linux/drivers/gpu/drm/amd/display/dc/dce112/dce112_resource.c

1284 lines
34 KiB
C

/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "link_encoder.h"
#include "stream_encoder.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dce110/dce110_resource.h"
#include "dce110/dce110_timing_generator.h"
#include "irq/dce110/irq_service_dce110.h"
#include "dce/dce_mem_input.h"
#include "dce/dce_transform.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_audio.h"
#include "dce/dce_opp.h"
#include "dce/dce_ipp.h"
#include "dce/dce_clocks.h"
#include "dce/dce_clock_source.h"
#include "dce/dce_hwseq.h"
#include "dce112/dce112_hw_sequencer.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#include "reg_helper.h"
#include "dce/dce_11_2_d.h"
#include "dce/dce_11_2_sh_mask.h"
#include "dce100/dce100_resource.h"
#ifndef mmDP_DPHY_INTERNAL_CTRL
#define mmDP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x4aa7
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x4ba7
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x4ca7
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x4da7
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x4ea7
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x4fa7
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x54a7
#define mmDP7_DP_DPHY_INTERNAL_CTRL 0x56a7
#define mmDP8_DP_DPHY_INTERNAL_CTRL 0x57a7
#endif
#ifndef mmBIOS_SCRATCH_2
#define mmBIOS_SCRATCH_2 0x05CB
#define mmBIOS_SCRATCH_6 0x05CF
#endif
#ifndef mmDP_DPHY_BS_SR_SWAP_CNTL
#define mmDP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP0_DP_DPHY_BS_SR_SWAP_CNTL 0x4ADC
#define mmDP1_DP_DPHY_BS_SR_SWAP_CNTL 0x4BDC
#define mmDP2_DP_DPHY_BS_SR_SWAP_CNTL 0x4CDC
#define mmDP3_DP_DPHY_BS_SR_SWAP_CNTL 0x4DDC
#define mmDP4_DP_DPHY_BS_SR_SWAP_CNTL 0x4EDC
#define mmDP5_DP_DPHY_BS_SR_SWAP_CNTL 0x4FDC
#define mmDP6_DP_DPHY_BS_SR_SWAP_CNTL 0x54DC
#endif
#ifndef mmDP_DPHY_FAST_TRAINING
#define mmDP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP0_DP_DPHY_FAST_TRAINING 0x4ABC
#define mmDP1_DP_DPHY_FAST_TRAINING 0x4BBC
#define mmDP2_DP_DPHY_FAST_TRAINING 0x4CBC
#define mmDP3_DP_DPHY_FAST_TRAINING 0x4DBC
#define mmDP4_DP_DPHY_FAST_TRAINING 0x4EBC
#define mmDP5_DP_DPHY_FAST_TRAINING 0x4FBC
#define mmDP6_DP_DPHY_FAST_TRAINING 0x54BC
#endif
enum dce112_clk_src_array_id {
DCE112_CLK_SRC_PLL0,
DCE112_CLK_SRC_PLL1,
DCE112_CLK_SRC_PLL2,
DCE112_CLK_SRC_PLL3,
DCE112_CLK_SRC_PLL4,
DCE112_CLK_SRC_PLL5,
DCE112_CLK_SRC_TOTAL
};
static const struct dce110_timing_generator_offsets dce112_tg_offsets[] = {
{
.crtc = (mmCRTC0_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP0_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC1_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP1_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC2_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP2_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC3_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP3_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC4_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP4_GRPH_CONTROL - mmGRPH_CONTROL),
},
{
.crtc = (mmCRTC5_CRTC_CONTROL - mmCRTC_CONTROL),
.dcp = (mmDCP5_GRPH_CONTROL - mmGRPH_CONTROL),
}
};
/* set register offset */
#define SR(reg_name)\
.reg_name = mm ## reg_name
/* set register offset with instance */
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
static const struct dce_disp_clk_registers disp_clk_regs = {
CLK_COMMON_REG_LIST_DCE_BASE()
};
static const struct dce_disp_clk_shift disp_clk_shift = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_disp_clk_mask disp_clk_mask = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCE110_COMMON_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCE110(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCE110_COMMON_REG_LIST()
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCE110(_MASK)
};
#define ipp_regs(id)\
[id] = {\
IPP_DCE110_REG_LIST_DCE_BASE(id)\
}
static const struct dce_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
ipp_regs(4),
ipp_regs(5)
};
static const struct dce_ipp_shift ipp_shift = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_ipp_mask ipp_mask = {
IPP_DCE100_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
#define transform_regs(id)\
[id] = {\
XFM_COMMON_REG_LIST_DCE110(id)\
}
static const struct dce_transform_registers xfm_regs[] = {
transform_regs(0),
transform_regs(1),
transform_regs(2),
transform_regs(3),
transform_regs(4),
transform_regs(5)
};
static const struct dce_transform_shift xfm_shift = {
XFM_COMMON_MASK_SH_LIST_DCE110(__SHIFT)
};
static const struct dce_transform_mask xfm_mask = {
XFM_COMMON_MASK_SH_LIST_DCE110(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCE110_REG_LIST(id)\
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define stream_enc_regs(id)\
[id] = {\
SE_COMMON_REG_LIST(id),\
.TMDS_CNTL = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
stream_enc_regs(4),
stream_enc_regs(5)
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCE112(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCE112(_MASK)
};
#define opp_regs(id)\
[id] = {\
OPP_DCE_112_REG_LIST(id),\
}
static const struct dce_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
opp_regs(4),
opp_regs(5)
};
static const struct dce_opp_shift opp_shift = {
OPP_COMMON_MASK_SH_LIST_DCE_112(__SHIFT)
};
static const struct dce_opp_mask opp_mask = {
OPP_COMMON_MASK_SH_LIST_DCE_112(_MASK)
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
audio_regs(4),
audio_regs(5)
};
static const struct dce_audio_shift audio_shift = {
AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_aduio_mask audio_mask = {
AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define clk_src_regs(index, id)\
[index] = {\
CS_COMMON_REG_LIST_DCE_112(id),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D),
clk_src_regs(4, E),
clk_src_regs(5, F)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCE_112(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCE_112(_MASK)
};
static const struct bios_registers bios_regs = {
.BIOS_SCRATCH_6 = mmBIOS_SCRATCH_6
};
static const struct resource_caps polaris_10_resource_cap = {
.num_timing_generator = 6,
.num_audio = 6,
.num_stream_encoder = 6,
.num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */
};
static const struct resource_caps polaris_11_resource_cap = {
.num_timing_generator = 5,
.num_audio = 5,
.num_stream_encoder = 5,
.num_pll = 8, /* why 8? 6 combo PHY PLL + 2 regular PLLs? */
};
#define CTX ctx
#define REG(reg) mm ## reg
#ifndef mmCC_DC_HDMI_STRAPS
#define mmCC_DC_HDMI_STRAPS 0x4819
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE_MASK 0x40
#define CC_DC_HDMI_STRAPS__HDMI_DISABLE__SHIFT 0x6
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER_MASK 0x700
#define CC_DC_HDMI_STRAPS__AUDIO_STREAM_NUMBER__SHIFT 0x8
#endif
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct timing_generator *dce112_timing_generator_create(
struct dc_context *ctx,
uint32_t instance,
const struct dce110_timing_generator_offsets *offsets)
{
struct dce110_timing_generator *tg110 =
kzalloc(sizeof(struct dce110_timing_generator), GFP_KERNEL);
if (!tg110)
return NULL;
dce110_timing_generator_construct(tg110, ctx, instance, offsets);
return &tg110->base;
}
static struct stream_encoder *dce112_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
kzalloc(sizeof(struct dce110_stream_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_stream_encoder_construct(enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id],
&se_shift, &se_mask);
return &enc110->base;
}
#define SRII(reg_name, block, id)\
.reg_name[id] = mm ## block ## id ## _ ## reg_name
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCE112_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCE112_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCE112_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dce112_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = kzalloc(sizeof(struct dce_hwseq), GFP_KERNEL);
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dce112_stream_encoder_create,
.create_hwseq = dce112_hwseq_create,
};
#define mi_inst_regs(id) { MI_DCE11_2_REG_LIST(id) }
static const struct dce_mem_input_registers mi_regs[] = {
mi_inst_regs(0),
mi_inst_regs(1),
mi_inst_regs(2),
mi_inst_regs(3),
mi_inst_regs(4),
mi_inst_regs(5),
};
static const struct dce_mem_input_shift mi_shifts = {
MI_DCE11_2_MASK_SH_LIST(__SHIFT)
};
static const struct dce_mem_input_mask mi_masks = {
MI_DCE11_2_MASK_SH_LIST(_MASK)
};
static struct mem_input *dce112_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_mem_input *dce_mi = kzalloc(sizeof(struct dce_mem_input),
GFP_KERNEL);
if (!dce_mi) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce112_mem_input_construct(dce_mi, ctx, inst, &mi_regs[inst], &mi_shifts, &mi_masks);
return &dce_mi->base;
}
static void dce112_transform_destroy(struct transform **xfm)
{
kfree(TO_DCE_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dce112_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce_transform *transform =
kzalloc(sizeof(struct dce_transform), GFP_KERNEL);
if (!transform)
return NULL;
dce_transform_construct(transform, ctx, inst,
&xfm_regs[inst], &xfm_shift, &xfm_mask);
transform->lb_memory_size = 0x1404; /*5124*/
return &transform->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.ycbcr420_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true,
.flags.bits.IS_YCBCR_CAPABLE = true
};
struct link_encoder *dce112_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
kzalloc(sizeof(struct dce110_link_encoder), GFP_KERNEL);
if (!enc110)
return NULL;
dce110_link_encoder_construct(enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source]);
return &enc110->base;
}
static struct input_pixel_processor *dce112_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dce_ipp *ipp = kzalloc(sizeof(struct dce_ipp), GFP_KERNEL);
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dce_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
struct output_pixel_processor *dce112_opp_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dce110_opp *opp =
kzalloc(sizeof(struct dce110_opp), GFP_KERNEL);
if (!opp)
return NULL;
dce110_opp_construct(opp,
ctx, inst, &opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
struct clock_source *dce112_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
kzalloc(sizeof(struct dce110_clk_src), GFP_KERNEL);
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
void dce112_clock_source_destroy(struct clock_source **clk_src)
{
kfree(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static void destruct(struct dce110_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
dce110_opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dce112_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
dce_ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
kfree(TO_DCE_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.timing_generators[i] != NULL) {
kfree(DCE110TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
kfree(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dce112_clock_source_destroy(&pool->base.clock_sources[i]);
}
}
if (pool->base.dp_clock_source != NULL)
dce112_clock_source_destroy(&pool->base.dp_clock_source);
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i] != NULL) {
dce_aud_destroy(&pool->base.audios[i]);
}
}
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.display_clock != NULL)
dce_disp_clk_destroy(&pool->base.display_clock);
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
}
static struct clock_source *find_matching_pll(
struct resource_context *res_ctx,
const struct resource_pool *pool,
const struct dc_stream_state *const stream)
{
switch (stream->sink->link->link_enc->transmitter) {
case TRANSMITTER_UNIPHY_A:
return pool->clock_sources[DCE112_CLK_SRC_PLL0];
case TRANSMITTER_UNIPHY_B:
return pool->clock_sources[DCE112_CLK_SRC_PLL1];
case TRANSMITTER_UNIPHY_C:
return pool->clock_sources[DCE112_CLK_SRC_PLL2];
case TRANSMITTER_UNIPHY_D:
return pool->clock_sources[DCE112_CLK_SRC_PLL3];
case TRANSMITTER_UNIPHY_E:
return pool->clock_sources[DCE112_CLK_SRC_PLL4];
case TRANSMITTER_UNIPHY_F:
return pool->clock_sources[DCE112_CLK_SRC_PLL5];
default:
return NULL;
};
return 0;
}
static enum dc_status build_mapped_resource(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
dce110_resource_build_pipe_hw_param(pipe_ctx);
resource_build_info_frame(pipe_ctx);
return DC_OK;
}
bool dce112_validate_bandwidth(
struct dc *dc,
struct dc_state *context)
{
bool result = false;
dm_logger_write(
dc->ctx->logger, LOG_BANDWIDTH_CALCS,
"%s: start",
__func__);
if (bw_calcs(
dc->ctx,
dc->bw_dceip,
dc->bw_vbios,
context->res_ctx.pipe_ctx,
dc->res_pool->pipe_count,
&context->bw.dce))
result = true;
if (!result)
dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_VALIDATION,
"%s: Bandwidth validation failed!",
__func__);
if (memcmp(&dc->current_state->bw.dce,
&context->bw.dce, sizeof(context->bw.dce))) {
struct log_entry log_entry;
dm_logger_open(
dc->ctx->logger,
&log_entry,
LOG_BANDWIDTH_CALCS);
dm_logger_append(&log_entry, "%s: finish,\n"
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
__func__,
context->bw.dce.nbp_state_change_wm_ns[0].b_mark,
context->bw.dce.nbp_state_change_wm_ns[0].a_mark,
context->bw.dce.urgent_wm_ns[0].b_mark,
context->bw.dce.urgent_wm_ns[0].a_mark,
context->bw.dce.stutter_exit_wm_ns[0].b_mark,
context->bw.dce.stutter_exit_wm_ns[0].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d\n",
context->bw.dce.nbp_state_change_wm_ns[1].b_mark,
context->bw.dce.nbp_state_change_wm_ns[1].a_mark,
context->bw.dce.urgent_wm_ns[1].b_mark,
context->bw.dce.urgent_wm_ns[1].a_mark,
context->bw.dce.stutter_exit_wm_ns[1].b_mark,
context->bw.dce.stutter_exit_wm_ns[1].a_mark);
dm_logger_append(&log_entry,
"nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n"
"stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n",
context->bw.dce.nbp_state_change_wm_ns[2].b_mark,
context->bw.dce.nbp_state_change_wm_ns[2].a_mark,
context->bw.dce.urgent_wm_ns[2].b_mark,
context->bw.dce.urgent_wm_ns[2].a_mark,
context->bw.dce.stutter_exit_wm_ns[2].b_mark,
context->bw.dce.stutter_exit_wm_ns[2].a_mark,
context->bw.dce.stutter_mode_enable);
dm_logger_append(&log_entry,
"cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n"
"sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n",
context->bw.dce.cpuc_state_change_enable,
context->bw.dce.cpup_state_change_enable,
context->bw.dce.nbp_state_change_enable,
context->bw.dce.all_displays_in_sync,
context->bw.dce.dispclk_khz,
context->bw.dce.sclk_khz,
context->bw.dce.sclk_deep_sleep_khz,
context->bw.dce.yclk_khz,
context->bw.dce.blackout_recovery_time_us);
dm_logger_close(&log_entry);
}
return result;
}
enum dc_status resource_map_phy_clock_resources(
const struct dc *dc,
struct dc_state *context,
struct dc_stream_state *stream)
{
/* acquire new resources */
struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
&context->res_ctx, stream);
if (!pipe_ctx)
return DC_ERROR_UNEXPECTED;
if (dc_is_dp_signal(pipe_ctx->stream->signal)
|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
pipe_ctx->clock_source =
dc->res_pool->dp_clock_source;
else
pipe_ctx->clock_source = find_matching_pll(
&context->res_ctx, dc->res_pool,
stream);
if (pipe_ctx->clock_source == NULL)
return DC_NO_CLOCK_SOURCE_RESOURCE;
resource_reference_clock_source(
&context->res_ctx,
dc->res_pool,
pipe_ctx->clock_source);
return DC_OK;
}
static bool dce112_validate_surface_sets(
struct dc_state *context)
{
int i;
for (i = 0; i < context->stream_count; i++) {
if (context->stream_status[i].plane_count == 0)
continue;
if (context->stream_status[i].plane_count > 1)
return false;
if (context->stream_status[i].plane_states[0]->format
>= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
return false;
}
return true;
}
enum dc_status dce112_add_stream_to_ctx(
struct dc *dc,
struct dc_state *new_ctx,
struct dc_stream_state *dc_stream)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
result = resource_map_pool_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, new_ctx, dc_stream);
if (result == DC_OK)
result = build_mapped_resource(dc, new_ctx, dc_stream);
return result;
}
enum dc_status dce112_validate_guaranteed(
struct dc *dc,
struct dc_stream_state *stream,
struct dc_state *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
context->streams[0] = stream;
dc_stream_retain(context->streams[0]);
context->stream_count++;
result = resource_map_pool_resources(dc, context, stream);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, context, stream);
if (result == DC_OK)
result = build_mapped_resource(dc, context, stream);
if (result == DC_OK) {
validate_guaranteed_copy_streams(
context, dc->caps.max_streams);
result = resource_build_scaling_params_for_context(dc, context);
}
if (result == DC_OK)
if (!dce112_validate_bandwidth(dc, context))
result = DC_FAIL_BANDWIDTH_VALIDATE;
return result;
}
enum dc_status dce112_validate_global(
struct dc *dc,
struct dc_state *context)
{
if (!dce112_validate_surface_sets(context))
return DC_FAIL_SURFACE_VALIDATE;
return DC_OK;
}
static void dce112_destroy_resource_pool(struct resource_pool **pool)
{
struct dce110_resource_pool *dce110_pool = TO_DCE110_RES_POOL(*pool);
destruct(dce110_pool);
kfree(dce110_pool);
*pool = NULL;
}
static const struct resource_funcs dce112_res_pool_funcs = {
.destroy = dce112_destroy_resource_pool,
.link_enc_create = dce112_link_encoder_create,
.validate_guaranteed = dce112_validate_guaranteed,
.validate_bandwidth = dce112_validate_bandwidth,
.validate_plane = dce100_validate_plane,
.add_stream_to_ctx = dce112_add_stream_to_ctx,
.validate_global = dce112_validate_global
};
static void bw_calcs_data_update_from_pplib(struct dc *dc)
{
struct dm_pp_clock_levels_with_latency eng_clks = {0};
struct dm_pp_clock_levels_with_latency mem_clks = {0};
struct dm_pp_wm_sets_with_clock_ranges clk_ranges = {0};
struct dm_pp_clock_levels clks = {0};
/*do system clock TODO PPLIB: after PPLIB implement,
* then remove old way
*/
if (!dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&eng_clks)) {
/* This is only for temporary */
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_ENGINE_CLK,
&clks);
/* convert all the clock fro kHz to fix point mHz */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1], 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels/8], 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*2/8], 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*3/8], 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*4/8], 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*5/8], 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels*6/8], 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
clks.clocks_in_khz[0], 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&clks);
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[0] * MEMORY_TYPE_MULTIPLIER, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels>>1] * MEMORY_TYPE_MULTIPLIER,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
clks.clocks_in_khz[clks.num_levels-1] * MEMORY_TYPE_MULTIPLIER,
1000);
return;
}
/* convert all the clock fro kHz to fix point mHz TODO: wloop data */
dc->bw_vbios->high_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels-1].clocks_in_khz, 1000);
dc->bw_vbios->mid1_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels/8].clocks_in_khz, 1000);
dc->bw_vbios->mid2_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*2/8].clocks_in_khz, 1000);
dc->bw_vbios->mid3_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz, 1000);
dc->bw_vbios->mid4_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*4/8].clocks_in_khz, 1000);
dc->bw_vbios->mid5_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*5/8].clocks_in_khz, 1000);
dc->bw_vbios->mid6_sclk = bw_frc_to_fixed(
eng_clks.data[eng_clks.num_levels*6/8].clocks_in_khz, 1000);
dc->bw_vbios->low_sclk = bw_frc_to_fixed(
eng_clks.data[0].clocks_in_khz, 1000);
/*do memory clock*/
dm_pp_get_clock_levels_by_type_with_latency(
dc->ctx,
DM_PP_CLOCK_TYPE_MEMORY_CLK,
&mem_clks);
/* we don't need to call PPLIB for validation clock since they
* also give us the highest sclk and highest mclk (UMA clock).
* ALSO always convert UMA clock (from PPLIB) to YCLK (HW formula):
* YCLK = UMACLK*m_memoryTypeMultiplier
*/
dc->bw_vbios->low_yclk = bw_frc_to_fixed(
mem_clks.data[0].clocks_in_khz * MEMORY_TYPE_MULTIPLIER, 1000);
dc->bw_vbios->mid_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz * MEMORY_TYPE_MULTIPLIER,
1000);
dc->bw_vbios->high_yclk = bw_frc_to_fixed(
mem_clks.data[mem_clks.num_levels-1].clocks_in_khz * MEMORY_TYPE_MULTIPLIER,
1000);
/* Now notify PPLib/SMU about which Watermarks sets they should select
* depending on DPM state they are in. And update BW MGR GFX Engine and
* Memory clock member variables for Watermarks calculations for each
* Watermark Set
*/
clk_ranges.num_wm_sets = 4;
clk_ranges.wm_clk_ranges[0].wm_set_id = WM_SET_A;
clk_ranges.wm_clk_ranges[0].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[0].wm_min_memg_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[0].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[1].wm_set_id = WM_SET_B;
clk_ranges.wm_clk_ranges[1].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[1].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[1].wm_min_memg_clk_in_khz =
mem_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[1].wm_max_mem_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_set_id = WM_SET_C;
clk_ranges.wm_clk_ranges[2].wm_min_eng_clk_in_khz =
eng_clks.data[0].clocks_in_khz;
clk_ranges.wm_clk_ranges[2].wm_max_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz - 1;
clk_ranges.wm_clk_ranges[2].wm_min_memg_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[2].wm_max_mem_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_set_id = WM_SET_D;
clk_ranges.wm_clk_ranges[3].wm_min_eng_clk_in_khz =
eng_clks.data[eng_clks.num_levels*3/8].clocks_in_khz;
/* 5 GHz instead of data[7].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_eng_clk_in_khz = 5000000;
clk_ranges.wm_clk_ranges[3].wm_min_memg_clk_in_khz =
mem_clks.data[mem_clks.num_levels>>1].clocks_in_khz;
/* 5 GHz instead of data[2].clockInKHz to cover Overdrive */
clk_ranges.wm_clk_ranges[3].wm_max_mem_clk_in_khz = 5000000;
/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
dm_pp_notify_wm_clock_changes(dc->ctx, &clk_ranges);
}
const struct resource_caps *dce112_resource_cap(
struct hw_asic_id *asic_id)
{
if (ASIC_REV_IS_POLARIS11_M(asic_id->hw_internal_rev) ||
ASIC_REV_IS_POLARIS12_V(asic_id->hw_internal_rev))
return &polaris_11_resource_cap;
else
return &polaris_10_resource_cap;
}
static bool construct(
uint8_t num_virtual_links,
struct dc *dc,
struct dce110_resource_pool *pool)
{
unsigned int i;
struct dc_context *ctx = dc->ctx;
struct dm_pp_static_clock_info static_clk_info = {0};
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = dce112_resource_cap(&ctx->asic_id);
pool->base.funcs = &dce112_res_pool_funcs;
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
pool->base.pipe_count = pool->base.res_cap->num_timing_generator;
dc->caps.max_downscale_ratio = 200;
dc->caps.i2c_speed_in_khz = 100;
dc->caps.max_cursor_size = 128;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCE112_CLK_SRC_PLL0] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL1] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL2] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL3] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL4] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL4,
&clk_src_regs[4], false);
pool->base.clock_sources[DCE112_CLK_SRC_PLL5] =
dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL5,
&clk_src_regs[5], false);
pool->base.clk_src_count = DCE112_CLK_SRC_TOTAL;
pool->base.dp_clock_source = dce112_clock_source_create(
ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO, &clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
}
pool->base.display_clock = dce112_disp_clk_create(ctx,
&disp_clk_regs,
&disp_clk_shift,
&disp_clk_mask);
if (pool->base.display_clock == NULL) {
dm_error("DC: failed to create display clock!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.dmcu = dce_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
/* get static clock information for PPLIB or firmware, save
* max_clock_state
*/
if (dm_pp_get_static_clocks(ctx, &static_clk_info))
pool->base.display_clock->max_clks_state =
static_clk_info.max_clocks_state;
{
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dce110_create(&init_data);
if (!pool->base.irqs)
goto res_create_fail;
}
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.timing_generators[i] =
dce112_timing_generator_create(
ctx,
i,
&dce112_tg_offsets[i]);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto res_create_fail;
}
pool->base.mis[i] = dce112_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto res_create_fail;
}
pool->base.ipps[i] = dce112_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create input pixel processor!\n");
goto res_create_fail;
}
pool->base.transforms[i] = dce112_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto res_create_fail;
}
pool->base.opps[i] = dce112_opp_create(
ctx,
i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC:failed to create output pixel processor!\n");
goto res_create_fail;
}
}
if (!resource_construct(num_virtual_links, dc, &pool->base,
&res_create_funcs))
goto res_create_fail;
dc->caps.max_planes = pool->base.pipe_count;
/* Create hardware sequencer */
dce112_hw_sequencer_construct(dc);
bw_calcs_init(dc->bw_dceip, dc->bw_vbios, dc->ctx->asic_id);
bw_calcs_data_update_from_pplib(dc);
return true;
res_create_fail:
destruct(pool);
return false;
}
struct resource_pool *dce112_create_resource_pool(
uint8_t num_virtual_links,
struct dc *dc)
{
struct dce110_resource_pool *pool =
kzalloc(sizeof(struct dce110_resource_pool), GFP_KERNEL);
if (!pool)
return NULL;
if (construct(num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
return NULL;
}