mirror of https://gitee.com/openkylin/linux.git
1056 lines
28 KiB
C
1056 lines
28 KiB
C
/*
|
|
* drivers/base/power/wakeup.c - System wakeup events framework
|
|
*
|
|
* Copyright (c) 2010 Rafael J. Wysocki <rjw@sisk.pl>, Novell Inc.
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/export.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/pm_wakeirq.h>
|
|
#include <trace/events/power.h>
|
|
|
|
#include "power.h"
|
|
|
|
/*
|
|
* If set, the suspend/hibernate code will abort transitions to a sleep state
|
|
* if wakeup events are registered during or immediately before the transition.
|
|
*/
|
|
bool events_check_enabled __read_mostly;
|
|
|
|
/* If set and the system is suspending, terminate the suspend. */
|
|
static bool pm_abort_suspend __read_mostly;
|
|
|
|
/*
|
|
* Combined counters of registered wakeup events and wakeup events in progress.
|
|
* They need to be modified together atomically, so it's better to use one
|
|
* atomic variable to hold them both.
|
|
*/
|
|
static atomic_t combined_event_count = ATOMIC_INIT(0);
|
|
|
|
#define IN_PROGRESS_BITS (sizeof(int) * 4)
|
|
#define MAX_IN_PROGRESS ((1 << IN_PROGRESS_BITS) - 1)
|
|
|
|
static void split_counters(unsigned int *cnt, unsigned int *inpr)
|
|
{
|
|
unsigned int comb = atomic_read(&combined_event_count);
|
|
|
|
*cnt = (comb >> IN_PROGRESS_BITS);
|
|
*inpr = comb & MAX_IN_PROGRESS;
|
|
}
|
|
|
|
/* A preserved old value of the events counter. */
|
|
static unsigned int saved_count;
|
|
|
|
static DEFINE_SPINLOCK(events_lock);
|
|
|
|
static void pm_wakeup_timer_fn(unsigned long data);
|
|
|
|
static LIST_HEAD(wakeup_sources);
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(wakeup_count_wait_queue);
|
|
|
|
static struct wakeup_source deleted_ws = {
|
|
.name = "deleted",
|
|
.lock = __SPIN_LOCK_UNLOCKED(deleted_ws.lock),
|
|
};
|
|
|
|
/**
|
|
* wakeup_source_prepare - Prepare a new wakeup source for initialization.
|
|
* @ws: Wakeup source to prepare.
|
|
* @name: Pointer to the name of the new wakeup source.
|
|
*
|
|
* Callers must ensure that the @name string won't be freed when @ws is still in
|
|
* use.
|
|
*/
|
|
void wakeup_source_prepare(struct wakeup_source *ws, const char *name)
|
|
{
|
|
if (ws) {
|
|
memset(ws, 0, sizeof(*ws));
|
|
ws->name = name;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_prepare);
|
|
|
|
/**
|
|
* wakeup_source_create - Create a struct wakeup_source object.
|
|
* @name: Name of the new wakeup source.
|
|
*/
|
|
struct wakeup_source *wakeup_source_create(const char *name)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
ws = kmalloc(sizeof(*ws), GFP_KERNEL);
|
|
if (!ws)
|
|
return NULL;
|
|
|
|
wakeup_source_prepare(ws, name ? kstrdup(name, GFP_KERNEL) : NULL);
|
|
return ws;
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_create);
|
|
|
|
/**
|
|
* wakeup_source_drop - Prepare a struct wakeup_source object for destruction.
|
|
* @ws: Wakeup source to prepare for destruction.
|
|
*
|
|
* Callers must ensure that __pm_stay_awake() or __pm_wakeup_event() will never
|
|
* be run in parallel with this function for the same wakeup source object.
|
|
*/
|
|
void wakeup_source_drop(struct wakeup_source *ws)
|
|
{
|
|
if (!ws)
|
|
return;
|
|
|
|
del_timer_sync(&ws->timer);
|
|
__pm_relax(ws);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_drop);
|
|
|
|
/*
|
|
* Record wakeup_source statistics being deleted into a dummy wakeup_source.
|
|
*/
|
|
static void wakeup_source_record(struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&deleted_ws.lock, flags);
|
|
|
|
if (ws->event_count) {
|
|
deleted_ws.total_time =
|
|
ktime_add(deleted_ws.total_time, ws->total_time);
|
|
deleted_ws.prevent_sleep_time =
|
|
ktime_add(deleted_ws.prevent_sleep_time,
|
|
ws->prevent_sleep_time);
|
|
deleted_ws.max_time =
|
|
ktime_compare(deleted_ws.max_time, ws->max_time) > 0 ?
|
|
deleted_ws.max_time : ws->max_time;
|
|
deleted_ws.event_count += ws->event_count;
|
|
deleted_ws.active_count += ws->active_count;
|
|
deleted_ws.relax_count += ws->relax_count;
|
|
deleted_ws.expire_count += ws->expire_count;
|
|
deleted_ws.wakeup_count += ws->wakeup_count;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&deleted_ws.lock, flags);
|
|
}
|
|
|
|
/**
|
|
* wakeup_source_destroy - Destroy a struct wakeup_source object.
|
|
* @ws: Wakeup source to destroy.
|
|
*
|
|
* Use only for wakeup source objects created with wakeup_source_create().
|
|
*/
|
|
void wakeup_source_destroy(struct wakeup_source *ws)
|
|
{
|
|
if (!ws)
|
|
return;
|
|
|
|
wakeup_source_drop(ws);
|
|
wakeup_source_record(ws);
|
|
kfree(ws->name);
|
|
kfree(ws);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_destroy);
|
|
|
|
/**
|
|
* wakeup_source_add - Add given object to the list of wakeup sources.
|
|
* @ws: Wakeup source object to add to the list.
|
|
*/
|
|
void wakeup_source_add(struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!ws))
|
|
return;
|
|
|
|
spin_lock_init(&ws->lock);
|
|
setup_timer(&ws->timer, pm_wakeup_timer_fn, (unsigned long)ws);
|
|
ws->active = false;
|
|
ws->last_time = ktime_get();
|
|
|
|
spin_lock_irqsave(&events_lock, flags);
|
|
list_add_rcu(&ws->entry, &wakeup_sources);
|
|
spin_unlock_irqrestore(&events_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_add);
|
|
|
|
/**
|
|
* wakeup_source_remove - Remove given object from the wakeup sources list.
|
|
* @ws: Wakeup source object to remove from the list.
|
|
*/
|
|
void wakeup_source_remove(struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!ws))
|
|
return;
|
|
|
|
spin_lock_irqsave(&events_lock, flags);
|
|
list_del_rcu(&ws->entry);
|
|
spin_unlock_irqrestore(&events_lock, flags);
|
|
synchronize_rcu();
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_remove);
|
|
|
|
/**
|
|
* wakeup_source_register - Create wakeup source and add it to the list.
|
|
* @name: Name of the wakeup source to register.
|
|
*/
|
|
struct wakeup_source *wakeup_source_register(const char *name)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
ws = wakeup_source_create(name);
|
|
if (ws)
|
|
wakeup_source_add(ws);
|
|
|
|
return ws;
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_register);
|
|
|
|
/**
|
|
* wakeup_source_unregister - Remove wakeup source from the list and remove it.
|
|
* @ws: Wakeup source object to unregister.
|
|
*/
|
|
void wakeup_source_unregister(struct wakeup_source *ws)
|
|
{
|
|
if (ws) {
|
|
wakeup_source_remove(ws);
|
|
wakeup_source_destroy(ws);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeup_source_unregister);
|
|
|
|
/**
|
|
* device_wakeup_attach - Attach a wakeup source object to a device object.
|
|
* @dev: Device to handle.
|
|
* @ws: Wakeup source object to attach to @dev.
|
|
*
|
|
* This causes @dev to be treated as a wakeup device.
|
|
*/
|
|
static int device_wakeup_attach(struct device *dev, struct wakeup_source *ws)
|
|
{
|
|
spin_lock_irq(&dev->power.lock);
|
|
if (dev->power.wakeup) {
|
|
spin_unlock_irq(&dev->power.lock);
|
|
return -EEXIST;
|
|
}
|
|
dev->power.wakeup = ws;
|
|
spin_unlock_irq(&dev->power.lock);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_enable - Enable given device to be a wakeup source.
|
|
* @dev: Device to handle.
|
|
*
|
|
* Create a wakeup source object, register it and attach it to @dev.
|
|
*/
|
|
int device_wakeup_enable(struct device *dev)
|
|
{
|
|
struct wakeup_source *ws;
|
|
int ret;
|
|
|
|
if (!dev || !dev->power.can_wakeup)
|
|
return -EINVAL;
|
|
|
|
ws = wakeup_source_register(dev_name(dev));
|
|
if (!ws)
|
|
return -ENOMEM;
|
|
|
|
ret = device_wakeup_attach(dev, ws);
|
|
if (ret)
|
|
wakeup_source_unregister(ws);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_wakeup_enable);
|
|
|
|
/**
|
|
* device_wakeup_attach_irq - Attach a wakeirq to a wakeup source
|
|
* @dev: Device to handle
|
|
* @wakeirq: Device specific wakeirq entry
|
|
*
|
|
* Attach a device wakeirq to the wakeup source so the device
|
|
* wake IRQ can be configured automatically for suspend and
|
|
* resume.
|
|
*
|
|
* Call under the device's power.lock lock.
|
|
*/
|
|
int device_wakeup_attach_irq(struct device *dev,
|
|
struct wake_irq *wakeirq)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
ws = dev->power.wakeup;
|
|
if (!ws) {
|
|
dev_err(dev, "forgot to call call device_init_wakeup?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ws->wakeirq)
|
|
return -EEXIST;
|
|
|
|
ws->wakeirq = wakeirq;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_detach_irq - Detach a wakeirq from a wakeup source
|
|
* @dev: Device to handle
|
|
*
|
|
* Removes a device wakeirq from the wakeup source.
|
|
*
|
|
* Call under the device's power.lock lock.
|
|
*/
|
|
void device_wakeup_detach_irq(struct device *dev)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
ws = dev->power.wakeup;
|
|
if (ws)
|
|
ws->wakeirq = NULL;
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_arm_wake_irqs(void)
|
|
*
|
|
* Itereates over the list of device wakeirqs to arm them.
|
|
*/
|
|
void device_wakeup_arm_wake_irqs(void)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ws, &wakeup_sources, entry) {
|
|
if (ws->wakeirq)
|
|
dev_pm_arm_wake_irq(ws->wakeirq);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_disarm_wake_irqs(void)
|
|
*
|
|
* Itereates over the list of device wakeirqs to disarm them.
|
|
*/
|
|
void device_wakeup_disarm_wake_irqs(void)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ws, &wakeup_sources, entry) {
|
|
if (ws->wakeirq)
|
|
dev_pm_disarm_wake_irq(ws->wakeirq);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_detach - Detach a device's wakeup source object from it.
|
|
* @dev: Device to detach the wakeup source object from.
|
|
*
|
|
* After it returns, @dev will not be treated as a wakeup device any more.
|
|
*/
|
|
static struct wakeup_source *device_wakeup_detach(struct device *dev)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
spin_lock_irq(&dev->power.lock);
|
|
ws = dev->power.wakeup;
|
|
dev->power.wakeup = NULL;
|
|
spin_unlock_irq(&dev->power.lock);
|
|
return ws;
|
|
}
|
|
|
|
/**
|
|
* device_wakeup_disable - Do not regard a device as a wakeup source any more.
|
|
* @dev: Device to handle.
|
|
*
|
|
* Detach the @dev's wakeup source object from it, unregister this wakeup source
|
|
* object and destroy it.
|
|
*/
|
|
int device_wakeup_disable(struct device *dev)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
if (!dev || !dev->power.can_wakeup)
|
|
return -EINVAL;
|
|
|
|
ws = device_wakeup_detach(dev);
|
|
if (ws)
|
|
wakeup_source_unregister(ws);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_wakeup_disable);
|
|
|
|
/**
|
|
* device_set_wakeup_capable - Set/reset device wakeup capability flag.
|
|
* @dev: Device to handle.
|
|
* @capable: Whether or not @dev is capable of waking up the system from sleep.
|
|
*
|
|
* If @capable is set, set the @dev's power.can_wakeup flag and add its
|
|
* wakeup-related attributes to sysfs. Otherwise, unset the @dev's
|
|
* power.can_wakeup flag and remove its wakeup-related attributes from sysfs.
|
|
*
|
|
* This function may sleep and it can't be called from any context where
|
|
* sleeping is not allowed.
|
|
*/
|
|
void device_set_wakeup_capable(struct device *dev, bool capable)
|
|
{
|
|
if (!!dev->power.can_wakeup == !!capable)
|
|
return;
|
|
|
|
if (device_is_registered(dev) && !list_empty(&dev->power.entry)) {
|
|
if (capable) {
|
|
if (wakeup_sysfs_add(dev))
|
|
return;
|
|
} else {
|
|
wakeup_sysfs_remove(dev);
|
|
}
|
|
}
|
|
dev->power.can_wakeup = capable;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_set_wakeup_capable);
|
|
|
|
/**
|
|
* device_init_wakeup - Device wakeup initialization.
|
|
* @dev: Device to handle.
|
|
* @enable: Whether or not to enable @dev as a wakeup device.
|
|
*
|
|
* By default, most devices should leave wakeup disabled. The exceptions are
|
|
* devices that everyone expects to be wakeup sources: keyboards, power buttons,
|
|
* possibly network interfaces, etc. Also, devices that don't generate their
|
|
* own wakeup requests but merely forward requests from one bus to another
|
|
* (like PCI bridges) should have wakeup enabled by default.
|
|
*/
|
|
int device_init_wakeup(struct device *dev, bool enable)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!dev)
|
|
return -EINVAL;
|
|
|
|
if (enable) {
|
|
device_set_wakeup_capable(dev, true);
|
|
ret = device_wakeup_enable(dev);
|
|
} else {
|
|
if (dev->power.can_wakeup)
|
|
device_wakeup_disable(dev);
|
|
|
|
device_set_wakeup_capable(dev, false);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_init_wakeup);
|
|
|
|
/**
|
|
* device_set_wakeup_enable - Enable or disable a device to wake up the system.
|
|
* @dev: Device to handle.
|
|
*/
|
|
int device_set_wakeup_enable(struct device *dev, bool enable)
|
|
{
|
|
if (!dev || !dev->power.can_wakeup)
|
|
return -EINVAL;
|
|
|
|
return enable ? device_wakeup_enable(dev) : device_wakeup_disable(dev);
|
|
}
|
|
EXPORT_SYMBOL_GPL(device_set_wakeup_enable);
|
|
|
|
/**
|
|
* wakeup_source_not_registered - validate the given wakeup source.
|
|
* @ws: Wakeup source to be validated.
|
|
*/
|
|
static bool wakeup_source_not_registered(struct wakeup_source *ws)
|
|
{
|
|
/*
|
|
* Use timer struct to check if the given source is initialized
|
|
* by wakeup_source_add.
|
|
*/
|
|
return ws->timer.function != pm_wakeup_timer_fn ||
|
|
ws->timer.data != (unsigned long)ws;
|
|
}
|
|
|
|
/*
|
|
* The functions below use the observation that each wakeup event starts a
|
|
* period in which the system should not be suspended. The moment this period
|
|
* will end depends on how the wakeup event is going to be processed after being
|
|
* detected and all of the possible cases can be divided into two distinct
|
|
* groups.
|
|
*
|
|
* First, a wakeup event may be detected by the same functional unit that will
|
|
* carry out the entire processing of it and possibly will pass it to user space
|
|
* for further processing. In that case the functional unit that has detected
|
|
* the event may later "close" the "no suspend" period associated with it
|
|
* directly as soon as it has been dealt with. The pair of pm_stay_awake() and
|
|
* pm_relax(), balanced with each other, is supposed to be used in such
|
|
* situations.
|
|
*
|
|
* Second, a wakeup event may be detected by one functional unit and processed
|
|
* by another one. In that case the unit that has detected it cannot really
|
|
* "close" the "no suspend" period associated with it, unless it knows in
|
|
* advance what's going to happen to the event during processing. This
|
|
* knowledge, however, may not be available to it, so it can simply specify time
|
|
* to wait before the system can be suspended and pass it as the second
|
|
* argument of pm_wakeup_event().
|
|
*
|
|
* It is valid to call pm_relax() after pm_wakeup_event(), in which case the
|
|
* "no suspend" period will be ended either by the pm_relax(), or by the timer
|
|
* function executed when the timer expires, whichever comes first.
|
|
*/
|
|
|
|
/**
|
|
* wakup_source_activate - Mark given wakeup source as active.
|
|
* @ws: Wakeup source to handle.
|
|
*
|
|
* Update the @ws' statistics and, if @ws has just been activated, notify the PM
|
|
* core of the event by incrementing the counter of of wakeup events being
|
|
* processed.
|
|
*/
|
|
static void wakeup_source_activate(struct wakeup_source *ws)
|
|
{
|
|
unsigned int cec;
|
|
|
|
if (WARN_ONCE(wakeup_source_not_registered(ws),
|
|
"unregistered wakeup source\n"))
|
|
return;
|
|
|
|
/*
|
|
* active wakeup source should bring the system
|
|
* out of PM_SUSPEND_FREEZE state
|
|
*/
|
|
freeze_wake();
|
|
|
|
ws->active = true;
|
|
ws->active_count++;
|
|
ws->last_time = ktime_get();
|
|
if (ws->autosleep_enabled)
|
|
ws->start_prevent_time = ws->last_time;
|
|
|
|
/* Increment the counter of events in progress. */
|
|
cec = atomic_inc_return(&combined_event_count);
|
|
|
|
trace_wakeup_source_activate(ws->name, cec);
|
|
}
|
|
|
|
/**
|
|
* wakeup_source_report_event - Report wakeup event using the given source.
|
|
* @ws: Wakeup source to report the event for.
|
|
*/
|
|
static void wakeup_source_report_event(struct wakeup_source *ws)
|
|
{
|
|
ws->event_count++;
|
|
/* This is racy, but the counter is approximate anyway. */
|
|
if (events_check_enabled)
|
|
ws->wakeup_count++;
|
|
|
|
if (!ws->active)
|
|
wakeup_source_activate(ws);
|
|
}
|
|
|
|
/**
|
|
* __pm_stay_awake - Notify the PM core of a wakeup event.
|
|
* @ws: Wakeup source object associated with the source of the event.
|
|
*
|
|
* It is safe to call this function from interrupt context.
|
|
*/
|
|
void __pm_stay_awake(struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ws)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ws->lock, flags);
|
|
|
|
wakeup_source_report_event(ws);
|
|
del_timer(&ws->timer);
|
|
ws->timer_expires = 0;
|
|
|
|
spin_unlock_irqrestore(&ws->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pm_stay_awake);
|
|
|
|
/**
|
|
* pm_stay_awake - Notify the PM core that a wakeup event is being processed.
|
|
* @dev: Device the wakeup event is related to.
|
|
*
|
|
* Notify the PM core of a wakeup event (signaled by @dev) by calling
|
|
* __pm_stay_awake for the @dev's wakeup source object.
|
|
*
|
|
* Call this function after detecting of a wakeup event if pm_relax() is going
|
|
* to be called directly after processing the event (and possibly passing it to
|
|
* user space for further processing).
|
|
*/
|
|
void pm_stay_awake(struct device *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->power.lock, flags);
|
|
__pm_stay_awake(dev->power.wakeup);
|
|
spin_unlock_irqrestore(&dev->power.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pm_stay_awake);
|
|
|
|
#ifdef CONFIG_PM_AUTOSLEEP
|
|
static void update_prevent_sleep_time(struct wakeup_source *ws, ktime_t now)
|
|
{
|
|
ktime_t delta = ktime_sub(now, ws->start_prevent_time);
|
|
ws->prevent_sleep_time = ktime_add(ws->prevent_sleep_time, delta);
|
|
}
|
|
#else
|
|
static inline void update_prevent_sleep_time(struct wakeup_source *ws,
|
|
ktime_t now) {}
|
|
#endif
|
|
|
|
/**
|
|
* wakup_source_deactivate - Mark given wakeup source as inactive.
|
|
* @ws: Wakeup source to handle.
|
|
*
|
|
* Update the @ws' statistics and notify the PM core that the wakeup source has
|
|
* become inactive by decrementing the counter of wakeup events being processed
|
|
* and incrementing the counter of registered wakeup events.
|
|
*/
|
|
static void wakeup_source_deactivate(struct wakeup_source *ws)
|
|
{
|
|
unsigned int cnt, inpr, cec;
|
|
ktime_t duration;
|
|
ktime_t now;
|
|
|
|
ws->relax_count++;
|
|
/*
|
|
* __pm_relax() may be called directly or from a timer function.
|
|
* If it is called directly right after the timer function has been
|
|
* started, but before the timer function calls __pm_relax(), it is
|
|
* possible that __pm_stay_awake() will be called in the meantime and
|
|
* will set ws->active. Then, ws->active may be cleared immediately
|
|
* by the __pm_relax() called from the timer function, but in such a
|
|
* case ws->relax_count will be different from ws->active_count.
|
|
*/
|
|
if (ws->relax_count != ws->active_count) {
|
|
ws->relax_count--;
|
|
return;
|
|
}
|
|
|
|
ws->active = false;
|
|
|
|
now = ktime_get();
|
|
duration = ktime_sub(now, ws->last_time);
|
|
ws->total_time = ktime_add(ws->total_time, duration);
|
|
if (ktime_to_ns(duration) > ktime_to_ns(ws->max_time))
|
|
ws->max_time = duration;
|
|
|
|
ws->last_time = now;
|
|
del_timer(&ws->timer);
|
|
ws->timer_expires = 0;
|
|
|
|
if (ws->autosleep_enabled)
|
|
update_prevent_sleep_time(ws, now);
|
|
|
|
/*
|
|
* Increment the counter of registered wakeup events and decrement the
|
|
* couter of wakeup events in progress simultaneously.
|
|
*/
|
|
cec = atomic_add_return(MAX_IN_PROGRESS, &combined_event_count);
|
|
trace_wakeup_source_deactivate(ws->name, cec);
|
|
|
|
split_counters(&cnt, &inpr);
|
|
if (!inpr && waitqueue_active(&wakeup_count_wait_queue))
|
|
wake_up(&wakeup_count_wait_queue);
|
|
}
|
|
|
|
/**
|
|
* __pm_relax - Notify the PM core that processing of a wakeup event has ended.
|
|
* @ws: Wakeup source object associated with the source of the event.
|
|
*
|
|
* Call this function for wakeup events whose processing started with calling
|
|
* __pm_stay_awake().
|
|
*
|
|
* It is safe to call it from interrupt context.
|
|
*/
|
|
void __pm_relax(struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!ws)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ws->lock, flags);
|
|
if (ws->active)
|
|
wakeup_source_deactivate(ws);
|
|
spin_unlock_irqrestore(&ws->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pm_relax);
|
|
|
|
/**
|
|
* pm_relax - Notify the PM core that processing of a wakeup event has ended.
|
|
* @dev: Device that signaled the event.
|
|
*
|
|
* Execute __pm_relax() for the @dev's wakeup source object.
|
|
*/
|
|
void pm_relax(struct device *dev)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->power.lock, flags);
|
|
__pm_relax(dev->power.wakeup);
|
|
spin_unlock_irqrestore(&dev->power.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pm_relax);
|
|
|
|
/**
|
|
* pm_wakeup_timer_fn - Delayed finalization of a wakeup event.
|
|
* @data: Address of the wakeup source object associated with the event source.
|
|
*
|
|
* Call wakeup_source_deactivate() for the wakeup source whose address is stored
|
|
* in @data if it is currently active and its timer has not been canceled and
|
|
* the expiration time of the timer is not in future.
|
|
*/
|
|
static void pm_wakeup_timer_fn(unsigned long data)
|
|
{
|
|
struct wakeup_source *ws = (struct wakeup_source *)data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ws->lock, flags);
|
|
|
|
if (ws->active && ws->timer_expires
|
|
&& time_after_eq(jiffies, ws->timer_expires)) {
|
|
wakeup_source_deactivate(ws);
|
|
ws->expire_count++;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ws->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* __pm_wakeup_event - Notify the PM core of a wakeup event.
|
|
* @ws: Wakeup source object associated with the event source.
|
|
* @msec: Anticipated event processing time (in milliseconds).
|
|
*
|
|
* Notify the PM core of a wakeup event whose source is @ws that will take
|
|
* approximately @msec milliseconds to be processed by the kernel. If @ws is
|
|
* not active, activate it. If @msec is nonzero, set up the @ws' timer to
|
|
* execute pm_wakeup_timer_fn() in future.
|
|
*
|
|
* It is safe to call this function from interrupt context.
|
|
*/
|
|
void __pm_wakeup_event(struct wakeup_source *ws, unsigned int msec)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long expires;
|
|
|
|
if (!ws)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ws->lock, flags);
|
|
|
|
wakeup_source_report_event(ws);
|
|
|
|
if (!msec) {
|
|
wakeup_source_deactivate(ws);
|
|
goto unlock;
|
|
}
|
|
|
|
expires = jiffies + msecs_to_jiffies(msec);
|
|
if (!expires)
|
|
expires = 1;
|
|
|
|
if (!ws->timer_expires || time_after(expires, ws->timer_expires)) {
|
|
mod_timer(&ws->timer, expires);
|
|
ws->timer_expires = expires;
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock_irqrestore(&ws->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__pm_wakeup_event);
|
|
|
|
|
|
/**
|
|
* pm_wakeup_event - Notify the PM core of a wakeup event.
|
|
* @dev: Device the wakeup event is related to.
|
|
* @msec: Anticipated event processing time (in milliseconds).
|
|
*
|
|
* Call __pm_wakeup_event() for the @dev's wakeup source object.
|
|
*/
|
|
void pm_wakeup_event(struct device *dev, unsigned int msec)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!dev)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->power.lock, flags);
|
|
__pm_wakeup_event(dev->power.wakeup, msec);
|
|
spin_unlock_irqrestore(&dev->power.lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(pm_wakeup_event);
|
|
|
|
void pm_print_active_wakeup_sources(void)
|
|
{
|
|
struct wakeup_source *ws;
|
|
int active = 0;
|
|
struct wakeup_source *last_activity_ws = NULL;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ws, &wakeup_sources, entry) {
|
|
if (ws->active) {
|
|
pr_info("active wakeup source: %s\n", ws->name);
|
|
active = 1;
|
|
} else if (!active &&
|
|
(!last_activity_ws ||
|
|
ktime_to_ns(ws->last_time) >
|
|
ktime_to_ns(last_activity_ws->last_time))) {
|
|
last_activity_ws = ws;
|
|
}
|
|
}
|
|
|
|
if (!active && last_activity_ws)
|
|
pr_info("last active wakeup source: %s\n",
|
|
last_activity_ws->name);
|
|
rcu_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(pm_print_active_wakeup_sources);
|
|
|
|
/**
|
|
* pm_wakeup_pending - Check if power transition in progress should be aborted.
|
|
*
|
|
* Compare the current number of registered wakeup events with its preserved
|
|
* value from the past and return true if new wakeup events have been registered
|
|
* since the old value was stored. Also return true if the current number of
|
|
* wakeup events being processed is different from zero.
|
|
*/
|
|
bool pm_wakeup_pending(void)
|
|
{
|
|
unsigned long flags;
|
|
bool ret = false;
|
|
|
|
spin_lock_irqsave(&events_lock, flags);
|
|
if (events_check_enabled) {
|
|
unsigned int cnt, inpr;
|
|
|
|
split_counters(&cnt, &inpr);
|
|
ret = (cnt != saved_count || inpr > 0);
|
|
events_check_enabled = !ret;
|
|
}
|
|
spin_unlock_irqrestore(&events_lock, flags);
|
|
|
|
if (ret) {
|
|
pr_info("PM: Wakeup pending, aborting suspend\n");
|
|
pm_print_active_wakeup_sources();
|
|
}
|
|
|
|
return ret || pm_abort_suspend;
|
|
}
|
|
|
|
void pm_system_wakeup(void)
|
|
{
|
|
pm_abort_suspend = true;
|
|
freeze_wake();
|
|
}
|
|
EXPORT_SYMBOL_GPL(pm_system_wakeup);
|
|
|
|
void pm_wakeup_clear(void)
|
|
{
|
|
pm_abort_suspend = false;
|
|
}
|
|
|
|
/**
|
|
* pm_get_wakeup_count - Read the number of registered wakeup events.
|
|
* @count: Address to store the value at.
|
|
* @block: Whether or not to block.
|
|
*
|
|
* Store the number of registered wakeup events at the address in @count. If
|
|
* @block is set, block until the current number of wakeup events being
|
|
* processed is zero.
|
|
*
|
|
* Return 'false' if the current number of wakeup events being processed is
|
|
* nonzero. Otherwise return 'true'.
|
|
*/
|
|
bool pm_get_wakeup_count(unsigned int *count, bool block)
|
|
{
|
|
unsigned int cnt, inpr;
|
|
|
|
if (block) {
|
|
DEFINE_WAIT(wait);
|
|
|
|
for (;;) {
|
|
prepare_to_wait(&wakeup_count_wait_queue, &wait,
|
|
TASK_INTERRUPTIBLE);
|
|
split_counters(&cnt, &inpr);
|
|
if (inpr == 0 || signal_pending(current))
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
finish_wait(&wakeup_count_wait_queue, &wait);
|
|
}
|
|
|
|
split_counters(&cnt, &inpr);
|
|
*count = cnt;
|
|
return !inpr;
|
|
}
|
|
|
|
/**
|
|
* pm_save_wakeup_count - Save the current number of registered wakeup events.
|
|
* @count: Value to compare with the current number of registered wakeup events.
|
|
*
|
|
* If @count is equal to the current number of registered wakeup events and the
|
|
* current number of wakeup events being processed is zero, store @count as the
|
|
* old number of registered wakeup events for pm_check_wakeup_events(), enable
|
|
* wakeup events detection and return 'true'. Otherwise disable wakeup events
|
|
* detection and return 'false'.
|
|
*/
|
|
bool pm_save_wakeup_count(unsigned int count)
|
|
{
|
|
unsigned int cnt, inpr;
|
|
unsigned long flags;
|
|
|
|
events_check_enabled = false;
|
|
spin_lock_irqsave(&events_lock, flags);
|
|
split_counters(&cnt, &inpr);
|
|
if (cnt == count && inpr == 0) {
|
|
saved_count = count;
|
|
events_check_enabled = true;
|
|
}
|
|
spin_unlock_irqrestore(&events_lock, flags);
|
|
return events_check_enabled;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_AUTOSLEEP
|
|
/**
|
|
* pm_wakep_autosleep_enabled - Modify autosleep_enabled for all wakeup sources.
|
|
* @enabled: Whether to set or to clear the autosleep_enabled flags.
|
|
*/
|
|
void pm_wakep_autosleep_enabled(bool set)
|
|
{
|
|
struct wakeup_source *ws;
|
|
ktime_t now = ktime_get();
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ws, &wakeup_sources, entry) {
|
|
spin_lock_irq(&ws->lock);
|
|
if (ws->autosleep_enabled != set) {
|
|
ws->autosleep_enabled = set;
|
|
if (ws->active) {
|
|
if (set)
|
|
ws->start_prevent_time = now;
|
|
else
|
|
update_prevent_sleep_time(ws, now);
|
|
}
|
|
}
|
|
spin_unlock_irq(&ws->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
#endif /* CONFIG_PM_AUTOSLEEP */
|
|
|
|
static struct dentry *wakeup_sources_stats_dentry;
|
|
|
|
/**
|
|
* print_wakeup_source_stats - Print wakeup source statistics information.
|
|
* @m: seq_file to print the statistics into.
|
|
* @ws: Wakeup source object to print the statistics for.
|
|
*/
|
|
static int print_wakeup_source_stats(struct seq_file *m,
|
|
struct wakeup_source *ws)
|
|
{
|
|
unsigned long flags;
|
|
ktime_t total_time;
|
|
ktime_t max_time;
|
|
unsigned long active_count;
|
|
ktime_t active_time;
|
|
ktime_t prevent_sleep_time;
|
|
|
|
spin_lock_irqsave(&ws->lock, flags);
|
|
|
|
total_time = ws->total_time;
|
|
max_time = ws->max_time;
|
|
prevent_sleep_time = ws->prevent_sleep_time;
|
|
active_count = ws->active_count;
|
|
if (ws->active) {
|
|
ktime_t now = ktime_get();
|
|
|
|
active_time = ktime_sub(now, ws->last_time);
|
|
total_time = ktime_add(total_time, active_time);
|
|
if (active_time.tv64 > max_time.tv64)
|
|
max_time = active_time;
|
|
|
|
if (ws->autosleep_enabled)
|
|
prevent_sleep_time = ktime_add(prevent_sleep_time,
|
|
ktime_sub(now, ws->start_prevent_time));
|
|
} else {
|
|
active_time = ktime_set(0, 0);
|
|
}
|
|
|
|
seq_printf(m, "%-12s\t%lu\t\t%lu\t\t%lu\t\t%lu\t\t%lld\t\t%lld\t\t%lld\t\t%lld\t\t%lld\n",
|
|
ws->name, active_count, ws->event_count,
|
|
ws->wakeup_count, ws->expire_count,
|
|
ktime_to_ms(active_time), ktime_to_ms(total_time),
|
|
ktime_to_ms(max_time), ktime_to_ms(ws->last_time),
|
|
ktime_to_ms(prevent_sleep_time));
|
|
|
|
spin_unlock_irqrestore(&ws->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* wakeup_sources_stats_show - Print wakeup sources statistics information.
|
|
* @m: seq_file to print the statistics into.
|
|
*/
|
|
static int wakeup_sources_stats_show(struct seq_file *m, void *unused)
|
|
{
|
|
struct wakeup_source *ws;
|
|
|
|
seq_puts(m, "name\t\tactive_count\tevent_count\twakeup_count\t"
|
|
"expire_count\tactive_since\ttotal_time\tmax_time\t"
|
|
"last_change\tprevent_suspend_time\n");
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(ws, &wakeup_sources, entry)
|
|
print_wakeup_source_stats(m, ws);
|
|
rcu_read_unlock();
|
|
|
|
print_wakeup_source_stats(m, &deleted_ws);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int wakeup_sources_stats_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, wakeup_sources_stats_show, NULL);
|
|
}
|
|
|
|
static const struct file_operations wakeup_sources_stats_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = wakeup_sources_stats_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
static int __init wakeup_sources_debugfs_init(void)
|
|
{
|
|
wakeup_sources_stats_dentry = debugfs_create_file("wakeup_sources",
|
|
S_IRUGO, NULL, NULL, &wakeup_sources_stats_fops);
|
|
return 0;
|
|
}
|
|
|
|
postcore_initcall(wakeup_sources_debugfs_init);
|