linux/arch/powerpc/platforms/powernv/setup.c

504 lines
12 KiB
C

/*
* PowerNV setup code.
*
* Copyright 2011 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/tty.h>
#include <linux/reboot.h>
#include <linux/init.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/seq_file.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/interrupt.h>
#include <linux/bug.h>
#include <linux/pci.h>
#include <linux/cpufreq.h>
#include <asm/machdep.h>
#include <asm/firmware.h>
#include <asm/xics.h>
#include <asm/opal.h>
#include <asm/kexec.h>
#include <asm/smp.h>
#include <asm/cputhreads.h>
#include <asm/cpuidle.h>
#include <asm/code-patching.h>
#include "powernv.h"
#include "subcore.h"
static void __init pnv_setup_arch(void)
{
set_arch_panic_timeout(10, ARCH_PANIC_TIMEOUT);
/* Initialize SMP */
pnv_smp_init();
/* Setup PCI */
pnv_pci_init();
/* Setup RTC and NVRAM callbacks */
if (firmware_has_feature(FW_FEATURE_OPAL))
opal_nvram_init();
/* Enable NAP mode */
powersave_nap = 1;
/* XXX PMCS */
}
static void __init pnv_init_early(void)
{
/*
* Initialize the LPC bus now so that legacy serial
* ports can be found on it
*/
opal_lpc_init();
#ifdef CONFIG_HVC_OPAL
if (firmware_has_feature(FW_FEATURE_OPAL))
hvc_opal_init_early();
else
#endif
add_preferred_console("hvc", 0, NULL);
}
static void __init pnv_init_IRQ(void)
{
xics_init();
WARN_ON(!ppc_md.get_irq);
}
static void pnv_show_cpuinfo(struct seq_file *m)
{
struct device_node *root;
const char *model = "";
root = of_find_node_by_path("/");
if (root)
model = of_get_property(root, "model", NULL);
seq_printf(m, "machine\t\t: PowerNV %s\n", model);
if (firmware_has_feature(FW_FEATURE_OPALv3))
seq_printf(m, "firmware\t: OPAL v3\n");
else if (firmware_has_feature(FW_FEATURE_OPALv2))
seq_printf(m, "firmware\t: OPAL v2\n");
else if (firmware_has_feature(FW_FEATURE_OPAL))
seq_printf(m, "firmware\t: OPAL v1\n");
else
seq_printf(m, "firmware\t: BML\n");
of_node_put(root);
}
static void pnv_prepare_going_down(void)
{
/*
* Disable all notifiers from OPAL, we can't
* service interrupts anymore anyway
*/
opal_notifier_disable();
/* Soft disable interrupts */
local_irq_disable();
/*
* Return secondary CPUs to firwmare if a flash update
* is pending otherwise we will get all sort of error
* messages about CPU being stuck etc.. This will also
* have the side effect of hard disabling interrupts so
* past this point, the kernel is effectively dead.
*/
opal_flash_term_callback();
}
static void __noreturn pnv_restart(char *cmd)
{
long rc = OPAL_BUSY;
pnv_prepare_going_down();
while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
rc = opal_cec_reboot();
if (rc == OPAL_BUSY_EVENT)
opal_poll_events(NULL);
else
mdelay(10);
}
for (;;)
opal_poll_events(NULL);
}
static void __noreturn pnv_power_off(void)
{
long rc = OPAL_BUSY;
pnv_prepare_going_down();
while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) {
rc = opal_cec_power_down(0);
if (rc == OPAL_BUSY_EVENT)
opal_poll_events(NULL);
else
mdelay(10);
}
for (;;)
opal_poll_events(NULL);
}
static void __noreturn pnv_halt(void)
{
pnv_power_off();
}
static void pnv_progress(char *s, unsigned short hex)
{
}
static int pnv_dma_set_mask(struct device *dev, u64 dma_mask)
{
if (dev_is_pci(dev))
return pnv_pci_dma_set_mask(to_pci_dev(dev), dma_mask);
return __dma_set_mask(dev, dma_mask);
}
static u64 pnv_dma_get_required_mask(struct device *dev)
{
if (dev_is_pci(dev))
return pnv_pci_dma_get_required_mask(to_pci_dev(dev));
return __dma_get_required_mask(dev);
}
static void pnv_shutdown(void)
{
/* Let the PCI code clear up IODA tables */
pnv_pci_shutdown();
/*
* Stop OPAL activity: Unregister all OPAL interrupts so they
* don't fire up while we kexec and make sure all potentially
* DMA'ing ops are complete (such as dump retrieval).
*/
opal_shutdown();
}
#ifdef CONFIG_KEXEC
static void pnv_kexec_wait_secondaries_down(void)
{
int my_cpu, i, notified = -1;
my_cpu = get_cpu();
for_each_online_cpu(i) {
uint8_t status;
int64_t rc;
if (i == my_cpu)
continue;
for (;;) {
rc = opal_query_cpu_status(get_hard_smp_processor_id(i),
&status);
if (rc != OPAL_SUCCESS || status != OPAL_THREAD_STARTED)
break;
barrier();
if (i != notified) {
printk(KERN_INFO "kexec: waiting for cpu %d "
"(physical %d) to enter OPAL\n",
i, paca[i].hw_cpu_id);
notified = i;
}
}
}
}
static void pnv_kexec_cpu_down(int crash_shutdown, int secondary)
{
xics_kexec_teardown_cpu(secondary);
/* On OPAL v3, we return all CPUs to firmware */
if (!firmware_has_feature(FW_FEATURE_OPALv3))
return;
if (secondary) {
/* Return secondary CPUs to firmware on OPAL v3 */
mb();
get_paca()->kexec_state = KEXEC_STATE_REAL_MODE;
mb();
/* Return the CPU to OPAL */
opal_return_cpu();
} else if (crash_shutdown) {
/*
* On crash, we don't wait for secondaries to go
* down as they might be unreachable or hung, so
* instead we just wait a bit and move on.
*/
mdelay(1);
} else {
/* Primary waits for the secondaries to have reached OPAL */
pnv_kexec_wait_secondaries_down();
}
}
#endif /* CONFIG_KEXEC */
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
static unsigned long pnv_memory_block_size(void)
{
return 256UL * 1024 * 1024;
}
#endif
static void __init pnv_setup_machdep_opal(void)
{
ppc_md.get_boot_time = opal_get_boot_time;
ppc_md.restart = pnv_restart;
pm_power_off = pnv_power_off;
ppc_md.halt = pnv_halt;
ppc_md.machine_check_exception = opal_machine_check;
ppc_md.mce_check_early_recovery = opal_mce_check_early_recovery;
ppc_md.hmi_exception_early = opal_hmi_exception_early;
ppc_md.handle_hmi_exception = opal_handle_hmi_exception;
}
static u32 supported_cpuidle_states;
int pnv_save_sprs_for_winkle(void)
{
int cpu;
int rc;
/*
* hid0, hid1, hid4, hid5, hmeer and lpcr values are symmetric accross
* all cpus at boot. Get these reg values of current cpu and use the
* same accross all cpus.
*/
uint64_t lpcr_val = mfspr(SPRN_LPCR) & ~(u64)LPCR_PECE1;
uint64_t hid0_val = mfspr(SPRN_HID0);
uint64_t hid1_val = mfspr(SPRN_HID1);
uint64_t hid4_val = mfspr(SPRN_HID4);
uint64_t hid5_val = mfspr(SPRN_HID5);
uint64_t hmeer_val = mfspr(SPRN_HMEER);
for_each_possible_cpu(cpu) {
uint64_t pir = get_hard_smp_processor_id(cpu);
uint64_t hsprg0_val = (uint64_t)&paca[cpu];
/*
* HSPRG0 is used to store the cpu's pointer to paca. Hence last
* 3 bits are guaranteed to be 0. Program slw to restore HSPRG0
* with 63rd bit set, so that when a thread wakes up at 0x100 we
* can use this bit to distinguish between fastsleep and
* deep winkle.
*/
hsprg0_val |= 1;
rc = opal_slw_set_reg(pir, SPRN_HSPRG0, hsprg0_val);
if (rc != 0)
return rc;
rc = opal_slw_set_reg(pir, SPRN_LPCR, lpcr_val);
if (rc != 0)
return rc;
/* HIDs are per core registers */
if (cpu_thread_in_core(cpu) == 0) {
rc = opal_slw_set_reg(pir, SPRN_HMEER, hmeer_val);
if (rc != 0)
return rc;
rc = opal_slw_set_reg(pir, SPRN_HID0, hid0_val);
if (rc != 0)
return rc;
rc = opal_slw_set_reg(pir, SPRN_HID1, hid1_val);
if (rc != 0)
return rc;
rc = opal_slw_set_reg(pir, SPRN_HID4, hid4_val);
if (rc != 0)
return rc;
rc = opal_slw_set_reg(pir, SPRN_HID5, hid5_val);
if (rc != 0)
return rc;
}
}
return 0;
}
static void pnv_alloc_idle_core_states(void)
{
int i, j;
int nr_cores = cpu_nr_cores();
u32 *core_idle_state;
/*
* core_idle_state - First 8 bits track the idle state of each thread
* of the core. The 8th bit is the lock bit. Initially all thread bits
* are set. They are cleared when the thread enters deep idle state
* like sleep and winkle. Initially the lock bit is cleared.
* The lock bit has 2 purposes
* a. While the first thread is restoring core state, it prevents
* other threads in the core from switching to process context.
* b. While the last thread in the core is saving the core state, it
* prevents a different thread from waking up.
*/
for (i = 0; i < nr_cores; i++) {
int first_cpu = i * threads_per_core;
int node = cpu_to_node(first_cpu);
core_idle_state = kmalloc_node(sizeof(u32), GFP_KERNEL, node);
*core_idle_state = PNV_CORE_IDLE_THREAD_BITS;
for (j = 0; j < threads_per_core; j++) {
int cpu = first_cpu + j;
paca[cpu].core_idle_state_ptr = core_idle_state;
paca[cpu].thread_idle_state = PNV_THREAD_RUNNING;
paca[cpu].thread_mask = 1 << j;
}
}
update_subcore_sibling_mask();
if (supported_cpuidle_states & OPAL_PM_WINKLE_ENABLED)
pnv_save_sprs_for_winkle();
}
u32 pnv_get_supported_cpuidle_states(void)
{
return supported_cpuidle_states;
}
EXPORT_SYMBOL_GPL(pnv_get_supported_cpuidle_states);
static int __init pnv_init_idle_states(void)
{
struct device_node *power_mgt;
int dt_idle_states;
u32 *flags;
int i;
supported_cpuidle_states = 0;
if (cpuidle_disable != IDLE_NO_OVERRIDE)
goto out;
if (!firmware_has_feature(FW_FEATURE_OPALv3))
goto out;
power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
if (!power_mgt) {
pr_warn("opal: PowerMgmt Node not found\n");
goto out;
}
dt_idle_states = of_property_count_u32_elems(power_mgt,
"ibm,cpu-idle-state-flags");
if (dt_idle_states < 0) {
pr_warn("cpuidle-powernv: no idle states found in the DT\n");
goto out;
}
flags = kzalloc(sizeof(*flags) * dt_idle_states, GFP_KERNEL);
if (of_property_read_u32_array(power_mgt,
"ibm,cpu-idle-state-flags", flags, dt_idle_states)) {
pr_warn("cpuidle-powernv: missing ibm,cpu-idle-state-flags in DT\n");
goto out_free;
}
for (i = 0; i < dt_idle_states; i++)
supported_cpuidle_states |= flags[i];
if (!(supported_cpuidle_states & OPAL_PM_SLEEP_ENABLED_ER1)) {
patch_instruction(
(unsigned int *)pnv_fastsleep_workaround_at_entry,
PPC_INST_NOP);
patch_instruction(
(unsigned int *)pnv_fastsleep_workaround_at_exit,
PPC_INST_NOP);
}
pnv_alloc_idle_core_states();
out_free:
kfree(flags);
out:
return 0;
}
subsys_initcall(pnv_init_idle_states);
static int __init pnv_probe(void)
{
unsigned long root = of_get_flat_dt_root();
if (!of_flat_dt_is_compatible(root, "ibm,powernv"))
return 0;
hpte_init_native();
if (firmware_has_feature(FW_FEATURE_OPAL))
pnv_setup_machdep_opal();
pr_debug("PowerNV detected !\n");
return 1;
}
/*
* Returns the cpu frequency for 'cpu' in Hz. This is used by
* /proc/cpuinfo
*/
static unsigned long pnv_get_proc_freq(unsigned int cpu)
{
unsigned long ret_freq;
ret_freq = cpufreq_quick_get(cpu) * 1000ul;
/*
* If the backend cpufreq driver does not exist,
* then fallback to old way of reporting the clockrate.
*/
if (!ret_freq)
ret_freq = ppc_proc_freq;
return ret_freq;
}
define_machine(powernv) {
.name = "PowerNV",
.probe = pnv_probe,
.init_early = pnv_init_early,
.setup_arch = pnv_setup_arch,
.init_IRQ = pnv_init_IRQ,
.show_cpuinfo = pnv_show_cpuinfo,
.get_proc_freq = pnv_get_proc_freq,
.progress = pnv_progress,
.machine_shutdown = pnv_shutdown,
.power_save = power7_idle,
.calibrate_decr = generic_calibrate_decr,
.dma_set_mask = pnv_dma_set_mask,
.dma_get_required_mask = pnv_dma_get_required_mask,
#ifdef CONFIG_KEXEC
.kexec_cpu_down = pnv_kexec_cpu_down,
#endif
#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
.memory_block_size = pnv_memory_block_size,
#endif
};