialization is provided by 'pci_lock' in drivers/pci/access.c */
static int rcar_pcie_config_access(struct rcar_pcie_host *host,
unsigned char access_type, struct pci_bus *bus,
unsigned int devfn, int where, u32 *data)
{
struct rcar_pcie *pcie = &host->pcie;
unsigned int dev, func, reg, index;
dev = PCI_SLOT(devfn);
func = PCI_FUNC(devfn);
reg = where & ~3;
index = reg / 4;
/*
* While each channel has its own memory-mapped extended config
* space, it's generally only accessible when in endpoint mode.
* When in root complex mode, the controller is unable to target
* itself with either type 0 or type 1 accesses, and indeed, any
* controller initiated target transfer to its own config space
* result in a completer abort.
*
* Each channel effectively only supports a single device, but as
* the same channel <-> device access works for any PCI_SLOT()
* value, we cheat a bit here and bind the controller's config
* space to devfn 0 in order to enable self-enumeration. In this
* case the regular ECAR/ECDR path is sidelined and the mangled
* config access itself is initiated as an internal bus transaction.
*/
if (pci_is_root_bus(bus)) {
if (dev != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
if (access_type == RCAR_PCI_ACCESS_READ)
*data = rcar_pci_read_reg(pcie, PCICONF(index));
else
rcar_pci_write_reg(pcie, *data, PCICONF(index));
return PCIBIOS_SUCCESSFUL;
}
/* Clear errors */
rcar_pci_write_reg(pcie, rcar_pci_read_reg(pcie, PCIEERRFR), PCIEERRFR);
/* Set the PIO address */
rcar_pci_write_reg(pcie, PCIE_CONF_BUS(bus->number) |
PCIE_CONF_DEV(dev) | PCIE_CONF_FUNC(func) | reg, PCIECAR);
/* Enable the configuration access */
if (pci_is_root_bus(bus->parent))
rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE0, PCIECCTLR);
else
rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE1, PCIECCTLR);
/* Check for errors */
if (rcar_pci_read_reg(pcie, PCIEERRFR) & UNSUPPORTED_REQUEST)
return PCIBIOS_DEVICE_NOT_FOUND;
/* Check for master and target aborts */
if (rcar_read_conf(pcie, RCONF(PCI_STATUS)) &
(PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT))
return PCIBIOS_DEVICE_NOT_FOUND;
if (access_type == RCAR_PCI_ACCESS_READ)
*data = rcar_pci_read_reg(pcie, PCIECDR);
else
rcar_pci_write_reg(pcie, *data, PCIECDR);
/* Disable the configuration access */
rcar_pci_write_reg(pcie, 0, PCIECCTLR);
return PCIBIOS_SUCCESSFUL;
}
static int rcar_pcie_read_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
struct rcar_pcie_host *host = bus->sysdata;
int ret;
ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_READ,
bus, devfn, where, val);
if (ret != PCIBIOS_SUCCESSFUL) {
*val = 0xffffffff;
return ret;
}
if (size == 1)
*val = (*val >> (BITS_PER_BYTE * (where & 3))) & 0xff;
else if (size == 2)
*val = (*val >> (BITS_PER_BYTE * (where & 2))) & 0xffff;
dev_dbg(&bus->dev, "pcie-config-read: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n",
bus->number, devfn, where, size, *val);
return ret;
}
/* Serialization is provided by 'pci_lock' in drivers/pci/access.c */
static int rcar_pcie_write_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
struct rcar_pcie_host *host = bus->sysdata;
unsigned int shift;
u32 data;
int ret;
ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_READ,
bus, devfn, where, &data);
if (ret != PCIBIOS_SUCCESSFUL)
return ret;
dev_dbg(&bus->dev, "pcie-config-write: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08x\n",
bus->number, devfn, where, size, val);
if (size == 1) {
shift = BITS_PER_BYTE * (where & 3);
data &= ~(0xff << shift);
data |= ((val & 0xff) << shift);
} else if (size == 2) {
shift = BITS_PER_BYTE * (where & 2);
data &= ~(0xffff << shift);
data |= ((val & 0xffff) << shift);
} else
data = val;
ret = rcar_pcie_config_access(host, RCAR_PCI_ACCESS_WRITE,
bus, devfn, where, &data);
return ret;
}
static struct pci_ops rcar_pcie_ops = {
.read = rcar_pcie_read_conf,
.write = rcar_pcie_write_conf,
};
static void rcar_pcie_force_speedup(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
unsigned int timeout = 1000;
u32 macsr;
if ((rcar_pci_read_reg(pcie, MACS2R) & LINK_SPEED) != LINK_SPEED_5_0GTS)
return;
if (rcar_pci_read_reg(pcie, MACCTLR) & SPEED_CHANGE) {
dev_err(dev, "Speed change already in progress\n");
return;
}
macsr = rcar_pci_read_reg(pcie, MACSR);
if ((macsr & LINK_SPEED) == LINK_SPEED_5_0GTS)
goto done;
/* Set target link speed to 5.0 GT/s */
rcar_rmw32(pcie, EXPCAP(12), PCI_EXP_LNKSTA_CLS,
PCI_EXP_LNKSTA_CLS_5_0GB);
/* Set speed change reason as intentional factor */
rcar_rmw32(pcie, MACCGSPSETR, SPCNGRSN, 0);
/* Clear SPCHGFIN, SPCHGSUC, and SPCHGFAIL */
if (macsr & (SPCHGFIN | SPCHGSUC | SPCHGFAIL))
rcar_pci_write_reg(pcie, macsr, MACSR);
/* Start link speed change */
rcar_rmw32(pcie, MACCTLR, SPEED_CHANGE, SPEED_CHANGE);
while (timeout--) {
macsr = rcar_pci_read_reg(pcie, MACSR);
if (macsr & SPCHGFIN) {
/* Clear the interrupt bits */
rcar_pci_write_reg(pcie, macsr, MACSR);
if (macsr & SPCHGFAIL)
dev_err(dev, "Speed change failed\n");
goto done;
}
msleep(1);
}
dev_err(dev, "Speed change timed out\n");
done:
dev_info(dev, "Current link speed is %s GT/s\n",
(macsr & LINK_SPEED) == LINK_SPEED_5_0GTS ? "5" : "2.5");
}
static void rcar_pcie_hw_enable(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host);
struct resource_entry *win;
LIST_HEAD(res);
int i = 0;
/* Try setting 5 GT/s link speed */
rcar_pcie_force_speedup(pcie);
/* Setup PCI resources */
resource_list_for_each_entry(win, &bridge->windows) {
struct resource *res = win->res;
if (!res->flags)
continue;
switch (resource_type(res)) {
case IORESOURCE_IO:
case IORESOURCE_MEM:
rcar_pcie_set_outbound(pcie, i, win);
i++;
break;
}
}
}
static int rcar_pcie_enable(struct rcar_pcie_host *host)
{
struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host);
rcar_pcie_hw_enable(host);
pci_add_flags(PCI_REASSIGN_ALL_BUS);
bridge->sysdata = host;
bridge->ops = &rcar_pcie_ops;
if (IS_ENABLED(CONFIG_PCI_MSI))
bridge->msi = &host->msi.chip;
return pci_host_probe(bridge);
}
static int phy_wait_for_ack(struct rcar_pcie *pcie)
{
struct device *dev = pcie->dev;
unsigned int timeout = 100;
while (timeout--) {
if (rcar_pci_read_reg(pcie, H1_PCIEPHYADRR) & PHY_ACK)
return 0;
udelay(100);
}
dev_err(dev, "Access to PCIe phy timed out\n");
return -ETIMEDOUT;
}
static void phy_write_reg(struct rcar_pcie *pcie,
unsigned int rate, u32 addr,
unsigned int lane, u32 data)
{
u32 phyaddr;
phyaddr = WRITE_CMD |
((rate & 1) << RATE_POS) |
((lane & 0xf) << LANE_POS) |
((addr & 0xff) << ADR_POS);
/* Set write data */
rcar_pci_write_reg(pcie, data, H1_PCIEPHYDOUTR);
rcar_pci_write_reg(pcie, phyaddr, H1_PCIEPHYADRR);
/* Ignore errors as they will be dealt with if the data link is down */
phy_wait_for_ack(pcie);
/* Clear command */
rcar_pci_write_reg(pcie, 0, H1_PCIEPHYDOUTR);
rcar_pci_write_reg(pcie, 0, H1_PCIEPHYADRR);
/* Ignore errors as they will be dealt with if the data link is down */
phy_wait_for_ack(pcie);
}
static int rcar_pcie_hw_init(struct rcar_pcie *pcie)
{
int err;
/* Begin initialization */
rcar_pci_write_reg(pcie, 0, PCIETCTLR);
/* Set mode */
rcar_pci_write_reg(pcie, 1, PCIEMSR);
err = rcar_pcie_wait_for_phyrdy(pcie);
if (err)
return err;
/*
* Initial header for port config space is type 1, set the device
* class to match. Hardware takes care of propagating the IDSETR
* settings, so there is no need to bother with a quirk.
*/
rcar_pci_write_reg(pcie, PCI_CLASS_BRIDGE_PCI << 16, IDSETR1);
/*
* Setup Secondary Bus Number & Subordinate Bus Number, even though
* they aren't used, to avoid bridge being detected as broken.
*/
rcar_rmw32(pcie, RCONF(PCI_SECONDARY_BUS), 0xff, 1);
rcar_rmw32(pcie, RCONF(PCI_SUBORDINATE_BUS), 0xff, 1);
/* Initialize default capabilities. */
rcar_rmw32(pcie, REXPCAP(0), 0xff, PCI_CAP_ID_EXP);
rcar_rmw32(pcie, REXPCAP(PCI_EXP_FLAGS),
PCI_EXP_FLAGS_TYPE, PCI_EXP_TYPE_ROOT_PORT << 4);
rcar_rmw32(pcie, RCONF(PCI_HEADER_TYPE), 0x7f,
PCI_HEADER_TYPE_BRIDGE);
/* Enable data link layer active state reporting */
rcar_rmw32(pcie, REXPCAP(PCI_EXP_LNKCAP), PCI_EXP_LNKCAP_DLLLARC,
PCI_EXP_LNKCAP_DLLLARC);
/* Write out the physical slot number = 0 */
rcar_rmw32(pcie, REXPCAP(PCI_EXP_SLTCAP), PCI_EXP_SLTCAP_PSN, 0);
/* Set the completion timer timeout to the maximum 50ms. */
rcar_rmw32(pcie, TLCTLR + 1, 0x3f, 50);
/* Terminate list of capabilities (Next Capability Offset=0) */
rcar_rmw32(pcie, RVCCAP(0), 0xfff00000, 0);
/* Enable MSI */
if (IS_ENABLED(CONFIG_PCI_MSI))
rcar_pci_write_reg(pcie, 0x801f0000, PCIEMSITXR);
rcar_pci_write_reg(pcie, MACCTLR_INIT_VAL, MACCTLR);
/* Finish initialization - establish a PCI Express link */
rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR);
/* This will timeout if we don't have a link. */
err = rcar_pcie_wait_for_dl(pcie);
if (err)
return err;
/* Enable INTx interrupts */
rcar_rmw32(pcie, PCIEINTXR, 0, 0xF << 8);
wmb();
return 0;
}
static int rcar_pcie_phy_init_h1(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
/* Initialize the phy */
phy_write_reg(pcie, 0, 0x42, 0x1, 0x0EC34191);
phy_write_reg(pcie, 1, 0x42, 0x1, 0x0EC34180);
phy_write_reg(pcie, 0, 0x43, 0x1, 0x00210188);
phy_write_reg(pcie, 1, 0x43, 0x1, 0x00210188);
phy_write_reg(pcie, 0, 0x44, 0x1, 0x015C0014);
phy_write_reg(pcie, 1, 0x44, 0x1, 0x015C0014);
phy_write_reg(pcie, 1, 0x4C, 0x1, 0x786174A0);
phy_write_reg(pcie, 1, 0x4D, 0x1, 0x048000BB);
phy_write_reg(pcie, 0, 0x51, 0x1, 0x079EC062);
phy_write_reg(pcie, 0, 0x52, 0x1, 0x20000000);
phy_write_reg(pcie, 1, 0x52, 0x1, 0x20000000);
phy_write_reg(pcie, 1, 0x56, 0x1, 0x00003806);
phy_write_reg(pcie, 0, 0x60, 0x1, 0x004B03A5);
phy_write_reg(pcie, 0, 0x64, 0x1, 0x3F0F1F0F);
phy_write_reg(pcie, 0, 0x66, 0x1, 0x00008000);
return 0;
}
static int rcar_pcie_phy_init_gen2(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
/*
* These settings come from the R-Car Series, 2nd Generation User's
* Manual, section 50.3.1 (2) Initialization of the physical layer.
*/
rcar_pci_write_reg(pcie, 0x000f0030, GEN2_PCIEPHYADDR);
rcar_pci_write_reg(pcie, 0x00381203, GEN2_PCIEPHYDATA);
rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x000f0054, GEN2_PCIEPHYADDR);
/* The following value is for DC connection, no termination resistor */
rcar_pci_write_reg(pcie, 0x13802007, GEN2_PCIEPHYDATA);
rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL);
rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL);
return 0;
}
static int rcar_pcie_phy_init_gen3(struct rcar_pcie_host *host)
{
int err;
err = phy_init(host->phy);
if (err)
return err;
err = phy_power_on(host->phy);
if (err)
phy_exit(host->phy);
return err;
}
static int rcar_msi_alloc(struct rcar_msi *chip)
{
int msi;
mutex_lock(&chip->lock);
msi = find_first_zero_bit(chip->used, INT_PCI_MSI_NR);
if (msi < INT_PCI_MSI_NR)
set_bit(msi, chip->used);
else
msi = -ENOSPC;
mutex_unlock(&chip->lock);
return msi;
}
static int rcar_msi_alloc_region(struct rcar_msi *chip, int no_irqs)
{
int msi;
mutex_lock(&chip->lock);
msi = bitmap_find_free_region(chip->used, INT_PCI_MSI_NR,
order_base_2(no_irqs));
mutex_unlock(&chip->lock);
return msi;
}
static void rcar_msi_free(struct rcar_msi *chip, unsigned long irq)
{
mutex_lock(&chip->lock);
clear_bit(irq, chip->used);
mutex_unlock(&chip->lock);
}
static irqreturn_t rcar_pcie_msi_irq(int irq, void *data)
{
struct rcar_pcie_host *host = data;
struct rcar_pcie *pcie = &host->pcie;
struct rcar_msi *msi = &host->msi;
struct device *dev = pcie->dev;
unsigned long reg;
reg = rcar_pci_read_reg(pcie, PCIEMSIFR);
/* MSI & INTx share an interrupt - we only handle MSI here */
if (!reg)
return IRQ_NONE;
while (reg) {
unsigned int index = find_first_bit(&reg, 32);
unsigned int msi_irq;
/* clear the interrupt */
rcar_pci_write_reg(pcie, 1 << index, PCIEMSIFR);
msi_irq = irq_find_mapping(msi->domain, index);
if (msi_irq) {
if (test_bit(index, msi->used))
generic_handle_irq(msi_irq);
else
dev_info(dev, "unhandled MSI\n");
} else {
/* Unknown MSI, just clear it */
dev_dbg(dev, "unexpected MSI\n");
}
/* see if there's any more pending in this vector */
reg = rcar_pci_read_reg(pcie, PCIEMSIFR);
}
return IRQ_HANDLED;
}
static int rcar_msi_setup_irq(struct msi_controller *chip, struct pci_dev *pdev,
struct msi_desc *desc)
{
struct rcar_msi *msi = to_rcar_msi(chip);
struct rcar_pcie_host *host = container_of(chip, struct rcar_pcie_host,
msi.chip);
struct rcar_pcie *pcie = &host->pcie;
struct msi_msg msg;
unsigned int irq;
int hwirq;
hwirq = rcar_msi_alloc(msi);
if (hwirq < 0)
return hwirq;
irq = irq_find_mapping(msi->domain, hwirq);
if (!irq) {
rcar_msi_free(msi, hwirq);
return -EINVAL;
}
irq_set_msi_desc(irq, desc);
msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE;
msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR);
msg.data = hwirq;
pci_write_msi_msg(irq, &msg);
return 0;
}
static int rcar_msi_setup_irqs(struct msi_controller *chip,
struct pci_dev *pdev, int nvec, int type)
{
struct rcar_msi *msi = to_rcar_msi(chip);
struct rcar_pcie_host *host = container_of(chip, struct rcar_pcie_host,
msi.chip);
struct rcar_pcie *pcie = &host->pcie;
struct msi_desc *desc;
struct msi_msg msg;
unsigned int irq;
int hwirq;
int i;
/* MSI-X interrupts are not supported */
if (type == PCI_CAP_ID_MSIX)
return -EINVAL;
WARN_ON(!list_is_singular(&pdev->dev.msi_list));
desc = list_entry(pdev->dev.msi_list.next, struct msi_desc, list);
hwirq = rcar_msi_alloc_region(msi, nvec);
if (hwirq < 0)
return -ENOSPC;
irq = irq_find_mapping(msi->domain, hwirq);
if (!irq)
return -ENOSPC;
for (i = 0; i < nvec; i++) {
/*
* irq_create_mapping() called from rcar_pcie_probe() pre-
* allocates descs, so there is no need to allocate descs here.
* We can therefore assume that if irq_find_mapping() above
* returns non-zero, then the descs are also successfully
* allocated.
*/
if (irq_set_msi_desc_off(irq, i, desc)) {
/* TODO: clear */
return -EINVAL;
}
}
desc->nvec_used = nvec;
desc->msi_attrib.multiple = order_base_2(nvec);
msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE;
msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR);
msg.data = hwirq;
pci_write_msi_msg(irq, &msg);
return 0;
}
static void rcar_msi_teardown_irq(struct msi_controller *chip, unsigned int irq)
{
struct rcar_msi *msi = to_rcar_msi(chip);
struct irq_data *d = irq_get_irq_data(irq);
rcar_msi_free(msi, d->hwirq);
}
static struct irq_chip rcar_msi_irq_chip = {
.name = "R-Car PCIe MSI",
.irq_enable = pci_msi_unmask_irq,
.irq_disable = pci_msi_mask_irq,
.irq_mask = pci_msi_mask_irq,
.irq_unmask = pci_msi_unmask_irq,
};
static int rcar_msi_map(struct irq_domain *domain, unsigned int irq,
irq_hw_number_t hwirq)
{
irq_set_chip_and_handler(irq, &rcar_msi_irq_chip, handle_simple_irq);
irq_set_chip_data(irq, domain->host_data);
return 0;
}
static const struct irq_domain_ops msi_domain_ops = {
.map = rcar_msi_map,
};
static void rcar_pcie_unmap_msi(struct rcar_pcie_host *host)
{
struct rcar_msi *msi = &host->msi;
int i, irq;
for (i = 0; i < INT_PCI_MSI_NR; i++) {
irq = irq_find_mapping(msi->domain, i);
if (irq > 0)
irq_dispose_mapping(irq);
}
irq_domain_remove(msi->domain);
}
static void rcar_pcie_hw_enable_msi(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
struct rcar_msi *msi = &host->msi;
unsigned long base;
/* setup MSI data target */
base = virt_to_phys((void *)msi->pages);
rcar_pci_write_reg(pcie, lower_32_bits(base) | MSIFE, PCIEMSIALR);
rcar_pci_write_reg(pcie, upper_32_bits(base), PCIEMSIAUR);
/* enable all MSI interrupts */
rcar_pci_write_reg(pcie, 0xffffffff, PCIEMSIIER);
}
static int rcar_pcie_enable_msi(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
struct device *dev = pcie->dev;
struct rcar_msi *msi = &host->msi;
int err, i;
mutex_init(&msi->lock);
msi->chip.dev = dev;
msi->chip.setup_irq = rcar_msi_setup_irq;
msi->chip.setup_irqs = rcar_msi_setup_irqs;
msi->chip.teardown_irq = rcar_msi_teardown_irq;
msi->domain = irq_domain_add_linear(dev->of_node, INT_PCI_MSI_NR,
&msi_domain_ops, &msi->chip);
if (!msi->domain) {
dev_err(dev, "failed to create IRQ domain\n");
return -ENOMEM;
}
for (i = 0; i < INT_PCI_MSI_NR; i++)
irq_create_mapping(msi->domain, i);
/* Two irqs are for MSI, but they are also used for non-MSI irqs */
err = devm_request_irq(dev, msi->irq1, rcar_pcie_msi_irq,
IRQF_SHARED | IRQF_NO_THREAD,
rcar_msi_irq_chip.name, host);
if (err < 0) {
dev_err(dev, "failed to request IRQ: %d\n", err);
goto err;
}
err = devm_request_irq(dev, msi->irq2, rcar_pcie_msi_irq,
IRQF_SHARED | IRQF_NO_THREAD,
rcar_msi_irq_chip.name, host);
if (err < 0) {
dev_err(dev, "failed to request IRQ: %d\n", err);
goto err;
}
/* setup MSI data target */
msi->pages = __get_free_pages(GFP_KERNEL, 0);
rcar_pcie_hw_enable_msi(host);
return 0;
err:
rcar_pcie_unmap_msi(host);
return err;
}
static void rcar_pcie_teardown_msi(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
struct rcar_msi *msi = &host->msi;
/* Disable all MSI interrupts */
rcar_pci_write_reg(pcie, 0, PCIEMSIIER);
/* Disable address decoding of the MSI interrupt, MSIFE */
rcar_pci_write_reg(pcie, 0, PCIEMSIALR);
free_pages(msi->pages, 0);
rcar_pcie_unmap_msi(host);
}
static int rcar_pcie_get_resources(struct rcar_pcie_host *host)
{
struct rcar_pcie *pcie = &host->pcie;
struct device *dev = pcie->dev;
struct resource res;
int err, i;
host->phy = devm_phy_optional_get(dev, "pcie");
if (IS_ERR(host->phy))
return PTR_ERR(host->phy);
err = of_address_to_resource(dev->of_node, 0, &res);
if (err)
return err;
pcie->base = devm_ioremap_resource(dev, &res);
if (IS_ERR(pcie->base))
return PTR_ERR(pcie->base);
host->bus_clk = devm_clk_get(dev, "pcie_bus");
if (IS_ERR(host->bus_clk)) {
dev_err(dev, "cannot get pcie bus clock\n");
return PTR_ERR(host->bus_clk);
}
i = irq_of_parse_and_map(dev->of_node, 0);
if (!i) {
dev_err(dev, "cannot get platform resources for msi interrupt\n");
err = -ENOENT;
goto err_irq1;
}
host->msi.irq1 = i;
i = irq_of_parse_and_map(dev->of_node, 1);
if (!i) {
dev_err(dev, "cannot get platform resources for msi interrupt\n");
err = -ENOENT;
goto err_irq2;
}
host->msi.irq2 = i;
return 0;
err_irq2:
irq_dispose_mapping(host->msi.irq1);
err_irq1:
return err;
}
static int rcar_pcie_inbound_ranges(struct rcar_pcie *pcie,
struct resource_entry *entry,
int *index)
{
u64 restype = entry->res->flags;
u64 cpu_addr = entry->res->start;
u64 cpu_end = entry->res->end;
u64 pci_addr = entry->res->start - entry->offset;
u32 flags = LAM_64BIT | LAR_ENABLE;
u64 mask;
u64 size = resource_size(entry->res);
int idx = *index;
if (restype & IORESOURCE_PREFETCH)
flags |= LAM_PREFETCH;
while (cpu_addr < cpu_end) {
if (idx >= MAX_NR_INBOUND_MAPS - 1) {
dev_err(pcie->dev, "Failed to map inbound regions!\n");
return -EINVAL;
}
/*
* If the size of the range is larger than the alignment of
* the start address, we have to use multiple entries to
* perform the mapping.
*/
if (cpu_addr > 0) {
unsigned long nr_zeros = __ffs64(cpu_addr);
u64 alignment = 1ULL << nr_zeros;
size = min(size, alignment);
}
/* Hardware supports max 4GiB inbound region */
size = min(size, 1ULL << 32);
mask = roundup_pow_of_two(size) - 1;
mask &= ~0xf;
rcar_pcie_set_inbound(pcie, cpu_addr, pci_addr,
lower_32_bits(mask) | flags, idx, true);
pci_addr += size;
cpu_addr += size;
idx += 2;
}
*index = idx;
return 0;
}
static int rcar_pcie_parse_map_dma_ranges(struct rcar_pcie_host *host)
{
struct pci_host_bridge *bridge = pci_host_bridge_from_priv(host);
struct resource_entry *entry;
int index = 0, err = 0;
resource_list_for_each_entry(entry, &bridge->dma_ranges) {
err = rcar_pcie_inbound_ranges(&host->pcie, entry, &index);
if (err)
break;
}
return err;
}
static const struct of_device_id rcar_pcie_of_match[] = {
{ .compatible = "renesas,pcie-r8a7779",
.data = rcar_pcie_phy_init_h1 },
{ .compatible = "renesas,pcie-r8a7790",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-r8a7791",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-rcar-gen2",
.data = rcar_pcie_phy_init_gen2 },
{ .compatible = "renesas,pcie-r8a7795",
.data = rcar_pcie_phy_init_gen3 },
{ .compatible = "renesas,pcie-rcar-gen3",
.data = rcar_pcie_phy_init_gen3 },
{},
};
static int rcar_pcie_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rcar_pcie_host *host;
struct rcar_pcie *pcie;
u32 data;
int err;
struct pci_host_bridge *bridge;
bridge = devm_pci_alloc_host_bridge(dev, sizeof(*host));
if (!bridge)
return -ENOMEM;
host = pci_host_bridge_priv(bridge);
pcie = &host->pcie;
pcie->dev = dev;
platform_set_drvdata(pdev, host);
pm_runtime_enable(pcie->dev);
err = pm_runtime_get_sync(pcie->dev);
if (err < 0) {
dev_err(pcie->dev, "pm_runtime_get_sync failed\n");
goto err_pm_put;
}
err = rcar_pcie_get_resources(host);
if (err < 0) {
dev_err(dev, "failed to request resources: %d\n", err);
goto err_pm_put;
}
err = clk_prepare_enable(host->bus_clk);
if (err) {
dev_err(dev, "failed to enable bus clock: %d\n", err);
goto err_unmap_msi_irqs;
}
err = rcar_pcie_parse_map_dma_ranges(host);
if (err)
goto err_clk_disable;
host->phy_init_fn = of_device_get_match_data(dev);
err = host->phy_init_fn(host);
if (err) {
dev_err(dev, "failed to init PCIe PHY\n");
goto err_clk_disable;
}
/* Failure to get a link might just be that no cards are inserted */
if (rcar_pcie_hw_init(pcie)) {
dev_info(dev, "PCIe link down\n");
err = -ENODEV;
goto err_phy_shutdown;
}
data = rcar_pci_read_reg(pcie, MACSR);
dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f);
if (IS_ENABLED(CONFIG_PCI_MSI)) {
err = rcar_pcie_enable_msi(host);
if (err < 0) {
dev_err(dev,
"failed to enable MSI support: %d\n",
err);
goto err_phy_shutdown;
}
}
err = rcar_pcie_enable(host);
if (err)
goto err_msi_teardown;
return 0;
err_msi_teardown:
if (IS_ENABLED(CONFIG_PCI_MSI))
rcar_pcie_teardown_msi(host);
err_phy_shutdown:
if (host->phy) {
phy_power_off(host->phy);
phy_exit(host->phy);
}
err_clk_disable:
clk_disable_unprepare(host->bus_clk);
err_unmap_msi_irqs:
irq_dispose_mapping(host->msi.irq2);
irq_dispose_mapping(host->msi.irq1);
err_pm_put:
pm_runtime_put(dev);
pm_runtime_disable(dev);
return err;
}
static int __maybe_unused rcar_pcie_resume(struct device *dev)
{
struct rcar_pcie_host *host = dev_get_drvdata(dev);
struct rcar_pcie *pcie = &host->pcie;
unsigned int data;
int err;
err = rcar_pcie_parse_map_dma_ranges(host);
if (err)
return 0;
/* Failure to get a link might just be that no cards are inserted */
err = host->phy_init_fn(host);
if (err) {
dev_info(dev, "PCIe link down\n");
return 0;
}
data = rcar_pci_read_reg(pcie, MACSR);
dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f);
/* Enable MSI */
if (IS_ENABLED(CONFIG_PCI_MSI))
rcar_pcie_hw_enable_msi(host);
rcar_pcie_hw_enable(host);
return 0;
}
static int rcar_pcie_resume_noirq(struct device *dev)
{
struct rcar_pcie_host *host = dev_get_drvdata(dev);
struct rcar_pcie *pcie = &host->pcie;
if (rcar_pci_read_reg(pcie, PMSR) &&
!(rcar_pci_read_reg(pcie, PCIETCTLR) & DL_DOWN))
return 0;
/* Re-establish the PCIe link */
rcar_pci_write_reg(pcie, MACCTLR_INIT_VAL, MACCTLR);
rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR);
return rcar_pcie_wait_for_dl(pcie);
}
static const struct dev_pm_ops rcar_pcie_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(NULL, rcar_pcie_resume)
.resume_noirq = rcar_pcie_resume_noirq,
};
static struct platform_driver rcar_pcie_driver = {
.driver = {
.name = "rcar-pcie",
.of_match_table = rcar_pcie_of_match,
.pm = &rcar_pcie_pm_ops,
.suppress_bind_attrs = true,
},
.probe = rcar_pcie_probe,
};
builtin_platform_driver(rcar_pcie_driver);