mirror of https://gitee.com/openkylin/linux.git
2653 lines
74 KiB
C
2653 lines
74 KiB
C
/*
|
|
* Per core/cpu state
|
|
*
|
|
* Used to coordinate shared registers between HT threads or
|
|
* among events on a single PMU.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/stddef.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/cpufeature.h>
|
|
#include <asm/hardirq.h>
|
|
#include <asm/apic.h>
|
|
|
|
#include "perf_event.h"
|
|
|
|
/*
|
|
* Intel PerfMon, used on Core and later.
|
|
*/
|
|
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
|
|
{
|
|
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
|
|
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
|
|
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
|
|
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
|
|
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
|
|
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
|
|
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
|
|
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
|
|
};
|
|
|
|
static struct event_constraint intel_core_event_constraints[] __read_mostly =
|
|
{
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
|
|
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
|
|
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
|
|
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
|
|
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
|
|
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
|
|
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
|
|
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
|
|
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
|
|
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
|
|
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
|
|
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
|
|
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
|
|
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
|
|
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
|
|
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
|
|
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
/*
|
|
* Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT
|
|
* siblings; disable these events because they can corrupt unrelated
|
|
* counters.
|
|
*/
|
|
INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
|
|
INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
|
|
{
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
|
|
{
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
|
|
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
|
|
|
|
struct attribute *nhm_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_nhm),
|
|
NULL,
|
|
};
|
|
|
|
struct attribute *snb_events_attrs[] = {
|
|
EVENT_PTR(mem_ld_snb),
|
|
EVENT_PTR(mem_st_snb),
|
|
NULL,
|
|
};
|
|
|
|
static struct event_constraint intel_hsw_event_constraints[] = {
|
|
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
|
|
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
|
|
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
|
|
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */
|
|
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
|
|
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
|
|
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0x08a3, 0x4),
|
|
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
|
|
INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4),
|
|
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
|
|
INTEL_EVENT_CONSTRAINT(0x04a3, 0xf),
|
|
EVENT_CONSTRAINT_END
|
|
};
|
|
|
|
static u64 intel_pmu_event_map(int hw_event)
|
|
{
|
|
return intel_perfmon_event_map[hw_event];
|
|
}
|
|
|
|
#define SNB_DMND_DATA_RD (1ULL << 0)
|
|
#define SNB_DMND_RFO (1ULL << 1)
|
|
#define SNB_DMND_IFETCH (1ULL << 2)
|
|
#define SNB_DMND_WB (1ULL << 3)
|
|
#define SNB_PF_DATA_RD (1ULL << 4)
|
|
#define SNB_PF_RFO (1ULL << 5)
|
|
#define SNB_PF_IFETCH (1ULL << 6)
|
|
#define SNB_LLC_DATA_RD (1ULL << 7)
|
|
#define SNB_LLC_RFO (1ULL << 8)
|
|
#define SNB_LLC_IFETCH (1ULL << 9)
|
|
#define SNB_BUS_LOCKS (1ULL << 10)
|
|
#define SNB_STRM_ST (1ULL << 11)
|
|
#define SNB_OTHER (1ULL << 15)
|
|
#define SNB_RESP_ANY (1ULL << 16)
|
|
#define SNB_NO_SUPP (1ULL << 17)
|
|
#define SNB_LLC_HITM (1ULL << 18)
|
|
#define SNB_LLC_HITE (1ULL << 19)
|
|
#define SNB_LLC_HITS (1ULL << 20)
|
|
#define SNB_LLC_HITF (1ULL << 21)
|
|
#define SNB_LOCAL (1ULL << 22)
|
|
#define SNB_REMOTE (0xffULL << 23)
|
|
#define SNB_SNP_NONE (1ULL << 31)
|
|
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
|
|
#define SNB_SNP_MISS (1ULL << 33)
|
|
#define SNB_NO_FWD (1ULL << 34)
|
|
#define SNB_SNP_FWD (1ULL << 35)
|
|
#define SNB_HITM (1ULL << 36)
|
|
#define SNB_NON_DRAM (1ULL << 37)
|
|
|
|
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
|
|
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
|
|
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
|
|
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
|
|
SNB_HITM)
|
|
|
|
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
|
|
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
|
|
|
|
#define SNB_L3_ACCESS SNB_RESP_ANY
|
|
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 snb_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
|
|
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 snb_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
|
|
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
|
|
};
|
|
|
|
static __initconst const u64 westmere_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
|
|
* See IA32 SDM Vol 3B 30.6.1.3
|
|
*/
|
|
|
|
#define NHM_DMND_DATA_RD (1 << 0)
|
|
#define NHM_DMND_RFO (1 << 1)
|
|
#define NHM_DMND_IFETCH (1 << 2)
|
|
#define NHM_DMND_WB (1 << 3)
|
|
#define NHM_PF_DATA_RD (1 << 4)
|
|
#define NHM_PF_DATA_RFO (1 << 5)
|
|
#define NHM_PF_IFETCH (1 << 6)
|
|
#define NHM_OFFCORE_OTHER (1 << 7)
|
|
#define NHM_UNCORE_HIT (1 << 8)
|
|
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
|
|
#define NHM_OTHER_CORE_HITM (1 << 10)
|
|
/* reserved */
|
|
#define NHM_REMOTE_CACHE_FWD (1 << 12)
|
|
#define NHM_REMOTE_DRAM (1 << 13)
|
|
#define NHM_LOCAL_DRAM (1 << 14)
|
|
#define NHM_NON_DRAM (1 << 15)
|
|
|
|
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_REMOTE (NHM_REMOTE_DRAM)
|
|
|
|
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
|
|
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
|
|
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
|
|
|
|
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
|
|
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
|
|
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
|
|
|
|
static __initconst const u64 nehalem_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
|
|
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 nehalem_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
|
|
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
|
|
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
/*
|
|
* Use RFO, not WRITEBACK, because a write miss would typically occur
|
|
* on RFO.
|
|
*/
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0x0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
|
|
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(NODE) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 core2_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 atom_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
|
|
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
|
|
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
|
|
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
|
|
{
|
|
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
|
|
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
|
|
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1),
|
|
EVENT_EXTRA_END
|
|
};
|
|
|
|
#define SLM_DMND_READ SNB_DMND_DATA_RD
|
|
#define SLM_DMND_WRITE SNB_DMND_RFO
|
|
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
|
|
|
|
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
|
|
#define SLM_LLC_ACCESS SNB_RESP_ANY
|
|
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
|
|
|
|
static __initconst const u64 slm_hw_cache_extra_regs
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
|
|
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
|
|
},
|
|
},
|
|
};
|
|
|
|
static __initconst const u64 slm_hw_cache_event_ids
|
|
[PERF_COUNT_HW_CACHE_MAX]
|
|
[PERF_COUNT_HW_CACHE_OP_MAX]
|
|
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
|
|
{
|
|
[ C(L1D) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(L1I ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
|
|
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(LL ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
|
|
[ C(RESULT_ACCESS) ] = 0x01b7,
|
|
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
|
|
[ C(RESULT_MISS) ] = 0x01b7,
|
|
},
|
|
},
|
|
[ C(DTLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0,
|
|
[ C(RESULT_MISS) ] = 0,
|
|
},
|
|
},
|
|
[ C(ITLB) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
|
|
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
[ C(BPU ) ] = {
|
|
[ C(OP_READ) ] = {
|
|
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
|
|
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
|
|
},
|
|
[ C(OP_WRITE) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
[ C(OP_PREFETCH) ] = {
|
|
[ C(RESULT_ACCESS) ] = -1,
|
|
[ C(RESULT_MISS) ] = -1,
|
|
},
|
|
},
|
|
};
|
|
|
|
static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event)
|
|
{
|
|
/* user explicitly requested branch sampling */
|
|
if (has_branch_stack(event))
|
|
return true;
|
|
|
|
/* implicit branch sampling to correct PEBS skid */
|
|
if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 &&
|
|
x86_pmu.intel_cap.pebs_format < 2)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void intel_pmu_disable_all(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
|
|
intel_pmu_disable_bts();
|
|
|
|
intel_pmu_pebs_disable_all();
|
|
intel_pmu_lbr_disable_all();
|
|
}
|
|
|
|
static void intel_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
intel_pmu_pebs_enable_all();
|
|
intel_pmu_lbr_enable_all();
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
|
|
x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
|
|
|
|
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
|
|
struct perf_event *event =
|
|
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
|
|
|
|
if (WARN_ON_ONCE(!event))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(event->hw.config);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Workaround for:
|
|
* Intel Errata AAK100 (model 26)
|
|
* Intel Errata AAP53 (model 30)
|
|
* Intel Errata BD53 (model 44)
|
|
*
|
|
* The official story:
|
|
* These chips need to be 'reset' when adding counters by programming the
|
|
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
|
|
* in sequence on the same PMC or on different PMCs.
|
|
*
|
|
* In practise it appears some of these events do in fact count, and
|
|
* we need to programm all 4 events.
|
|
*/
|
|
static void intel_pmu_nhm_workaround(void)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
static const unsigned long nhm_magic[4] = {
|
|
0x4300B5,
|
|
0x4300D2,
|
|
0x4300B1,
|
|
0x4300B1
|
|
};
|
|
struct perf_event *event;
|
|
int i;
|
|
|
|
/*
|
|
* The Errata requires below steps:
|
|
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 2) Configure 4 PERFEVTSELx with the magic events and clear
|
|
* the corresponding PMCx;
|
|
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
|
|
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
|
|
*/
|
|
|
|
/*
|
|
* The real steps we choose are a little different from above.
|
|
* A) To reduce MSR operations, we don't run step 1) as they
|
|
* are already cleared before this function is called;
|
|
* B) Call x86_perf_event_update to save PMCx before configuring
|
|
* PERFEVTSELx with magic number;
|
|
* C) With step 5), we do clear only when the PERFEVTSELx is
|
|
* not used currently.
|
|
* D) Call x86_perf_event_set_period to restore PMCx;
|
|
*/
|
|
|
|
/* We always operate 4 pairs of PERF Counters */
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
if (event)
|
|
x86_perf_event_update(event);
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
|
|
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
|
|
}
|
|
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
event = cpuc->events[i];
|
|
|
|
if (event) {
|
|
x86_perf_event_set_period(event);
|
|
__x86_pmu_enable_event(&event->hw,
|
|
ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
} else
|
|
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
|
|
}
|
|
}
|
|
|
|
static void intel_pmu_nhm_enable_all(int added)
|
|
{
|
|
if (added)
|
|
intel_pmu_nhm_workaround();
|
|
intel_pmu_enable_all(added);
|
|
}
|
|
|
|
static inline u64 intel_pmu_get_status(void)
|
|
{
|
|
u64 status;
|
|
|
|
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
|
|
|
|
return status;
|
|
}
|
|
|
|
static inline void intel_pmu_ack_status(u64 ack)
|
|
{
|
|
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
|
|
}
|
|
|
|
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, mask;
|
|
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static inline bool event_is_checkpointed(struct perf_event *event)
|
|
{
|
|
return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
|
|
}
|
|
|
|
static void intel_pmu_disable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
intel_pmu_disable_bts();
|
|
intel_pmu_drain_bts_buffer();
|
|
return;
|
|
}
|
|
|
|
cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
|
|
cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
|
|
cpuc->intel_cp_status &= ~(1ull << hwc->idx);
|
|
|
|
/*
|
|
* must disable before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (intel_pmu_needs_lbr_smpl(event))
|
|
intel_pmu_lbr_disable(event);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_disable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
x86_pmu_disable_event(event);
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_disable(event);
|
|
}
|
|
|
|
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
|
|
{
|
|
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
|
|
u64 ctrl_val, bits, mask;
|
|
|
|
/*
|
|
* Enable IRQ generation (0x8),
|
|
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
|
|
* if requested:
|
|
*/
|
|
bits = 0x8ULL;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
|
|
bits |= 0x2;
|
|
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
|
|
bits |= 0x1;
|
|
|
|
/*
|
|
* ANY bit is supported in v3 and up
|
|
*/
|
|
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
|
|
bits |= 0x4;
|
|
|
|
bits <<= (idx * 4);
|
|
mask = 0xfULL << (idx * 4);
|
|
|
|
rdmsrl(hwc->config_base, ctrl_val);
|
|
ctrl_val &= ~mask;
|
|
ctrl_val |= bits;
|
|
wrmsrl(hwc->config_base, ctrl_val);
|
|
}
|
|
|
|
static void intel_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
|
|
if (!__this_cpu_read(cpu_hw_events.enabled))
|
|
return;
|
|
|
|
intel_pmu_enable_bts(hwc->config);
|
|
return;
|
|
}
|
|
/*
|
|
* must enabled before any actual event
|
|
* because any event may be combined with LBR
|
|
*/
|
|
if (intel_pmu_needs_lbr_smpl(event))
|
|
intel_pmu_lbr_enable(event);
|
|
|
|
if (event->attr.exclude_host)
|
|
cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
|
|
if (event->attr.exclude_guest)
|
|
cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
|
|
|
|
if (unlikely(event_is_checkpointed(event)))
|
|
cpuc->intel_cp_status |= (1ull << hwc->idx);
|
|
|
|
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
|
|
intel_pmu_enable_fixed(hwc);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(event->attr.precise_ip))
|
|
intel_pmu_pebs_enable(event);
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Save and restart an expired event. Called by NMI contexts,
|
|
* so it has to be careful about preempting normal event ops:
|
|
*/
|
|
int intel_pmu_save_and_restart(struct perf_event *event)
|
|
{
|
|
x86_perf_event_update(event);
|
|
/*
|
|
* For a checkpointed counter always reset back to 0. This
|
|
* avoids a situation where the counter overflows, aborts the
|
|
* transaction and is then set back to shortly before the
|
|
* overflow, and overflows and aborts again.
|
|
*/
|
|
if (unlikely(event_is_checkpointed(event))) {
|
|
/* No race with NMIs because the counter should not be armed */
|
|
wrmsrl(event->hw.event_base, 0);
|
|
local64_set(&event->hw.prev_count, 0);
|
|
}
|
|
return x86_perf_event_set_period(event);
|
|
}
|
|
|
|
static void intel_pmu_reset(void)
|
|
{
|
|
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
|
|
unsigned long flags;
|
|
int idx;
|
|
|
|
if (!x86_pmu.num_counters)
|
|
return;
|
|
|
|
local_irq_save(flags);
|
|
|
|
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
|
|
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
|
|
}
|
|
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
|
|
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
|
|
|
|
if (ds)
|
|
ds->bts_index = ds->bts_buffer_base;
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
/*
|
|
* This handler is triggered by the local APIC, so the APIC IRQ handling
|
|
* rules apply:
|
|
*/
|
|
static int intel_pmu_handle_irq(struct pt_regs *regs)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct cpu_hw_events *cpuc;
|
|
int bit, loops;
|
|
u64 status;
|
|
int handled;
|
|
|
|
cpuc = &__get_cpu_var(cpu_hw_events);
|
|
|
|
/*
|
|
* No known reason to not always do late ACK,
|
|
* but just in case do it opt-in.
|
|
*/
|
|
if (!x86_pmu.late_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
intel_pmu_disable_all();
|
|
handled = intel_pmu_drain_bts_buffer();
|
|
status = intel_pmu_get_status();
|
|
if (!status)
|
|
goto done;
|
|
|
|
loops = 0;
|
|
again:
|
|
intel_pmu_ack_status(status);
|
|
if (++loops > 100) {
|
|
static bool warned = false;
|
|
if (!warned) {
|
|
WARN(1, "perfevents: irq loop stuck!\n");
|
|
perf_event_print_debug();
|
|
warned = true;
|
|
}
|
|
intel_pmu_reset();
|
|
goto done;
|
|
}
|
|
|
|
inc_irq_stat(apic_perf_irqs);
|
|
|
|
intel_pmu_lbr_read();
|
|
|
|
/*
|
|
* CondChgd bit 63 doesn't mean any overflow status. Ignore
|
|
* and clear the bit.
|
|
*/
|
|
if (__test_and_clear_bit(63, (unsigned long *)&status)) {
|
|
if (!status)
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* PEBS overflow sets bit 62 in the global status register
|
|
*/
|
|
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
|
|
handled++;
|
|
x86_pmu.drain_pebs(regs);
|
|
}
|
|
|
|
/*
|
|
* Checkpointed counters can lead to 'spurious' PMIs because the
|
|
* rollback caused by the PMI will have cleared the overflow status
|
|
* bit. Therefore always force probe these counters.
|
|
*/
|
|
status |= cpuc->intel_cp_status;
|
|
|
|
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
|
|
struct perf_event *event = cpuc->events[bit];
|
|
|
|
handled++;
|
|
|
|
if (!test_bit(bit, cpuc->active_mask))
|
|
continue;
|
|
|
|
if (!intel_pmu_save_and_restart(event))
|
|
continue;
|
|
|
|
perf_sample_data_init(&data, 0, event->hw.last_period);
|
|
|
|
if (has_branch_stack(event))
|
|
data.br_stack = &cpuc->lbr_stack;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
x86_pmu_stop(event, 0);
|
|
}
|
|
|
|
/*
|
|
* Repeat if there is more work to be done:
|
|
*/
|
|
status = intel_pmu_get_status();
|
|
if (status)
|
|
goto again;
|
|
|
|
done:
|
|
intel_pmu_enable_all(0);
|
|
/*
|
|
* Only unmask the NMI after the overflow counters
|
|
* have been reset. This avoids spurious NMIs on
|
|
* Haswell CPUs.
|
|
*/
|
|
if (x86_pmu.late_ack)
|
|
apic_write(APIC_LVTPC, APIC_DM_NMI);
|
|
return handled;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_bts_constraints(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
unsigned int hw_event, bts_event;
|
|
|
|
if (event->attr.freq)
|
|
return NULL;
|
|
|
|
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
|
|
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
|
|
|
|
if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
|
|
return &bts_constraint;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int intel_alt_er(int idx)
|
|
{
|
|
if (!(x86_pmu.er_flags & ERF_HAS_RSP_1))
|
|
return idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0)
|
|
return EXTRA_REG_RSP_1;
|
|
|
|
if (idx == EXTRA_REG_RSP_1)
|
|
return EXTRA_REG_RSP_0;
|
|
|
|
return idx;
|
|
}
|
|
|
|
static void intel_fixup_er(struct perf_event *event, int idx)
|
|
{
|
|
event->hw.extra_reg.idx = idx;
|
|
|
|
if (idx == EXTRA_REG_RSP_0) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
|
|
} else if (idx == EXTRA_REG_RSP_1) {
|
|
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
|
|
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
|
|
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* manage allocation of shared extra msr for certain events
|
|
*
|
|
* sharing can be:
|
|
* per-cpu: to be shared between the various events on a single PMU
|
|
* per-core: per-cpu + shared by HT threads
|
|
*/
|
|
static struct event_constraint *
|
|
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct event_constraint *c = &emptyconstraint;
|
|
struct er_account *era;
|
|
unsigned long flags;
|
|
int idx = reg->idx;
|
|
|
|
/*
|
|
* reg->alloc can be set due to existing state, so for fake cpuc we
|
|
* need to ignore this, otherwise we might fail to allocate proper fake
|
|
* state for this extra reg constraint. Also see the comment below.
|
|
*/
|
|
if (reg->alloc && !cpuc->is_fake)
|
|
return NULL; /* call x86_get_event_constraint() */
|
|
|
|
again:
|
|
era = &cpuc->shared_regs->regs[idx];
|
|
/*
|
|
* we use spin_lock_irqsave() to avoid lockdep issues when
|
|
* passing a fake cpuc
|
|
*/
|
|
raw_spin_lock_irqsave(&era->lock, flags);
|
|
|
|
if (!atomic_read(&era->ref) || era->config == reg->config) {
|
|
|
|
/*
|
|
* If its a fake cpuc -- as per validate_{group,event}() we
|
|
* shouldn't touch event state and we can avoid doing so
|
|
* since both will only call get_event_constraints() once
|
|
* on each event, this avoids the need for reg->alloc.
|
|
*
|
|
* Not doing the ER fixup will only result in era->reg being
|
|
* wrong, but since we won't actually try and program hardware
|
|
* this isn't a problem either.
|
|
*/
|
|
if (!cpuc->is_fake) {
|
|
if (idx != reg->idx)
|
|
intel_fixup_er(event, idx);
|
|
|
|
/*
|
|
* x86_schedule_events() can call get_event_constraints()
|
|
* multiple times on events in the case of incremental
|
|
* scheduling(). reg->alloc ensures we only do the ER
|
|
* allocation once.
|
|
*/
|
|
reg->alloc = 1;
|
|
}
|
|
|
|
/* lock in msr value */
|
|
era->config = reg->config;
|
|
era->reg = reg->reg;
|
|
|
|
/* one more user */
|
|
atomic_inc(&era->ref);
|
|
|
|
/*
|
|
* need to call x86_get_event_constraint()
|
|
* to check if associated event has constraints
|
|
*/
|
|
c = NULL;
|
|
} else {
|
|
idx = intel_alt_er(idx);
|
|
if (idx != reg->idx) {
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
goto again;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&era->lock, flags);
|
|
|
|
return c;
|
|
}
|
|
|
|
static void
|
|
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
|
|
struct hw_perf_event_extra *reg)
|
|
{
|
|
struct er_account *era;
|
|
|
|
/*
|
|
* Only put constraint if extra reg was actually allocated. Also takes
|
|
* care of event which do not use an extra shared reg.
|
|
*
|
|
* Also, if this is a fake cpuc we shouldn't touch any event state
|
|
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
|
|
* either since it'll be thrown out.
|
|
*/
|
|
if (!reg->alloc || cpuc->is_fake)
|
|
return;
|
|
|
|
era = &cpuc->shared_regs->regs[reg->idx];
|
|
|
|
/* one fewer user */
|
|
atomic_dec(&era->ref);
|
|
|
|
/* allocate again next time */
|
|
reg->alloc = 0;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = NULL, *d;
|
|
struct hw_perf_event_extra *xreg, *breg;
|
|
|
|
xreg = &event->hw.extra_reg;
|
|
if (xreg->idx != EXTRA_REG_NONE) {
|
|
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
|
|
if (c == &emptyconstraint)
|
|
return c;
|
|
}
|
|
breg = &event->hw.branch_reg;
|
|
if (breg->idx != EXTRA_REG_NONE) {
|
|
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
|
|
if (d == &emptyconstraint) {
|
|
__intel_shared_reg_put_constraints(cpuc, xreg);
|
|
c = d;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
struct event_constraint *
|
|
x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if ((event->hw.config & c->cmask) == c->code) {
|
|
event->hw.flags |= c->flags;
|
|
return c;
|
|
}
|
|
}
|
|
}
|
|
|
|
return &unconstrained;
|
|
}
|
|
|
|
static struct event_constraint *
|
|
intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
|
|
{
|
|
struct event_constraint *c;
|
|
|
|
c = intel_bts_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_pebs_constraints(event);
|
|
if (c)
|
|
return c;
|
|
|
|
c = intel_shared_regs_constraints(cpuc, event);
|
|
if (c)
|
|
return c;
|
|
|
|
return x86_get_event_constraints(cpuc, event);
|
|
}
|
|
|
|
static void
|
|
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
struct hw_perf_event_extra *reg;
|
|
|
|
reg = &event->hw.extra_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
|
|
reg = &event->hw.branch_reg;
|
|
if (reg->idx != EXTRA_REG_NONE)
|
|
__intel_shared_reg_put_constraints(cpuc, reg);
|
|
}
|
|
|
|
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
|
|
struct perf_event *event)
|
|
{
|
|
intel_put_shared_regs_event_constraints(cpuc, event);
|
|
}
|
|
|
|
static void intel_pebs_aliases_core2(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use INST_RETIRED.ANY_P
|
|
* (0x00c0), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* INST_RETIRED.ANY_P counts the number of cycles that retires
|
|
* CNTMASK instructions. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of instructions that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less instructions, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static void intel_pebs_aliases_snb(struct perf_event *event)
|
|
{
|
|
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
|
|
/*
|
|
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
|
|
* (0x003c) so that we can use it with PEBS.
|
|
*
|
|
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
|
|
* PEBS capable. However we can use UOPS_RETIRED.ALL
|
|
* (0x01c2), which is a PEBS capable event, to get the same
|
|
* count.
|
|
*
|
|
* UOPS_RETIRED.ALL counts the number of cycles that retires
|
|
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
|
|
* larger than the maximum number of micro-ops that can be
|
|
* retired per cycle (4) and then inverting the condition, we
|
|
* count all cycles that retire 16 or less micro-ops, which
|
|
* is every cycle.
|
|
*
|
|
* Thereby we gain a PEBS capable cycle counter.
|
|
*/
|
|
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
|
|
|
|
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
|
|
event->hw.config = alt_config;
|
|
}
|
|
}
|
|
|
|
static int intel_pmu_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = x86_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (event->attr.precise_ip && x86_pmu.pebs_aliases)
|
|
x86_pmu.pebs_aliases(event);
|
|
|
|
if (intel_pmu_needs_lbr_smpl(event)) {
|
|
ret = intel_pmu_setup_lbr_filter(event);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (event->attr.type != PERF_TYPE_RAW)
|
|
return 0;
|
|
|
|
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
|
|
return 0;
|
|
|
|
if (x86_pmu.version < 3)
|
|
return -EINVAL;
|
|
|
|
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
|
|
return -EACCES;
|
|
|
|
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
|
|
{
|
|
if (x86_pmu.guest_get_msrs)
|
|
return x86_pmu.guest_get_msrs(nr);
|
|
*nr = 0;
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
|
|
|
|
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
|
|
arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
|
|
arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
|
|
arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
|
|
/*
|
|
* If PMU counter has PEBS enabled it is not enough to disable counter
|
|
* on a guest entry since PEBS memory write can overshoot guest entry
|
|
* and corrupt guest memory. Disabling PEBS solves the problem.
|
|
*/
|
|
arr[1].msr = MSR_IA32_PEBS_ENABLE;
|
|
arr[1].host = cpuc->pebs_enabled;
|
|
arr[1].guest = 0;
|
|
|
|
*nr = 2;
|
|
return arr;
|
|
}
|
|
|
|
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct perf_event *event = cpuc->events[idx];
|
|
|
|
arr[idx].msr = x86_pmu_config_addr(idx);
|
|
arr[idx].host = arr[idx].guest = 0;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask))
|
|
continue;
|
|
|
|
arr[idx].host = arr[idx].guest =
|
|
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
|
|
if (event->attr.exclude_host)
|
|
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
else if (event->attr.exclude_guest)
|
|
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
|
|
}
|
|
|
|
*nr = x86_pmu.num_counters;
|
|
return arr;
|
|
}
|
|
|
|
static void core_pmu_enable_event(struct perf_event *event)
|
|
{
|
|
if (!event->attr.exclude_host)
|
|
x86_pmu_enable_event(event);
|
|
}
|
|
|
|
static void core_pmu_enable_all(int added)
|
|
{
|
|
struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
|
|
int idx;
|
|
|
|
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
|
|
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
|
|
|
|
if (!test_bit(idx, cpuc->active_mask) ||
|
|
cpuc->events[idx]->attr.exclude_host)
|
|
continue;
|
|
|
|
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
|
|
}
|
|
}
|
|
|
|
static int hsw_hw_config(struct perf_event *event)
|
|
{
|
|
int ret = intel_pmu_hw_config(event);
|
|
|
|
if (ret)
|
|
return ret;
|
|
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
|
|
return 0;
|
|
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
|
|
|
|
/*
|
|
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
|
|
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
|
|
* this combination.
|
|
*/
|
|
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
|
|
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
|
|
event->attr.precise_ip > 0))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (event_is_checkpointed(event)) {
|
|
/*
|
|
* Sampling of checkpointed events can cause situations where
|
|
* the CPU constantly aborts because of a overflow, which is
|
|
* then checkpointed back and ignored. Forbid checkpointing
|
|
* for sampling.
|
|
*
|
|
* But still allow a long sampling period, so that perf stat
|
|
* from KVM works.
|
|
*/
|
|
if (event->attr.sample_period > 0 &&
|
|
event->attr.sample_period < 0x7fffffff)
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct event_constraint counter2_constraint =
|
|
EVENT_CONSTRAINT(0, 0x4, 0);
|
|
|
|
static struct event_constraint *
|
|
hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
|
|
{
|
|
struct event_constraint *c = intel_get_event_constraints(cpuc, event);
|
|
|
|
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
|
|
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
|
|
if (c->idxmsk64 & (1U << 2))
|
|
return &counter2_constraint;
|
|
return &emptyconstraint;
|
|
}
|
|
|
|
return c;
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7" );
|
|
PMU_FORMAT_ATTR(umask, "config:8-15" );
|
|
PMU_FORMAT_ATTR(edge, "config:18" );
|
|
PMU_FORMAT_ATTR(pc, "config:19" );
|
|
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
|
|
PMU_FORMAT_ATTR(inv, "config:23" );
|
|
PMU_FORMAT_ATTR(cmask, "config:24-31" );
|
|
PMU_FORMAT_ATTR(in_tx, "config:32");
|
|
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
|
|
|
|
static struct attribute *intel_arch_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
NULL,
|
|
};
|
|
|
|
ssize_t intel_event_sysfs_show(char *page, u64 config)
|
|
{
|
|
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
|
|
|
|
return x86_event_sysfs_show(page, config, event);
|
|
}
|
|
|
|
static __initconst const struct x86_pmu core_pmu = {
|
|
.name = "core",
|
|
.handle_irq = x86_pmu_handle_irq,
|
|
.disable_all = x86_pmu_disable_all,
|
|
.enable_all = core_pmu_enable_all,
|
|
.enable = core_pmu_enable_event,
|
|
.disable = x86_pmu_disable_event,
|
|
.hw_config = x86_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.event_constraints = intel_core_event_constraints,
|
|
.guest_get_msrs = core_guest_get_msrs,
|
|
.format_attrs = intel_arch_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
};
|
|
|
|
struct intel_shared_regs *allocate_shared_regs(int cpu)
|
|
{
|
|
struct intel_shared_regs *regs;
|
|
int i;
|
|
|
|
regs = kzalloc_node(sizeof(struct intel_shared_regs),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (regs) {
|
|
/*
|
|
* initialize the locks to keep lockdep happy
|
|
*/
|
|
for (i = 0; i < EXTRA_REG_MAX; i++)
|
|
raw_spin_lock_init(®s->regs[i].lock);
|
|
|
|
regs->core_id = -1;
|
|
}
|
|
return regs;
|
|
}
|
|
|
|
static int intel_pmu_cpu_prepare(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
|
|
if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map))
|
|
return NOTIFY_OK;
|
|
|
|
cpuc->shared_regs = allocate_shared_regs(cpu);
|
|
if (!cpuc->shared_regs)
|
|
return NOTIFY_BAD;
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static void intel_pmu_cpu_starting(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
int core_id = topology_core_id(cpu);
|
|
int i;
|
|
|
|
init_debug_store_on_cpu(cpu);
|
|
/*
|
|
* Deal with CPUs that don't clear their LBRs on power-up.
|
|
*/
|
|
intel_pmu_lbr_reset();
|
|
|
|
cpuc->lbr_sel = NULL;
|
|
|
|
if (!cpuc->shared_regs)
|
|
return;
|
|
|
|
if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) {
|
|
for_each_cpu(i, topology_thread_cpumask(cpu)) {
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = per_cpu(cpu_hw_events, i).shared_regs;
|
|
if (pc && pc->core_id == core_id) {
|
|
cpuc->kfree_on_online = cpuc->shared_regs;
|
|
cpuc->shared_regs = pc;
|
|
break;
|
|
}
|
|
}
|
|
cpuc->shared_regs->core_id = core_id;
|
|
cpuc->shared_regs->refcnt++;
|
|
}
|
|
|
|
if (x86_pmu.lbr_sel_map)
|
|
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
|
|
}
|
|
|
|
static void intel_pmu_cpu_dying(int cpu)
|
|
{
|
|
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
|
|
struct intel_shared_regs *pc;
|
|
|
|
pc = cpuc->shared_regs;
|
|
if (pc) {
|
|
if (pc->core_id == -1 || --pc->refcnt == 0)
|
|
kfree(pc);
|
|
cpuc->shared_regs = NULL;
|
|
}
|
|
|
|
fini_debug_store_on_cpu(cpu);
|
|
}
|
|
|
|
static void intel_pmu_flush_branch_stack(void)
|
|
{
|
|
/*
|
|
* Intel LBR does not tag entries with the
|
|
* PID of the current task, then we need to
|
|
* flush it on ctxsw
|
|
* For now, we simply reset it
|
|
*/
|
|
if (x86_pmu.lbr_nr)
|
|
intel_pmu_lbr_reset();
|
|
}
|
|
|
|
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
|
|
|
|
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
|
|
|
|
static struct attribute *intel_arch3_formats_attr[] = {
|
|
&format_attr_event.attr,
|
|
&format_attr_umask.attr,
|
|
&format_attr_edge.attr,
|
|
&format_attr_pc.attr,
|
|
&format_attr_any.attr,
|
|
&format_attr_inv.attr,
|
|
&format_attr_cmask.attr,
|
|
&format_attr_in_tx.attr,
|
|
&format_attr_in_tx_cp.attr,
|
|
|
|
&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
|
|
&format_attr_ldlat.attr, /* PEBS load latency */
|
|
NULL,
|
|
};
|
|
|
|
static __initconst const struct x86_pmu intel_pmu = {
|
|
.name = "Intel",
|
|
.handle_irq = intel_pmu_handle_irq,
|
|
.disable_all = intel_pmu_disable_all,
|
|
.enable_all = intel_pmu_enable_all,
|
|
.enable = intel_pmu_enable_event,
|
|
.disable = intel_pmu_disable_event,
|
|
.hw_config = intel_pmu_hw_config,
|
|
.schedule_events = x86_schedule_events,
|
|
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
|
|
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
|
|
.event_map = intel_pmu_event_map,
|
|
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
|
|
.apic = 1,
|
|
/*
|
|
* Intel PMCs cannot be accessed sanely above 32 bit width,
|
|
* so we install an artificial 1<<31 period regardless of
|
|
* the generic event period:
|
|
*/
|
|
.max_period = (1ULL << 31) - 1,
|
|
.get_event_constraints = intel_get_event_constraints,
|
|
.put_event_constraints = intel_put_event_constraints,
|
|
.pebs_aliases = intel_pebs_aliases_core2,
|
|
|
|
.format_attrs = intel_arch3_formats_attr,
|
|
.events_sysfs_show = intel_event_sysfs_show,
|
|
|
|
.cpu_prepare = intel_pmu_cpu_prepare,
|
|
.cpu_starting = intel_pmu_cpu_starting,
|
|
.cpu_dying = intel_pmu_cpu_dying,
|
|
.guest_get_msrs = intel_guest_get_msrs,
|
|
.flush_branch_stack = intel_pmu_flush_branch_stack,
|
|
};
|
|
|
|
static __init void intel_clovertown_quirk(void)
|
|
{
|
|
/*
|
|
* PEBS is unreliable due to:
|
|
*
|
|
* AJ67 - PEBS may experience CPL leaks
|
|
* AJ68 - PEBS PMI may be delayed by one event
|
|
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
|
|
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
|
|
*
|
|
* AJ67 could be worked around by restricting the OS/USR flags.
|
|
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
|
|
*
|
|
* AJ106 could possibly be worked around by not allowing LBR
|
|
* usage from PEBS, including the fixup.
|
|
* AJ68 could possibly be worked around by always programming
|
|
* a pebs_event_reset[0] value and coping with the lost events.
|
|
*
|
|
* But taken together it might just make sense to not enable PEBS on
|
|
* these chips.
|
|
*/
|
|
pr_warn("PEBS disabled due to CPU errata\n");
|
|
x86_pmu.pebs = 0;
|
|
x86_pmu.pebs_constraints = NULL;
|
|
}
|
|
|
|
static int intel_snb_pebs_broken(int cpu)
|
|
{
|
|
u32 rev = UINT_MAX; /* default to broken for unknown models */
|
|
|
|
switch (cpu_data(cpu).x86_model) {
|
|
case 42: /* SNB */
|
|
rev = 0x28;
|
|
break;
|
|
|
|
case 45: /* SNB-EP */
|
|
switch (cpu_data(cpu).x86_mask) {
|
|
case 6: rev = 0x618; break;
|
|
case 7: rev = 0x70c; break;
|
|
}
|
|
}
|
|
|
|
return (cpu_data(cpu).microcode < rev);
|
|
}
|
|
|
|
static void intel_snb_check_microcode(void)
|
|
{
|
|
int pebs_broken = 0;
|
|
int cpu;
|
|
|
|
get_online_cpus();
|
|
for_each_online_cpu(cpu) {
|
|
if ((pebs_broken = intel_snb_pebs_broken(cpu)))
|
|
break;
|
|
}
|
|
put_online_cpus();
|
|
|
|
if (pebs_broken == x86_pmu.pebs_broken)
|
|
return;
|
|
|
|
/*
|
|
* Serialized by the microcode lock..
|
|
*/
|
|
if (x86_pmu.pebs_broken) {
|
|
pr_info("PEBS enabled due to microcode update\n");
|
|
x86_pmu.pebs_broken = 0;
|
|
} else {
|
|
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
|
|
x86_pmu.pebs_broken = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Under certain circumstances, access certain MSR may cause #GP.
|
|
* The function tests if the input MSR can be safely accessed.
|
|
*/
|
|
static bool check_msr(unsigned long msr, u64 mask)
|
|
{
|
|
u64 val_old, val_new, val_tmp;
|
|
|
|
/*
|
|
* Read the current value, change it and read it back to see if it
|
|
* matches, this is needed to detect certain hardware emulators
|
|
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
|
|
*/
|
|
if (rdmsrl_safe(msr, &val_old))
|
|
return false;
|
|
|
|
/*
|
|
* Only change the bits which can be updated by wrmsrl.
|
|
*/
|
|
val_tmp = val_old ^ mask;
|
|
if (wrmsrl_safe(msr, val_tmp) ||
|
|
rdmsrl_safe(msr, &val_new))
|
|
return false;
|
|
|
|
if (val_new != val_tmp)
|
|
return false;
|
|
|
|
/* Here it's sure that the MSR can be safely accessed.
|
|
* Restore the old value and return.
|
|
*/
|
|
wrmsrl(msr, val_old);
|
|
|
|
return true;
|
|
}
|
|
|
|
static __init void intel_sandybridge_quirk(void)
|
|
{
|
|
x86_pmu.check_microcode = intel_snb_check_microcode;
|
|
intel_snb_check_microcode();
|
|
}
|
|
|
|
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
|
|
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
|
|
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
|
|
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
|
|
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
|
|
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
|
|
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
|
|
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
|
|
};
|
|
|
|
static __init void intel_arch_events_quirk(void)
|
|
{
|
|
int bit;
|
|
|
|
/* disable event that reported as not presend by cpuid */
|
|
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
|
|
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
|
|
pr_warn("CPUID marked event: \'%s\' unavailable\n",
|
|
intel_arch_events_map[bit].name);
|
|
}
|
|
}
|
|
|
|
static __init void intel_nehalem_quirk(void)
|
|
{
|
|
union cpuid10_ebx ebx;
|
|
|
|
ebx.full = x86_pmu.events_maskl;
|
|
if (ebx.split.no_branch_misses_retired) {
|
|
/*
|
|
* Erratum AAJ80 detected, we work it around by using
|
|
* the BR_MISP_EXEC.ANY event. This will over-count
|
|
* branch-misses, but it's still much better than the
|
|
* architectural event which is often completely bogus:
|
|
*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
|
|
ebx.split.no_branch_misses_retired = 0;
|
|
x86_pmu.events_maskl = ebx.full;
|
|
pr_info("CPU erratum AAJ80 worked around\n");
|
|
}
|
|
}
|
|
|
|
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
|
|
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
|
|
|
|
/* Haswell special events */
|
|
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
|
|
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
|
|
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
|
|
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
|
|
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
|
|
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
|
|
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
|
|
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
|
|
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
|
|
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
|
|
|
|
static struct attribute *hsw_events_attrs[] = {
|
|
EVENT_PTR(tx_start),
|
|
EVENT_PTR(tx_commit),
|
|
EVENT_PTR(tx_abort),
|
|
EVENT_PTR(tx_capacity),
|
|
EVENT_PTR(tx_conflict),
|
|
EVENT_PTR(el_start),
|
|
EVENT_PTR(el_commit),
|
|
EVENT_PTR(el_abort),
|
|
EVENT_PTR(el_capacity),
|
|
EVENT_PTR(el_conflict),
|
|
EVENT_PTR(cycles_t),
|
|
EVENT_PTR(cycles_ct),
|
|
EVENT_PTR(mem_ld_hsw),
|
|
EVENT_PTR(mem_st_hsw),
|
|
NULL
|
|
};
|
|
|
|
__init int intel_pmu_init(void)
|
|
{
|
|
union cpuid10_edx edx;
|
|
union cpuid10_eax eax;
|
|
union cpuid10_ebx ebx;
|
|
struct event_constraint *c;
|
|
unsigned int unused;
|
|
struct extra_reg *er;
|
|
int version, i;
|
|
|
|
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
|
|
switch (boot_cpu_data.x86) {
|
|
case 0x6:
|
|
return p6_pmu_init();
|
|
case 0xb:
|
|
return knc_pmu_init();
|
|
case 0xf:
|
|
return p4_pmu_init();
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* Check whether the Architectural PerfMon supports
|
|
* Branch Misses Retired hw_event or not.
|
|
*/
|
|
cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
|
|
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
|
|
return -ENODEV;
|
|
|
|
version = eax.split.version_id;
|
|
if (version < 2)
|
|
x86_pmu = core_pmu;
|
|
else
|
|
x86_pmu = intel_pmu;
|
|
|
|
x86_pmu.version = version;
|
|
x86_pmu.num_counters = eax.split.num_counters;
|
|
x86_pmu.cntval_bits = eax.split.bit_width;
|
|
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
|
|
|
|
x86_pmu.events_maskl = ebx.full;
|
|
x86_pmu.events_mask_len = eax.split.mask_length;
|
|
|
|
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
|
|
|
|
/*
|
|
* Quirk: v2 perfmon does not report fixed-purpose events, so
|
|
* assume at least 3 events:
|
|
*/
|
|
if (version > 1)
|
|
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PDCM)) {
|
|
u64 capabilities;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
|
|
x86_pmu.intel_cap.capabilities = capabilities;
|
|
}
|
|
|
|
intel_ds_init();
|
|
|
|
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
|
|
|
|
/*
|
|
* Install the hw-cache-events table:
|
|
*/
|
|
switch (boot_cpu_data.x86_model) {
|
|
case 14: /* 65 nm core solo/duo, "Yonah" */
|
|
pr_cont("Core events, ");
|
|
break;
|
|
|
|
case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
|
|
x86_add_quirk(intel_clovertown_quirk);
|
|
case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
|
|
case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
|
|
case 29: /* six-core 45 nm xeon "Dunnington" */
|
|
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_core();
|
|
|
|
x86_pmu.event_constraints = intel_core2_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
|
|
pr_cont("Core2 events, ");
|
|
break;
|
|
|
|
case 26: /* 45 nm nehalem, "Bloomfield" */
|
|
case 30: /* 45 nm nehalem, "Lynnfield" */
|
|
case 46: /* 45 nm nehalem-ex, "Beckton" */
|
|
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_nehalem_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.extra_regs = intel_nehalem_extra_regs;
|
|
|
|
x86_pmu.cpu_events = nhm_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
x86_add_quirk(intel_nehalem_quirk);
|
|
|
|
pr_cont("Nehalem events, ");
|
|
break;
|
|
|
|
case 28: /* Atom */
|
|
case 38: /* Lincroft */
|
|
case 39: /* Penwell */
|
|
case 53: /* Cloverview */
|
|
case 54: /* Cedarview */
|
|
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
|
|
pr_cont("Atom events, ");
|
|
break;
|
|
|
|
case 55: /* Atom 22nm "Silvermont" */
|
|
case 77: /* Avoton "Silvermont" */
|
|
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_atom();
|
|
|
|
x86_pmu.event_constraints = intel_slm_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_slm_extra_regs;
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
pr_cont("Silvermont events, ");
|
|
break;
|
|
|
|
case 37: /* 32 nm nehalem, "Clarkdale" */
|
|
case 44: /* 32 nm nehalem, "Gulftown" */
|
|
case 47: /* 32 nm Xeon E7 */
|
|
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_nhm();
|
|
|
|
x86_pmu.event_constraints = intel_westmere_event_constraints;
|
|
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
|
|
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_westmere_extra_regs;
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
|
|
x86_pmu.cpu_events = nhm_events_attrs;
|
|
|
|
/* UOPS_ISSUED.STALLED_CYCLES */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
|
|
|
|
pr_cont("Westmere events, ");
|
|
break;
|
|
|
|
case 42: /* SandyBridge */
|
|
case 45: /* SandyBridge, "Romely-EP" */
|
|
x86_add_quirk(intel_sandybridge_quirk);
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_snb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
if (boot_cpu_data.x86_model == 45)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
|
|
|
|
x86_pmu.cpu_events = snb_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
|
|
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("SandyBridge events, ");
|
|
break;
|
|
case 58: /* IvyBridge */
|
|
case 62: /* IvyBridge EP */
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
|
|
sizeof(hw_cache_event_ids));
|
|
/* dTLB-load-misses on IVB is different than SNB */
|
|
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
|
|
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
|
|
sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_ivb_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
if (boot_cpu_data.x86_model == 62)
|
|
x86_pmu.extra_regs = intel_snbep_extra_regs;
|
|
else
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
|
|
|
|
x86_pmu.cpu_events = snb_events_attrs;
|
|
|
|
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
|
|
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
|
|
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
|
|
|
|
pr_cont("IvyBridge events, ");
|
|
break;
|
|
|
|
|
|
case 60: /* Haswell Client */
|
|
case 70:
|
|
case 71:
|
|
case 63:
|
|
case 69:
|
|
x86_pmu.late_ack = true;
|
|
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids));
|
|
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
|
|
|
|
intel_pmu_lbr_init_snb();
|
|
|
|
x86_pmu.event_constraints = intel_hsw_event_constraints;
|
|
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
|
|
x86_pmu.extra_regs = intel_snb_extra_regs;
|
|
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
|
|
/* all extra regs are per-cpu when HT is on */
|
|
x86_pmu.er_flags |= ERF_HAS_RSP_1;
|
|
x86_pmu.er_flags |= ERF_NO_HT_SHARING;
|
|
|
|
x86_pmu.hw_config = hsw_hw_config;
|
|
x86_pmu.get_event_constraints = hsw_get_event_constraints;
|
|
x86_pmu.cpu_events = hsw_events_attrs;
|
|
x86_pmu.lbr_double_abort = true;
|
|
pr_cont("Haswell events, ");
|
|
break;
|
|
|
|
default:
|
|
switch (x86_pmu.version) {
|
|
case 1:
|
|
x86_pmu.event_constraints = intel_v1_event_constraints;
|
|
pr_cont("generic architected perfmon v1, ");
|
|
break;
|
|
default:
|
|
/*
|
|
* default constraints for v2 and up
|
|
*/
|
|
x86_pmu.event_constraints = intel_gen_event_constraints;
|
|
pr_cont("generic architected perfmon, ");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
|
|
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
|
|
x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
|
|
x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
|
|
}
|
|
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
|
|
|
|
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
|
|
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
|
|
x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
|
|
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
|
|
}
|
|
|
|
x86_pmu.intel_ctrl |=
|
|
((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
|
|
|
|
if (x86_pmu.event_constraints) {
|
|
/*
|
|
* event on fixed counter2 (REF_CYCLES) only works on this
|
|
* counter, so do not extend mask to generic counters
|
|
*/
|
|
for_each_event_constraint(c, x86_pmu.event_constraints) {
|
|
if (c->cmask != FIXED_EVENT_FLAGS
|
|
|| c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) {
|
|
continue;
|
|
}
|
|
|
|
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
|
|
c->weight += x86_pmu.num_counters;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Access LBR MSR may cause #GP under certain circumstances.
|
|
* E.g. KVM doesn't support LBR MSR
|
|
* Check all LBT MSR here.
|
|
* Disable LBR access if any LBR MSRs can not be accessed.
|
|
*/
|
|
if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
|
|
x86_pmu.lbr_nr = 0;
|
|
for (i = 0; i < x86_pmu.lbr_nr; i++) {
|
|
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
|
|
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
|
|
x86_pmu.lbr_nr = 0;
|
|
}
|
|
|
|
/*
|
|
* Access extra MSR may cause #GP under certain circumstances.
|
|
* E.g. KVM doesn't support offcore event
|
|
* Check all extra_regs here.
|
|
*/
|
|
if (x86_pmu.extra_regs) {
|
|
for (er = x86_pmu.extra_regs; er->msr; er++) {
|
|
er->extra_msr_access = check_msr(er->msr, 0x1ffUL);
|
|
/* Disable LBR select mapping */
|
|
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
|
|
x86_pmu.lbr_sel_map = NULL;
|
|
}
|
|
}
|
|
|
|
/* Support full width counters using alternative MSR range */
|
|
if (x86_pmu.intel_cap.full_width_write) {
|
|
x86_pmu.max_period = x86_pmu.cntval_mask;
|
|
x86_pmu.perfctr = MSR_IA32_PMC0;
|
|
pr_cont("full-width counters, ");
|
|
}
|
|
|
|
return 0;
|
|
}
|