mirror of https://gitee.com/openkylin/linux.git
1455 lines
43 KiB
C
1455 lines
43 KiB
C
/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
|
|
* pci_sabre.c: Sabre specific PCI controller support.
|
|
*
|
|
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
|
|
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
|
|
* Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/apb.h>
|
|
#include <asm/pbm.h>
|
|
#include <asm/iommu.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/oplib.h>
|
|
#include <asm/prom.h>
|
|
|
|
#include "pci_impl.h"
|
|
#include "iommu_common.h"
|
|
|
|
/* All SABRE registers are 64-bits. The following accessor
|
|
* routines are how they are accessed. The REG parameter
|
|
* is a physical address.
|
|
*/
|
|
#define sabre_read(__reg) \
|
|
({ u64 __ret; \
|
|
__asm__ __volatile__("ldxa [%1] %2, %0" \
|
|
: "=r" (__ret) \
|
|
: "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
|
|
: "memory"); \
|
|
__ret; \
|
|
})
|
|
#define sabre_write(__reg, __val) \
|
|
__asm__ __volatile__("stxa %0, [%1] %2" \
|
|
: /* no outputs */ \
|
|
: "r" (__val), "r" (__reg), \
|
|
"i" (ASI_PHYS_BYPASS_EC_E) \
|
|
: "memory")
|
|
|
|
/* SABRE PCI controller register offsets and definitions. */
|
|
#define SABRE_UE_AFSR 0x0030UL
|
|
#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
|
|
#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
|
|
#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
|
|
#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
|
|
#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
|
|
#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
|
|
#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
|
|
#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
|
|
#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
|
|
#define SABRE_UECE_AFAR 0x0038UL
|
|
#define SABRE_CE_AFSR 0x0040UL
|
|
#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
|
|
#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
|
|
#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
|
|
#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
|
|
#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
|
|
#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
|
|
#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
|
|
#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
|
|
#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
|
|
#define SABRE_IOMMU_CONTROL 0x0200UL
|
|
#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
|
|
#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
|
|
#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
|
|
#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
|
|
#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
|
|
#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
|
|
#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
|
|
#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
|
|
#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
|
|
#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
|
|
#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
|
|
#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
|
|
#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
|
|
#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
|
|
#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
|
|
#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
|
|
#define SABRE_IOMMU_TSBBASE 0x0208UL
|
|
#define SABRE_IOMMU_FLUSH 0x0210UL
|
|
#define SABRE_IMAP_A_SLOT0 0x0c00UL
|
|
#define SABRE_IMAP_B_SLOT0 0x0c20UL
|
|
#define SABRE_IMAP_SCSI 0x1000UL
|
|
#define SABRE_IMAP_ETH 0x1008UL
|
|
#define SABRE_IMAP_BPP 0x1010UL
|
|
#define SABRE_IMAP_AU_REC 0x1018UL
|
|
#define SABRE_IMAP_AU_PLAY 0x1020UL
|
|
#define SABRE_IMAP_PFAIL 0x1028UL
|
|
#define SABRE_IMAP_KMS 0x1030UL
|
|
#define SABRE_IMAP_FLPY 0x1038UL
|
|
#define SABRE_IMAP_SHW 0x1040UL
|
|
#define SABRE_IMAP_KBD 0x1048UL
|
|
#define SABRE_IMAP_MS 0x1050UL
|
|
#define SABRE_IMAP_SER 0x1058UL
|
|
#define SABRE_IMAP_UE 0x1070UL
|
|
#define SABRE_IMAP_CE 0x1078UL
|
|
#define SABRE_IMAP_PCIERR 0x1080UL
|
|
#define SABRE_IMAP_GFX 0x1098UL
|
|
#define SABRE_IMAP_EUPA 0x10a0UL
|
|
#define SABRE_ICLR_A_SLOT0 0x1400UL
|
|
#define SABRE_ICLR_B_SLOT0 0x1480UL
|
|
#define SABRE_ICLR_SCSI 0x1800UL
|
|
#define SABRE_ICLR_ETH 0x1808UL
|
|
#define SABRE_ICLR_BPP 0x1810UL
|
|
#define SABRE_ICLR_AU_REC 0x1818UL
|
|
#define SABRE_ICLR_AU_PLAY 0x1820UL
|
|
#define SABRE_ICLR_PFAIL 0x1828UL
|
|
#define SABRE_ICLR_KMS 0x1830UL
|
|
#define SABRE_ICLR_FLPY 0x1838UL
|
|
#define SABRE_ICLR_SHW 0x1840UL
|
|
#define SABRE_ICLR_KBD 0x1848UL
|
|
#define SABRE_ICLR_MS 0x1850UL
|
|
#define SABRE_ICLR_SER 0x1858UL
|
|
#define SABRE_ICLR_UE 0x1870UL
|
|
#define SABRE_ICLR_CE 0x1878UL
|
|
#define SABRE_ICLR_PCIERR 0x1880UL
|
|
#define SABRE_WRSYNC 0x1c20UL
|
|
#define SABRE_PCICTRL 0x2000UL
|
|
#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
|
|
#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
|
|
#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
|
|
#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
|
|
#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
|
|
#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
|
|
#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
|
|
#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
|
|
#define SABRE_PIOAFSR 0x2010UL
|
|
#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
|
|
#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
|
|
#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
|
|
#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
|
|
#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
|
|
#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
|
|
#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
|
|
#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
|
|
#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
|
|
#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
|
|
#define SABRE_PIOAFAR 0x2018UL
|
|
#define SABRE_PCIDIAG 0x2020UL
|
|
#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
|
|
#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
|
|
#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
|
|
#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
|
|
#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
|
|
#define SABRE_PCITASR 0x2028UL
|
|
#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
|
|
#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
|
|
#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
|
|
#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
|
|
#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
|
|
#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
|
|
#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
|
|
#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
|
|
#define SABRE_PIOBUF_DIAG 0x5000UL
|
|
#define SABRE_DMABUF_DIAGLO 0x5100UL
|
|
#define SABRE_DMABUF_DIAGHI 0x51c0UL
|
|
#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
|
|
#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
|
|
#define SABRE_IOMMU_VADIAG 0xa400UL
|
|
#define SABRE_IOMMU_TCDIAG 0xa408UL
|
|
#define SABRE_IOMMU_TAG 0xa580UL
|
|
#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
|
|
#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
|
|
#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
|
|
#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
|
|
#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
|
|
#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
|
|
#define SABRE_IOMMU_DATA 0xa600UL
|
|
#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
|
|
#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
|
|
#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
|
|
#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
|
|
#define SABRE_PCI_IRQSTATE 0xa800UL
|
|
#define SABRE_OBIO_IRQSTATE 0xa808UL
|
|
#define SABRE_FFBCFG 0xf000UL
|
|
#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
|
|
#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
|
|
#define SABRE_MCCTRL0 0xf010UL
|
|
#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
|
|
#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
|
|
#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
|
|
#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
|
|
#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
|
|
#define SABRE_MCCTRL1 0xf018UL
|
|
#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
|
|
#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
|
|
#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
|
|
#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
|
|
#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
|
|
#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
|
|
#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
|
|
#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
|
|
#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
|
|
#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
|
|
#define SABRE_RESETCTRL 0xf020UL
|
|
|
|
#define SABRE_CONFIGSPACE 0x001000000UL
|
|
#define SABRE_IOSPACE 0x002000000UL
|
|
#define SABRE_IOSPACE_SIZE 0x000ffffffUL
|
|
#define SABRE_MEMSPACE 0x100000000UL
|
|
#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
|
|
|
|
/* UltraSparc-IIi Programmer's Manual, page 325, PCI
|
|
* configuration space address format:
|
|
*
|
|
* 32 24 23 16 15 11 10 8 7 2 1 0
|
|
* ---------------------------------------------------------
|
|
* |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
|
|
* ---------------------------------------------------------
|
|
*/
|
|
#define SABRE_CONFIG_BASE(PBM) \
|
|
((PBM)->config_space | (1UL << 24))
|
|
#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
|
|
(((unsigned long)(BUS) << 16) | \
|
|
((unsigned long)(DEVFN) << 8) | \
|
|
((unsigned long)(REG)))
|
|
|
|
static int hummingbird_p;
|
|
static struct pci_bus *sabre_root_bus;
|
|
|
|
static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
|
|
unsigned char bus,
|
|
unsigned int devfn,
|
|
int where)
|
|
{
|
|
if (!pbm)
|
|
return NULL;
|
|
return (void *)
|
|
(SABRE_CONFIG_BASE(pbm) |
|
|
SABRE_CONFIG_ENCODE(bus, devfn, where));
|
|
}
|
|
|
|
static int sabre_out_of_range(unsigned char devfn)
|
|
{
|
|
if (hummingbird_p)
|
|
return 0;
|
|
|
|
return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
|
|
((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
|
|
(PCI_SLOT(devfn) > 1));
|
|
}
|
|
|
|
static int __sabre_out_of_range(struct pci_pbm_info *pbm,
|
|
unsigned char bus,
|
|
unsigned char devfn)
|
|
{
|
|
if (hummingbird_p)
|
|
return 0;
|
|
|
|
return ((pbm->parent == 0) ||
|
|
((pbm == &pbm->parent->pbm_B) &&
|
|
(bus == pbm->pci_first_busno) &&
|
|
PCI_SLOT(devfn) > 8) ||
|
|
((pbm == &pbm->parent->pbm_A) &&
|
|
(bus == pbm->pci_first_busno) &&
|
|
PCI_SLOT(devfn) > 8));
|
|
}
|
|
|
|
static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
|
|
int where, int size, u32 *value)
|
|
{
|
|
struct pci_pbm_info *pbm = bus_dev->sysdata;
|
|
unsigned char bus = bus_dev->number;
|
|
u32 *addr;
|
|
u16 tmp16;
|
|
u8 tmp8;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
*value = 0xff;
|
|
break;
|
|
case 2:
|
|
*value = 0xffff;
|
|
break;
|
|
case 4:
|
|
*value = 0xffffffff;
|
|
break;
|
|
}
|
|
|
|
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
|
|
if (!addr)
|
|
return PCIBIOS_SUCCESSFUL;
|
|
|
|
if (__sabre_out_of_range(pbm, bus, devfn))
|
|
return PCIBIOS_SUCCESSFUL;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
pci_config_read8((u8 *) addr, &tmp8);
|
|
*value = tmp8;
|
|
break;
|
|
|
|
case 2:
|
|
if (where & 0x01) {
|
|
printk("pci_read_config_word: misaligned reg [%x]\n",
|
|
where);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
pci_config_read16((u16 *) addr, &tmp16);
|
|
*value = tmp16;
|
|
break;
|
|
|
|
case 4:
|
|
if (where & 0x03) {
|
|
printk("pci_read_config_dword: misaligned reg [%x]\n",
|
|
where);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
pci_config_read32(addr, value);
|
|
break;
|
|
}
|
|
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 *value)
|
|
{
|
|
if (!bus->number && sabre_out_of_range(devfn)) {
|
|
switch (size) {
|
|
case 1:
|
|
*value = 0xff;
|
|
break;
|
|
case 2:
|
|
*value = 0xffff;
|
|
break;
|
|
case 4:
|
|
*value = 0xffffffff;
|
|
break;
|
|
}
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
if (bus->number || PCI_SLOT(devfn))
|
|
return __sabre_read_pci_cfg(bus, devfn, where, size, value);
|
|
|
|
/* When accessing PCI config space of the PCI controller itself (bus
|
|
* 0, device slot 0, function 0) there are restrictions. Each
|
|
* register must be accessed as it's natural size. Thus, for example
|
|
* the Vendor ID must be accessed as a 16-bit quantity.
|
|
*/
|
|
|
|
switch (size) {
|
|
case 1:
|
|
if (where < 8) {
|
|
u32 tmp32;
|
|
u16 tmp16;
|
|
|
|
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
|
|
tmp16 = (u16) tmp32;
|
|
if (where & 1)
|
|
*value = tmp16 >> 8;
|
|
else
|
|
*value = tmp16 & 0xff;
|
|
} else
|
|
return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
|
|
break;
|
|
|
|
case 2:
|
|
if (where < 8)
|
|
return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
|
|
else {
|
|
u32 tmp32;
|
|
u8 tmp8;
|
|
|
|
__sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
|
|
tmp8 = (u8) tmp32;
|
|
*value = tmp8;
|
|
__sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
|
|
tmp8 = (u8) tmp32;
|
|
*value |= tmp8 << 8;
|
|
}
|
|
break;
|
|
|
|
case 4: {
|
|
u32 tmp32;
|
|
u16 tmp16;
|
|
|
|
sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
|
|
tmp16 = (u16) tmp32;
|
|
*value = tmp16;
|
|
sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
|
|
tmp16 = (u16) tmp32;
|
|
*value |= tmp16 << 16;
|
|
break;
|
|
}
|
|
}
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
|
|
int where, int size, u32 value)
|
|
{
|
|
struct pci_pbm_info *pbm = bus_dev->sysdata;
|
|
unsigned char bus = bus_dev->number;
|
|
u32 *addr;
|
|
|
|
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
|
|
if (!addr)
|
|
return PCIBIOS_SUCCESSFUL;
|
|
|
|
if (__sabre_out_of_range(pbm, bus, devfn))
|
|
return PCIBIOS_SUCCESSFUL;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
pci_config_write8((u8 *) addr, value);
|
|
break;
|
|
|
|
case 2:
|
|
if (where & 0x01) {
|
|
printk("pci_write_config_word: misaligned reg [%x]\n",
|
|
where);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
pci_config_write16((u16 *) addr, value);
|
|
break;
|
|
|
|
case 4:
|
|
if (where & 0x03) {
|
|
printk("pci_write_config_dword: misaligned reg [%x]\n",
|
|
where);
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
pci_config_write32(addr, value);
|
|
break;
|
|
}
|
|
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
|
|
int where, int size, u32 value)
|
|
{
|
|
if (bus->number)
|
|
return __sabre_write_pci_cfg(bus, devfn, where, size, value);
|
|
|
|
if (sabre_out_of_range(devfn))
|
|
return PCIBIOS_SUCCESSFUL;
|
|
|
|
switch (size) {
|
|
case 1:
|
|
if (where < 8) {
|
|
u32 tmp32;
|
|
u16 tmp16;
|
|
|
|
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
|
|
tmp16 = (u16) tmp32;
|
|
if (where & 1) {
|
|
value &= 0x00ff;
|
|
value |= tmp16 << 8;
|
|
} else {
|
|
value &= 0xff00;
|
|
value |= tmp16;
|
|
}
|
|
tmp32 = (u32) tmp16;
|
|
return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
|
|
} else
|
|
return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
|
|
break;
|
|
case 2:
|
|
if (where < 8)
|
|
return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
|
|
else {
|
|
__sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
|
|
__sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
|
|
}
|
|
break;
|
|
case 4:
|
|
sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
|
|
sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
|
|
break;
|
|
}
|
|
return PCIBIOS_SUCCESSFUL;
|
|
}
|
|
|
|
static struct pci_ops sabre_ops = {
|
|
.read = sabre_read_pci_cfg,
|
|
.write = sabre_write_pci_cfg,
|
|
};
|
|
|
|
/* SABRE error handling support. */
|
|
static void sabre_check_iommu_error(struct pci_controller_info *p,
|
|
unsigned long afsr,
|
|
unsigned long afar)
|
|
{
|
|
struct pci_iommu *iommu = p->pbm_A.iommu;
|
|
unsigned long iommu_tag[16];
|
|
unsigned long iommu_data[16];
|
|
unsigned long flags;
|
|
u64 control;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&iommu->lock, flags);
|
|
control = sabre_read(iommu->iommu_control);
|
|
if (control & SABRE_IOMMUCTRL_ERR) {
|
|
char *type_string;
|
|
|
|
/* Clear the error encountered bit.
|
|
* NOTE: On Sabre this is write 1 to clear,
|
|
* which is different from Psycho.
|
|
*/
|
|
sabre_write(iommu->iommu_control, control);
|
|
switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
|
|
case 1:
|
|
type_string = "Invalid Error";
|
|
break;
|
|
case 3:
|
|
type_string = "ECC Error";
|
|
break;
|
|
default:
|
|
type_string = "Unknown";
|
|
break;
|
|
};
|
|
printk("SABRE%d: IOMMU Error, type[%s]\n",
|
|
p->index, type_string);
|
|
|
|
/* Enter diagnostic mode and probe for error'd
|
|
* entries in the IOTLB.
|
|
*/
|
|
control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
|
|
sabre_write(iommu->iommu_control,
|
|
(control | SABRE_IOMMUCTRL_DENAB));
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned long base = p->pbm_A.controller_regs;
|
|
|
|
iommu_tag[i] =
|
|
sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
|
|
iommu_data[i] =
|
|
sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
|
|
sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
|
|
sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
|
|
}
|
|
sabre_write(iommu->iommu_control, control);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
unsigned long tag, data;
|
|
|
|
tag = iommu_tag[i];
|
|
if (!(tag & SABRE_IOMMUTAG_ERR))
|
|
continue;
|
|
|
|
data = iommu_data[i];
|
|
switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
|
|
case 1:
|
|
type_string = "Invalid Error";
|
|
break;
|
|
case 3:
|
|
type_string = "ECC Error";
|
|
break;
|
|
default:
|
|
type_string = "Unknown";
|
|
break;
|
|
};
|
|
printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
|
|
p->index, i, tag, type_string,
|
|
((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
|
|
((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
|
|
((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
|
|
printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
|
|
p->index, i, data,
|
|
((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
|
|
((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
|
|
((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
|
|
((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&iommu->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct pci_controller_info *p = dev_id;
|
|
unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
|
|
unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
|
|
unsigned long afsr, afar, error_bits;
|
|
int reported;
|
|
|
|
/* Latch uncorrectable error status. */
|
|
afar = sabre_read(afar_reg);
|
|
afsr = sabre_read(afsr_reg);
|
|
|
|
/* Clear the primary/secondary error status bits. */
|
|
error_bits = afsr &
|
|
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
|
|
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
|
|
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
|
|
if (!error_bits)
|
|
return IRQ_NONE;
|
|
sabre_write(afsr_reg, error_bits);
|
|
|
|
/* Log the error. */
|
|
printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
|
|
p->index,
|
|
((error_bits & SABRE_UEAFSR_PDRD) ?
|
|
"DMA Read" :
|
|
((error_bits & SABRE_UEAFSR_PDWR) ?
|
|
"DMA Write" : "???")),
|
|
((error_bits & SABRE_UEAFSR_PDTE) ?
|
|
":Translation Error" : ""));
|
|
printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
|
|
p->index,
|
|
(afsr & SABRE_UEAFSR_BMSK) >> 32UL,
|
|
(afsr & SABRE_UEAFSR_OFF) >> 29UL,
|
|
((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
|
|
printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
|
|
printk("SABRE%d: UE Secondary errors [", p->index);
|
|
reported = 0;
|
|
if (afsr & SABRE_UEAFSR_SDRD) {
|
|
reported++;
|
|
printk("(DMA Read)");
|
|
}
|
|
if (afsr & SABRE_UEAFSR_SDWR) {
|
|
reported++;
|
|
printk("(DMA Write)");
|
|
}
|
|
if (afsr & SABRE_UEAFSR_SDTE) {
|
|
reported++;
|
|
printk("(Translation Error)");
|
|
}
|
|
if (!reported)
|
|
printk("(none)");
|
|
printk("]\n");
|
|
|
|
/* Interrogate IOMMU for error status. */
|
|
sabre_check_iommu_error(p, afsr, afar);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct pci_controller_info *p = dev_id;
|
|
unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
|
|
unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
|
|
unsigned long afsr, afar, error_bits;
|
|
int reported;
|
|
|
|
/* Latch error status. */
|
|
afar = sabre_read(afar_reg);
|
|
afsr = sabre_read(afsr_reg);
|
|
|
|
/* Clear primary/secondary error status bits. */
|
|
error_bits = afsr &
|
|
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
|
|
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
|
|
if (!error_bits)
|
|
return IRQ_NONE;
|
|
sabre_write(afsr_reg, error_bits);
|
|
|
|
/* Log the error. */
|
|
printk("SABRE%d: Correctable Error, primary error type[%s]\n",
|
|
p->index,
|
|
((error_bits & SABRE_CEAFSR_PDRD) ?
|
|
"DMA Read" :
|
|
((error_bits & SABRE_CEAFSR_PDWR) ?
|
|
"DMA Write" : "???")));
|
|
|
|
/* XXX Use syndrome and afar to print out module string just like
|
|
* XXX UDB CE trap handler does... -DaveM
|
|
*/
|
|
printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
|
|
"was_block(%d)\n",
|
|
p->index,
|
|
(afsr & SABRE_CEAFSR_ESYND) >> 48UL,
|
|
(afsr & SABRE_CEAFSR_BMSK) >> 32UL,
|
|
(afsr & SABRE_CEAFSR_OFF) >> 29UL,
|
|
((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
|
|
printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
|
|
printk("SABRE%d: CE Secondary errors [", p->index);
|
|
reported = 0;
|
|
if (afsr & SABRE_CEAFSR_SDRD) {
|
|
reported++;
|
|
printk("(DMA Read)");
|
|
}
|
|
if (afsr & SABRE_CEAFSR_SDWR) {
|
|
reported++;
|
|
printk("(DMA Write)");
|
|
}
|
|
if (!reported)
|
|
printk("(none)");
|
|
printk("]\n");
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
|
|
{
|
|
unsigned long csr_reg, csr, csr_error_bits;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u16 stat;
|
|
|
|
csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
|
|
csr = sabre_read(csr_reg);
|
|
csr_error_bits =
|
|
csr & SABRE_PCICTRL_SERR;
|
|
if (csr_error_bits) {
|
|
/* Clear the errors. */
|
|
sabre_write(csr_reg, csr);
|
|
|
|
/* Log 'em. */
|
|
if (csr_error_bits & SABRE_PCICTRL_SERR)
|
|
printk("SABRE%d: PCI SERR signal asserted.\n",
|
|
p->index);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
pci_read_config_word(sabre_root_bus->self,
|
|
PCI_STATUS, &stat);
|
|
if (stat & (PCI_STATUS_PARITY |
|
|
PCI_STATUS_SIG_TARGET_ABORT |
|
|
PCI_STATUS_REC_TARGET_ABORT |
|
|
PCI_STATUS_REC_MASTER_ABORT |
|
|
PCI_STATUS_SIG_SYSTEM_ERROR)) {
|
|
printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
|
|
p->index, stat);
|
|
pci_write_config_word(sabre_root_bus->self,
|
|
PCI_STATUS, 0xffff);
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct pci_controller_info *p = dev_id;
|
|
unsigned long afsr_reg, afar_reg;
|
|
unsigned long afsr, afar, error_bits;
|
|
int reported;
|
|
|
|
afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
|
|
afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
|
|
|
|
/* Latch error status. */
|
|
afar = sabre_read(afar_reg);
|
|
afsr = sabre_read(afsr_reg);
|
|
|
|
/* Clear primary/secondary error status bits. */
|
|
error_bits = afsr &
|
|
(SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
|
|
SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
|
|
SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
|
|
SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
|
|
if (!error_bits)
|
|
return sabre_pcierr_intr_other(p);
|
|
sabre_write(afsr_reg, error_bits);
|
|
|
|
/* Log the error. */
|
|
printk("SABRE%d: PCI Error, primary error type[%s]\n",
|
|
p->index,
|
|
(((error_bits & SABRE_PIOAFSR_PMA) ?
|
|
"Master Abort" :
|
|
((error_bits & SABRE_PIOAFSR_PTA) ?
|
|
"Target Abort" :
|
|
((error_bits & SABRE_PIOAFSR_PRTRY) ?
|
|
"Excessive Retries" :
|
|
((error_bits & SABRE_PIOAFSR_PPERR) ?
|
|
"Parity Error" : "???"))))));
|
|
printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
|
|
p->index,
|
|
(afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
|
|
(afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
|
|
printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
|
|
printk("SABRE%d: PCI Secondary errors [", p->index);
|
|
reported = 0;
|
|
if (afsr & SABRE_PIOAFSR_SMA) {
|
|
reported++;
|
|
printk("(Master Abort)");
|
|
}
|
|
if (afsr & SABRE_PIOAFSR_STA) {
|
|
reported++;
|
|
printk("(Target Abort)");
|
|
}
|
|
if (afsr & SABRE_PIOAFSR_SRTRY) {
|
|
reported++;
|
|
printk("(Excessive Retries)");
|
|
}
|
|
if (afsr & SABRE_PIOAFSR_SPERR) {
|
|
reported++;
|
|
printk("(Parity Error)");
|
|
}
|
|
if (!reported)
|
|
printk("(none)");
|
|
printk("]\n");
|
|
|
|
/* For the error types shown, scan both PCI buses for devices
|
|
* which have logged that error type.
|
|
*/
|
|
|
|
/* If we see a Target Abort, this could be the result of an
|
|
* IOMMU translation error of some sort. It is extremely
|
|
* useful to log this information as usually it indicates
|
|
* a bug in the IOMMU support code or a PCI device driver.
|
|
*/
|
|
if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
|
|
sabre_check_iommu_error(p, afsr, afar);
|
|
pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
|
|
pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
|
|
}
|
|
if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
|
|
pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
|
|
pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
|
|
}
|
|
/* For excessive retries, SABRE/PBM will abort the device
|
|
* and there is no way to specifically check for excessive
|
|
* retries in the config space status registers. So what
|
|
* we hope is that we'll catch it via the master/target
|
|
* abort events.
|
|
*/
|
|
|
|
if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
|
|
pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
|
|
pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void sabre_register_error_handlers(struct pci_controller_info *p)
|
|
{
|
|
struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
|
|
struct device_node *dp = pbm->prom_node;
|
|
struct of_device *op;
|
|
unsigned long base = pbm->controller_regs;
|
|
u64 tmp;
|
|
|
|
if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
|
|
dp = dp->parent;
|
|
|
|
op = of_find_device_by_node(dp);
|
|
if (!op)
|
|
return;
|
|
|
|
/* Sabre/Hummingbird IRQ property layout is:
|
|
* 0: PCI ERR
|
|
* 1: UE ERR
|
|
* 2: CE ERR
|
|
* 3: POWER FAIL
|
|
*/
|
|
if (op->num_irqs < 4)
|
|
return;
|
|
|
|
/* We clear the error bits in the appropriate AFSR before
|
|
* registering the handler so that we don't get spurious
|
|
* interrupts.
|
|
*/
|
|
sabre_write(base + SABRE_UE_AFSR,
|
|
(SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
|
|
SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
|
|
SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
|
|
|
|
request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
|
|
|
|
sabre_write(base + SABRE_CE_AFSR,
|
|
(SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
|
|
SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
|
|
|
|
request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
|
|
request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
|
|
"SABRE PCIERR", p);
|
|
|
|
tmp = sabre_read(base + SABRE_PCICTRL);
|
|
tmp |= SABRE_PCICTRL_ERREN;
|
|
sabre_write(base + SABRE_PCICTRL, tmp);
|
|
}
|
|
|
|
static void sabre_resource_adjust(struct pci_dev *pdev,
|
|
struct resource *res,
|
|
struct resource *root)
|
|
{
|
|
struct pci_pbm_info *pbm = pdev->bus->sysdata;
|
|
unsigned long base;
|
|
|
|
if (res->flags & IORESOURCE_IO)
|
|
base = pbm->controller_regs + SABRE_IOSPACE;
|
|
else
|
|
base = pbm->controller_regs + SABRE_MEMSPACE;
|
|
|
|
res->start += base;
|
|
res->end += base;
|
|
}
|
|
|
|
static void sabre_base_address_update(struct pci_dev *pdev, int resource)
|
|
{
|
|
struct pcidev_cookie *pcp = pdev->sysdata;
|
|
struct pci_pbm_info *pbm = pcp->pbm;
|
|
struct resource *res;
|
|
unsigned long base;
|
|
u32 reg;
|
|
int where, size, is_64bit;
|
|
|
|
res = &pdev->resource[resource];
|
|
if (resource < 6) {
|
|
where = PCI_BASE_ADDRESS_0 + (resource * 4);
|
|
} else if (resource == PCI_ROM_RESOURCE) {
|
|
where = pdev->rom_base_reg;
|
|
} else {
|
|
/* Somebody might have asked allocation of a non-standard resource */
|
|
return;
|
|
}
|
|
|
|
is_64bit = 0;
|
|
if (res->flags & IORESOURCE_IO)
|
|
base = pbm->controller_regs + SABRE_IOSPACE;
|
|
else {
|
|
base = pbm->controller_regs + SABRE_MEMSPACE;
|
|
if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
|
|
== PCI_BASE_ADDRESS_MEM_TYPE_64)
|
|
is_64bit = 1;
|
|
}
|
|
|
|
size = res->end - res->start;
|
|
pci_read_config_dword(pdev, where, ®);
|
|
reg = ((reg & size) |
|
|
(((u32)(res->start - base)) & ~size));
|
|
if (resource == PCI_ROM_RESOURCE) {
|
|
reg |= PCI_ROM_ADDRESS_ENABLE;
|
|
res->flags |= IORESOURCE_ROM_ENABLE;
|
|
}
|
|
pci_write_config_dword(pdev, where, reg);
|
|
|
|
/* This knows that the upper 32-bits of the address
|
|
* must be zero. Our PCI common layer enforces this.
|
|
*/
|
|
if (is_64bit)
|
|
pci_write_config_dword(pdev, where + 4, 0);
|
|
}
|
|
|
|
static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
|
|
{
|
|
struct pci_dev *pdev;
|
|
|
|
list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
|
|
|
|
if (pdev->vendor == PCI_VENDOR_ID_SUN &&
|
|
pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
|
|
u32 word32;
|
|
u16 word16;
|
|
|
|
sabre_read_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_COMMAND, 2, &word32);
|
|
word16 = (u16) word32;
|
|
word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
|
|
PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
|
|
PCI_COMMAND_IO;
|
|
word32 = (u32) word16;
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_COMMAND, 2, word32);
|
|
|
|
/* Status register bits are "write 1 to clear". */
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_STATUS, 2, 0xffff);
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_SEC_STATUS, 2, 0xffff);
|
|
|
|
/* Use a primary/seconday latency timer value
|
|
* of 64.
|
|
*/
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_LATENCY_TIMER, 1, 64);
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_SEC_LATENCY_TIMER, 1, 64);
|
|
|
|
/* Enable reporting/forwarding of master aborts,
|
|
* parity, and SERR.
|
|
*/
|
|
sabre_write_pci_cfg(pdev->bus, pdev->devfn,
|
|
PCI_BRIDGE_CONTROL, 1,
|
|
(PCI_BRIDGE_CTL_PARITY |
|
|
PCI_BRIDGE_CTL_SERR |
|
|
PCI_BRIDGE_CTL_MASTER_ABORT));
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
|
|
{
|
|
struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
|
|
|
|
if (!cookie) {
|
|
prom_printf("SABRE: Critical allocation failure.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
/* All we care about is the PBM. */
|
|
cookie->pbm = pbm;
|
|
|
|
return cookie;
|
|
}
|
|
|
|
static void sabre_scan_bus(struct pci_controller_info *p)
|
|
{
|
|
static int once;
|
|
struct pci_bus *sabre_bus, *pbus;
|
|
struct pci_pbm_info *pbm;
|
|
struct pcidev_cookie *cookie;
|
|
int sabres_scanned;
|
|
|
|
/* The APB bridge speaks to the Sabre host PCI bridge
|
|
* at 66Mhz, but the front side of APB runs at 33Mhz
|
|
* for both segments.
|
|
*/
|
|
p->pbm_A.is_66mhz_capable = 0;
|
|
p->pbm_B.is_66mhz_capable = 0;
|
|
|
|
/* This driver has not been verified to handle
|
|
* multiple SABREs yet, so trap this.
|
|
*
|
|
* Also note that the SABRE host bridge is hardwired
|
|
* to live at bus 0.
|
|
*/
|
|
if (once != 0) {
|
|
prom_printf("SABRE: Multiple controllers unsupported.\n");
|
|
prom_halt();
|
|
}
|
|
once++;
|
|
|
|
cookie = alloc_bridge_cookie(&p->pbm_A);
|
|
|
|
sabre_bus = pci_scan_bus(p->pci_first_busno,
|
|
p->pci_ops,
|
|
&p->pbm_A);
|
|
pci_fixup_host_bridge_self(sabre_bus);
|
|
sabre_bus->self->sysdata = cookie;
|
|
|
|
sabre_root_bus = sabre_bus;
|
|
|
|
apb_init(p, sabre_bus);
|
|
|
|
sabres_scanned = 0;
|
|
|
|
list_for_each_entry(pbus, &sabre_bus->children, node) {
|
|
|
|
if (pbus->number == p->pbm_A.pci_first_busno) {
|
|
pbm = &p->pbm_A;
|
|
} else if (pbus->number == p->pbm_B.pci_first_busno) {
|
|
pbm = &p->pbm_B;
|
|
} else
|
|
continue;
|
|
|
|
cookie = alloc_bridge_cookie(pbm);
|
|
pbus->self->sysdata = cookie;
|
|
|
|
sabres_scanned++;
|
|
|
|
pbus->sysdata = pbm;
|
|
pbm->pci_bus = pbus;
|
|
pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
|
|
pci_record_assignments(pbm, pbus);
|
|
pci_assign_unassigned(pbm, pbus);
|
|
pci_fixup_irq(pbm, pbus);
|
|
pci_determine_66mhz_disposition(pbm, pbus);
|
|
pci_setup_busmastering(pbm, pbus);
|
|
}
|
|
|
|
if (!sabres_scanned) {
|
|
/* Hummingbird, no APBs. */
|
|
pbm = &p->pbm_A;
|
|
sabre_bus->sysdata = pbm;
|
|
pbm->pci_bus = sabre_bus;
|
|
pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
|
|
pci_record_assignments(pbm, sabre_bus);
|
|
pci_assign_unassigned(pbm, sabre_bus);
|
|
pci_fixup_irq(pbm, sabre_bus);
|
|
pci_determine_66mhz_disposition(pbm, sabre_bus);
|
|
pci_setup_busmastering(pbm, sabre_bus);
|
|
}
|
|
|
|
sabre_register_error_handlers(p);
|
|
}
|
|
|
|
static void sabre_iommu_init(struct pci_controller_info *p,
|
|
int tsbsize, unsigned long dvma_offset,
|
|
u32 dma_mask)
|
|
{
|
|
struct pci_iommu *iommu = p->pbm_A.iommu;
|
|
unsigned long i;
|
|
u64 control;
|
|
|
|
/* Register addresses. */
|
|
iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
|
|
iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
|
|
iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
|
|
iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
|
|
/* Sabre's IOMMU lacks ctx flushing. */
|
|
iommu->iommu_ctxflush = 0;
|
|
|
|
/* Invalidate TLB Entries. */
|
|
control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
|
|
control |= SABRE_IOMMUCTRL_DENAB;
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
|
|
|
|
for(i = 0; i < 16; i++) {
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
|
|
}
|
|
|
|
/* Leave diag mode enabled for full-flushing done
|
|
* in pci_iommu.c
|
|
*/
|
|
pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
|
|
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
|
|
__pa(iommu->page_table));
|
|
|
|
control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
|
|
control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
|
|
control |= SABRE_IOMMUCTRL_ENAB;
|
|
switch(tsbsize) {
|
|
case 64:
|
|
control |= SABRE_IOMMU_TSBSZ_64K;
|
|
break;
|
|
case 128:
|
|
control |= SABRE_IOMMU_TSBSZ_128K;
|
|
break;
|
|
default:
|
|
prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
|
|
prom_halt();
|
|
break;
|
|
}
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
|
|
}
|
|
|
|
static void pbm_register_toplevel_resources(struct pci_controller_info *p,
|
|
struct pci_pbm_info *pbm)
|
|
{
|
|
char *name = pbm->name;
|
|
unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
|
|
unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
|
|
unsigned int devfn;
|
|
unsigned long first, last, i;
|
|
u8 *addr, map;
|
|
|
|
sprintf(name, "SABRE%d PBM%c",
|
|
p->index,
|
|
(pbm == &p->pbm_A ? 'A' : 'B'));
|
|
pbm->io_space.name = pbm->mem_space.name = name;
|
|
|
|
devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
|
|
addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
|
|
map = 0;
|
|
pci_config_read8(addr, &map);
|
|
|
|
first = 8;
|
|
last = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if ((map & (1 << i)) != 0) {
|
|
if (first > i)
|
|
first = i;
|
|
if (last < i)
|
|
last = i;
|
|
}
|
|
}
|
|
pbm->io_space.start = ibase + (first << 21UL);
|
|
pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
|
|
pbm->io_space.flags = IORESOURCE_IO;
|
|
|
|
addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
|
|
map = 0;
|
|
pci_config_read8(addr, &map);
|
|
|
|
first = 8;
|
|
last = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
if ((map & (1 << i)) != 0) {
|
|
if (first > i)
|
|
first = i;
|
|
if (last < i)
|
|
last = i;
|
|
}
|
|
}
|
|
pbm->mem_space.start = mbase + (first << 29UL);
|
|
pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
|
|
pbm->mem_space.flags = IORESOURCE_MEM;
|
|
|
|
if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
|
|
prom_printf("Cannot register PBM-%c's IO space.\n",
|
|
(pbm == &p->pbm_A ? 'A' : 'B'));
|
|
prom_halt();
|
|
}
|
|
if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
|
|
prom_printf("Cannot register PBM-%c's MEM space.\n",
|
|
(pbm == &p->pbm_A ? 'A' : 'B'));
|
|
prom_halt();
|
|
}
|
|
|
|
/* Register legacy regions if this PBM covers that area. */
|
|
if (pbm->io_space.start == ibase &&
|
|
pbm->mem_space.start == mbase)
|
|
pci_register_legacy_regions(&pbm->io_space,
|
|
&pbm->mem_space);
|
|
}
|
|
|
|
static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_begin)
|
|
{
|
|
struct pci_pbm_info *pbm;
|
|
struct device_node *node;
|
|
struct property *prop;
|
|
u32 *busrange;
|
|
int len, simbas_found;
|
|
|
|
simbas_found = 0;
|
|
node = dp->child;
|
|
while (node != NULL) {
|
|
if (strcmp(node->name, "pci"))
|
|
goto next_pci;
|
|
|
|
prop = of_find_property(node, "model", NULL);
|
|
if (!prop || strncmp(prop->value, "SUNW,simba", prop->length))
|
|
goto next_pci;
|
|
|
|
simbas_found++;
|
|
|
|
prop = of_find_property(node, "bus-range", NULL);
|
|
busrange = prop->value;
|
|
if (busrange[0] == 1)
|
|
pbm = &p->pbm_B;
|
|
else
|
|
pbm = &p->pbm_A;
|
|
|
|
pbm->name = node->full_name;
|
|
printk("%s: SABRE PCI Bus Module\n", pbm->name);
|
|
|
|
pbm->chip_type = PBM_CHIP_TYPE_SABRE;
|
|
pbm->parent = p;
|
|
pbm->prom_node = node;
|
|
pbm->pci_first_slot = 1;
|
|
pbm->pci_first_busno = busrange[0];
|
|
pbm->pci_last_busno = busrange[1];
|
|
|
|
prop = of_find_property(node, "ranges", &len);
|
|
if (prop) {
|
|
pbm->pbm_ranges = prop->value;
|
|
pbm->num_pbm_ranges =
|
|
(len / sizeof(struct linux_prom_pci_ranges));
|
|
} else {
|
|
pbm->num_pbm_ranges = 0;
|
|
}
|
|
|
|
prop = of_find_property(node, "interrupt-map", &len);
|
|
if (prop) {
|
|
pbm->pbm_intmap = prop->value;
|
|
pbm->num_pbm_intmap =
|
|
(len / sizeof(struct linux_prom_pci_intmap));
|
|
|
|
prop = of_find_property(node, "interrupt-map-mask",
|
|
NULL);
|
|
pbm->pbm_intmask = prop->value;
|
|
} else {
|
|
pbm->num_pbm_intmap = 0;
|
|
}
|
|
|
|
pbm_register_toplevel_resources(p, pbm);
|
|
|
|
next_pci:
|
|
node = node->sibling;
|
|
}
|
|
if (simbas_found == 0) {
|
|
/* No APBs underneath, probably this is a hummingbird
|
|
* system.
|
|
*/
|
|
pbm = &p->pbm_A;
|
|
pbm->parent = p;
|
|
pbm->prom_node = dp;
|
|
pbm->pci_first_busno = p->pci_first_busno;
|
|
pbm->pci_last_busno = p->pci_last_busno;
|
|
|
|
prop = of_find_property(dp, "ranges", &len);
|
|
if (prop) {
|
|
pbm->pbm_ranges = prop->value;
|
|
pbm->num_pbm_ranges =
|
|
(len / sizeof(struct linux_prom_pci_ranges));
|
|
} else {
|
|
pbm->num_pbm_ranges = 0;
|
|
}
|
|
|
|
prop = of_find_property(dp, "interrupt-map", &len);
|
|
if (prop) {
|
|
pbm->pbm_intmap = prop->value;
|
|
pbm->num_pbm_intmap =
|
|
(len / sizeof(struct linux_prom_pci_intmap));
|
|
|
|
prop = of_find_property(dp, "interrupt-map-mask",
|
|
NULL);
|
|
pbm->pbm_intmask = prop->value;
|
|
} else {
|
|
pbm->num_pbm_intmap = 0;
|
|
}
|
|
|
|
pbm->name = dp->full_name;
|
|
printk("%s: SABRE PCI Bus Module\n", pbm->name);
|
|
|
|
pbm->io_space.name = pbm->mem_space.name = pbm->name;
|
|
|
|
/* Hack up top-level resources. */
|
|
pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
|
|
pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
|
|
pbm->io_space.flags = IORESOURCE_IO;
|
|
|
|
pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
|
|
pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
|
|
pbm->mem_space.flags = IORESOURCE_MEM;
|
|
|
|
if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
|
|
prom_printf("Cannot register Hummingbird's IO space.\n");
|
|
prom_halt();
|
|
}
|
|
if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
|
|
prom_printf("Cannot register Hummingbird's MEM space.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
pci_register_legacy_regions(&pbm->io_space,
|
|
&pbm->mem_space);
|
|
}
|
|
}
|
|
|
|
void sabre_init(struct device_node *dp, char *model_name)
|
|
{
|
|
struct linux_prom64_registers *pr_regs;
|
|
struct pci_controller_info *p;
|
|
struct pci_iommu *iommu;
|
|
struct property *prop;
|
|
int tsbsize;
|
|
u32 *busrange;
|
|
u32 *vdma;
|
|
u32 upa_portid, dma_mask;
|
|
u64 clear_irq;
|
|
|
|
hummingbird_p = 0;
|
|
if (!strcmp(model_name, "pci108e,a001"))
|
|
hummingbird_p = 1;
|
|
else if (!strcmp(model_name, "SUNW,sabre")) {
|
|
prop = of_find_property(dp, "compatible", NULL);
|
|
if (prop) {
|
|
const char *compat = prop->value;
|
|
|
|
if (!strcmp(compat, "pci108e,a001"))
|
|
hummingbird_p = 1;
|
|
}
|
|
if (!hummingbird_p) {
|
|
struct device_node *dp;
|
|
|
|
/* Of course, Sun has to encode things a thousand
|
|
* different ways, inconsistently.
|
|
*/
|
|
cpu_find_by_instance(0, &dp, NULL);
|
|
if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
|
|
hummingbird_p = 1;
|
|
}
|
|
}
|
|
|
|
p = kzalloc(sizeof(*p), GFP_ATOMIC);
|
|
if (!p) {
|
|
prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
|
|
if (!iommu) {
|
|
prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
|
|
prom_halt();
|
|
}
|
|
p->pbm_A.iommu = p->pbm_B.iommu = iommu;
|
|
|
|
upa_portid = 0xff;
|
|
prop = of_find_property(dp, "upa-portid", NULL);
|
|
if (prop)
|
|
upa_portid = *(u32 *) prop->value;
|
|
|
|
p->next = pci_controller_root;
|
|
pci_controller_root = p;
|
|
|
|
p->pbm_A.portid = upa_portid;
|
|
p->pbm_B.portid = upa_portid;
|
|
p->index = pci_num_controllers++;
|
|
p->pbms_same_domain = 1;
|
|
p->scan_bus = sabre_scan_bus;
|
|
p->base_address_update = sabre_base_address_update;
|
|
p->resource_adjust = sabre_resource_adjust;
|
|
p->pci_ops = &sabre_ops;
|
|
|
|
/*
|
|
* Map in SABRE register set and report the presence of this SABRE.
|
|
*/
|
|
|
|
prop = of_find_property(dp, "reg", NULL);
|
|
pr_regs = prop->value;
|
|
|
|
/*
|
|
* First REG in property is base of entire SABRE register space.
|
|
*/
|
|
p->pbm_A.controller_regs = pr_regs[0].phys_addr;
|
|
p->pbm_B.controller_regs = pr_regs[0].phys_addr;
|
|
|
|
/* Clear interrupts */
|
|
|
|
/* PCI first */
|
|
for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
|
|
sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
|
|
|
|
/* Then OBIO */
|
|
for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
|
|
sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
|
|
|
|
/* Error interrupts are enabled later after the bus scan. */
|
|
sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
|
|
(SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
|
|
SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
|
|
|
|
/* Now map in PCI config space for entire SABRE. */
|
|
p->pbm_A.config_space = p->pbm_B.config_space =
|
|
(p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
|
|
|
|
prop = of_find_property(dp, "virtual-dma", NULL);
|
|
vdma = prop->value;
|
|
|
|
dma_mask = vdma[0];
|
|
switch(vdma[1]) {
|
|
case 0x20000000:
|
|
dma_mask |= 0x1fffffff;
|
|
tsbsize = 64;
|
|
break;
|
|
case 0x40000000:
|
|
dma_mask |= 0x3fffffff;
|
|
tsbsize = 128;
|
|
break;
|
|
|
|
case 0x80000000:
|
|
dma_mask |= 0x7fffffff;
|
|
tsbsize = 128;
|
|
break;
|
|
default:
|
|
prom_printf("SABRE: strange virtual-dma size.\n");
|
|
prom_halt();
|
|
}
|
|
|
|
sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
|
|
|
|
prop = of_find_property(dp, "bus-range", NULL);
|
|
busrange = prop->value;
|
|
p->pci_first_busno = busrange[0];
|
|
p->pci_last_busno = busrange[1];
|
|
|
|
/*
|
|
* Look for APB underneath.
|
|
*/
|
|
sabre_pbm_init(p, dp, vdma[0]);
|
|
}
|