linux/drivers/i2c/busses/i2c-pmcmsp.c

657 lines
18 KiB
C

/*
* Specific bus support for PMC-TWI compliant implementation on MSP71xx.
*
* Copyright 2005-2007 PMC-Sierra, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <asm/io.h>
#define DRV_NAME "pmcmsptwi"
#define MSP_TWI_SF_CLK_REG_OFFSET 0x00
#define MSP_TWI_HS_CLK_REG_OFFSET 0x04
#define MSP_TWI_CFG_REG_OFFSET 0x08
#define MSP_TWI_CMD_REG_OFFSET 0x0c
#define MSP_TWI_ADD_REG_OFFSET 0x10
#define MSP_TWI_DAT_0_REG_OFFSET 0x14
#define MSP_TWI_DAT_1_REG_OFFSET 0x18
#define MSP_TWI_INT_STS_REG_OFFSET 0x1c
#define MSP_TWI_INT_MSK_REG_OFFSET 0x20
#define MSP_TWI_BUSY_REG_OFFSET 0x24
#define MSP_TWI_INT_STS_DONE (1 << 0)
#define MSP_TWI_INT_STS_LOST_ARBITRATION (1 << 1)
#define MSP_TWI_INT_STS_NO_RESPONSE (1 << 2)
#define MSP_TWI_INT_STS_DATA_COLLISION (1 << 3)
#define MSP_TWI_INT_STS_BUSY (1 << 4)
#define MSP_TWI_INT_STS_ALL 0x1f
#define MSP_MAX_BYTES_PER_RW 8
#define MSP_MAX_POLL 5
#define MSP_POLL_DELAY 10
#define MSP_IRQ_TIMEOUT (MSP_MAX_POLL * MSP_POLL_DELAY)
/* IO Operation macros */
#define pmcmsptwi_readl __raw_readl
#define pmcmsptwi_writel __raw_writel
/* TWI command type */
enum pmcmsptwi_cmd_type {
MSP_TWI_CMD_WRITE = 0, /* Write only */
MSP_TWI_CMD_READ = 1, /* Read only */
MSP_TWI_CMD_WRITE_READ = 2, /* Write then Read */
};
/* The possible results of the xferCmd */
enum pmcmsptwi_xfer_result {
MSP_TWI_XFER_OK = 0,
MSP_TWI_XFER_TIMEOUT,
MSP_TWI_XFER_BUSY,
MSP_TWI_XFER_DATA_COLLISION,
MSP_TWI_XFER_NO_RESPONSE,
MSP_TWI_XFER_LOST_ARBITRATION,
};
/* Corresponds to a PMCTWI clock configuration register */
struct pmcmsptwi_clock {
u8 filter; /* Bits 15:12, default = 0x03 */
u16 clock; /* Bits 9:0, default = 0x001f */
};
struct pmcmsptwi_clockcfg {
struct pmcmsptwi_clock standard; /* The standard/fast clock config */
struct pmcmsptwi_clock highspeed; /* The highspeed clock config */
};
/* Corresponds to the main TWI configuration register */
struct pmcmsptwi_cfg {
u8 arbf; /* Bits 15:12, default=0x03 */
u8 nak; /* Bits 11:8, default=0x03 */
u8 add10; /* Bit 7, default=0x00 */
u8 mst_code; /* Bits 6:4, default=0x00 */
u8 arb; /* Bit 1, default=0x01 */
u8 highspeed; /* Bit 0, default=0x00 */
};
/* A single pmctwi command to issue */
struct pmcmsptwi_cmd {
u16 addr; /* The slave address (7 or 10 bits) */
enum pmcmsptwi_cmd_type type; /* The command type */
u8 write_len; /* Number of bytes in the write buffer */
u8 read_len; /* Number of bytes in the read buffer */
u8 *write_data; /* Buffer of characters to send */
u8 *read_data; /* Buffer to fill with incoming data */
};
/* The private data */
struct pmcmsptwi_data {
void __iomem *iobase; /* iomapped base for IO */
int irq; /* IRQ to use (0 disables) */
struct completion wait; /* Completion for xfer */
struct mutex lock; /* Used for threadsafeness */
enum pmcmsptwi_xfer_result last_result; /* result of last xfer */
};
/* The default settings */
static const struct pmcmsptwi_clockcfg pmcmsptwi_defclockcfg = {
.standard = {
.filter = 0x3,
.clock = 0x1f,
},
.highspeed = {
.filter = 0x3,
.clock = 0x1f,
},
};
static const struct pmcmsptwi_cfg pmcmsptwi_defcfg = {
.arbf = 0x03,
.nak = 0x03,
.add10 = 0x00,
.mst_code = 0x00,
.arb = 0x01,
.highspeed = 0x00,
};
static struct pmcmsptwi_data pmcmsptwi_data;
static struct i2c_adapter pmcmsptwi_adapter;
/* inline helper functions */
static inline u32 pmcmsptwi_clock_to_reg(
const struct pmcmsptwi_clock *clock)
{
return ((clock->filter & 0xf) << 12) | (clock->clock & 0x03ff);
}
static inline void pmcmsptwi_reg_to_clock(
u32 reg, struct pmcmsptwi_clock *clock)
{
clock->filter = (reg >> 12) & 0xf;
clock->clock = reg & 0x03ff;
}
static inline u32 pmcmsptwi_cfg_to_reg(const struct pmcmsptwi_cfg *cfg)
{
return ((cfg->arbf & 0xf) << 12) |
((cfg->nak & 0xf) << 8) |
((cfg->add10 & 0x1) << 7) |
((cfg->mst_code & 0x7) << 4) |
((cfg->arb & 0x1) << 1) |
(cfg->highspeed & 0x1);
}
static inline void pmcmsptwi_reg_to_cfg(u32 reg, struct pmcmsptwi_cfg *cfg)
{
cfg->arbf = (reg >> 12) & 0xf;
cfg->nak = (reg >> 8) & 0xf;
cfg->add10 = (reg >> 7) & 0x1;
cfg->mst_code = (reg >> 4) & 0x7;
cfg->arb = (reg >> 1) & 0x1;
cfg->highspeed = reg & 0x1;
}
/*
* Sets the current clock configuration
*/
static void pmcmsptwi_set_clock_config(const struct pmcmsptwi_clockcfg *cfg,
struct pmcmsptwi_data *data)
{
mutex_lock(&data->lock);
pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->standard),
data->iobase + MSP_TWI_SF_CLK_REG_OFFSET);
pmcmsptwi_writel(pmcmsptwi_clock_to_reg(&cfg->highspeed),
data->iobase + MSP_TWI_HS_CLK_REG_OFFSET);
mutex_unlock(&data->lock);
}
/*
* Gets the current TWI bus configuration
*/
static void pmcmsptwi_get_twi_config(struct pmcmsptwi_cfg *cfg,
struct pmcmsptwi_data *data)
{
mutex_lock(&data->lock);
pmcmsptwi_reg_to_cfg(pmcmsptwi_readl(
data->iobase + MSP_TWI_CFG_REG_OFFSET), cfg);
mutex_unlock(&data->lock);
}
/*
* Sets the current TWI bus configuration
*/
static void pmcmsptwi_set_twi_config(const struct pmcmsptwi_cfg *cfg,
struct pmcmsptwi_data *data)
{
mutex_lock(&data->lock);
pmcmsptwi_writel(pmcmsptwi_cfg_to_reg(cfg),
data->iobase + MSP_TWI_CFG_REG_OFFSET);
mutex_unlock(&data->lock);
}
/*
* Parses the 'int_sts' register and returns a well-defined error code
*/
static enum pmcmsptwi_xfer_result pmcmsptwi_get_result(u32 reg)
{
if (reg & MSP_TWI_INT_STS_LOST_ARBITRATION) {
dev_dbg(&pmcmsptwi_adapter.dev,
"Result: Lost arbitration\n");
return MSP_TWI_XFER_LOST_ARBITRATION;
} else if (reg & MSP_TWI_INT_STS_NO_RESPONSE) {
dev_dbg(&pmcmsptwi_adapter.dev,
"Result: No response\n");
return MSP_TWI_XFER_NO_RESPONSE;
} else if (reg & MSP_TWI_INT_STS_DATA_COLLISION) {
dev_dbg(&pmcmsptwi_adapter.dev,
"Result: Data collision\n");
return MSP_TWI_XFER_DATA_COLLISION;
} else if (reg & MSP_TWI_INT_STS_BUSY) {
dev_dbg(&pmcmsptwi_adapter.dev,
"Result: Bus busy\n");
return MSP_TWI_XFER_BUSY;
}
dev_dbg(&pmcmsptwi_adapter.dev, "Result: Operation succeeded\n");
return MSP_TWI_XFER_OK;
}
/*
* In interrupt mode, handle the interrupt.
* NOTE: Assumes data->lock is held.
*/
static irqreturn_t pmcmsptwi_interrupt(int irq, void *ptr)
{
struct pmcmsptwi_data *data = ptr;
u32 reason = pmcmsptwi_readl(data->iobase +
MSP_TWI_INT_STS_REG_OFFSET);
pmcmsptwi_writel(reason, data->iobase + MSP_TWI_INT_STS_REG_OFFSET);
dev_dbg(&pmcmsptwi_adapter.dev, "Got interrupt 0x%08x\n", reason);
if (!(reason & MSP_TWI_INT_STS_DONE))
return IRQ_NONE;
data->last_result = pmcmsptwi_get_result(reason);
complete(&data->wait);
return IRQ_HANDLED;
}
/*
* Probe for and register the device and return 0 if there is one.
*/
static int __devinit pmcmsptwi_probe(struct platform_device *pldev)
{
struct resource *res;
int rc = -ENODEV;
/* get the static platform resources */
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pldev->dev, "IOMEM resource not found\n");
goto ret_err;
}
/* reserve the memory region */
if (!request_mem_region(res->start, res->end - res->start + 1,
pldev->name)) {
dev_err(&pldev->dev,
"Unable to get memory/io address region 0x%08x\n",
res->start);
rc = -EBUSY;
goto ret_err;
}
/* remap the memory */
pmcmsptwi_data.iobase = ioremap_nocache(res->start,
res->end - res->start + 1);
if (!pmcmsptwi_data.iobase) {
dev_err(&pldev->dev,
"Unable to ioremap address 0x%08x\n", res->start);
rc = -EIO;
goto ret_unreserve;
}
/* request the irq */
pmcmsptwi_data.irq = platform_get_irq(pldev, 0);
if (pmcmsptwi_data.irq) {
rc = request_irq(pmcmsptwi_data.irq, &pmcmsptwi_interrupt,
IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM,
pldev->name, &pmcmsptwi_data);
if (rc == 0) {
/*
* Enable 'DONE' interrupt only.
*
* If you enable all interrupts, you will get one on
* error and another when the operation completes.
* This way you only have to handle one interrupt,
* but you can still check all result flags.
*/
pmcmsptwi_writel(MSP_TWI_INT_STS_DONE,
pmcmsptwi_data.iobase +
MSP_TWI_INT_MSK_REG_OFFSET);
} else {
dev_warn(&pldev->dev,
"Could not assign TWI IRQ handler "
"to irq %d (continuing with poll)\n",
pmcmsptwi_data.irq);
pmcmsptwi_data.irq = 0;
}
}
init_completion(&pmcmsptwi_data.wait);
mutex_init(&pmcmsptwi_data.lock);
pmcmsptwi_set_clock_config(&pmcmsptwi_defclockcfg, &pmcmsptwi_data);
pmcmsptwi_set_twi_config(&pmcmsptwi_defcfg, &pmcmsptwi_data);
printk(KERN_INFO DRV_NAME ": Registering MSP71xx I2C adapter\n");
pmcmsptwi_adapter.dev.parent = &pldev->dev;
platform_set_drvdata(pldev, &pmcmsptwi_adapter);
i2c_set_adapdata(&pmcmsptwi_adapter, &pmcmsptwi_data);
rc = i2c_add_adapter(&pmcmsptwi_adapter);
if (rc) {
dev_err(&pldev->dev, "Unable to register I2C adapter\n");
goto ret_unmap;
}
return 0;
ret_unmap:
platform_set_drvdata(pldev, NULL);
if (pmcmsptwi_data.irq) {
pmcmsptwi_writel(0,
pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
}
iounmap(pmcmsptwi_data.iobase);
ret_unreserve:
release_mem_region(res->start, res->end - res->start + 1);
ret_err:
return rc;
}
/*
* Release the device and return 0 if there is one.
*/
static int __devexit pmcmsptwi_remove(struct platform_device *pldev)
{
struct resource *res;
i2c_del_adapter(&pmcmsptwi_adapter);
platform_set_drvdata(pldev, NULL);
if (pmcmsptwi_data.irq) {
pmcmsptwi_writel(0,
pmcmsptwi_data.iobase + MSP_TWI_INT_MSK_REG_OFFSET);
free_irq(pmcmsptwi_data.irq, &pmcmsptwi_data);
}
iounmap(pmcmsptwi_data.iobase);
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
release_mem_region(res->start, res->end - res->start + 1);
return 0;
}
/*
* Polls the 'busy' register until the command is complete.
* NOTE: Assumes data->lock is held.
*/
static void pmcmsptwi_poll_complete(struct pmcmsptwi_data *data)
{
int i;
for (i = 0; i < MSP_MAX_POLL; i++) {
u32 val = pmcmsptwi_readl(data->iobase +
MSP_TWI_BUSY_REG_OFFSET);
if (val == 0) {
u32 reason = pmcmsptwi_readl(data->iobase +
MSP_TWI_INT_STS_REG_OFFSET);
pmcmsptwi_writel(reason, data->iobase +
MSP_TWI_INT_STS_REG_OFFSET);
data->last_result = pmcmsptwi_get_result(reason);
return;
}
udelay(MSP_POLL_DELAY);
}
dev_dbg(&pmcmsptwi_adapter.dev, "Result: Poll timeout\n");
data->last_result = MSP_TWI_XFER_TIMEOUT;
}
/*
* Do the transfer (low level):
* May use interrupt-driven or polling, depending on if an IRQ is
* presently registered.
* NOTE: Assumes data->lock is held.
*/
static enum pmcmsptwi_xfer_result pmcmsptwi_do_xfer(
u32 reg, struct pmcmsptwi_data *data)
{
dev_dbg(&pmcmsptwi_adapter.dev, "Writing cmd reg 0x%08x\n", reg);
pmcmsptwi_writel(reg, data->iobase + MSP_TWI_CMD_REG_OFFSET);
if (data->irq) {
unsigned long timeleft = wait_for_completion_timeout(
&data->wait, MSP_IRQ_TIMEOUT);
if (timeleft == 0) {
dev_dbg(&pmcmsptwi_adapter.dev,
"Result: IRQ timeout\n");
complete(&data->wait);
data->last_result = MSP_TWI_XFER_TIMEOUT;
}
} else
pmcmsptwi_poll_complete(data);
return data->last_result;
}
/*
* Helper routine, converts 'pmctwi_cmd' struct to register format
*/
static inline u32 pmcmsptwi_cmd_to_reg(const struct pmcmsptwi_cmd *cmd)
{
return ((cmd->type & 0x3) << 8) |
(((cmd->write_len - 1) & 0x7) << 4) |
((cmd->read_len - 1) & 0x7);
}
/*
* Do the transfer (high level)
*/
static enum pmcmsptwi_xfer_result pmcmsptwi_xfer_cmd(
struct pmcmsptwi_cmd *cmd,
struct pmcmsptwi_data *data)
{
enum pmcmsptwi_xfer_result retval;
if ((cmd->type == MSP_TWI_CMD_WRITE && cmd->write_len == 0) ||
(cmd->type == MSP_TWI_CMD_READ && cmd->read_len == 0) ||
(cmd->type == MSP_TWI_CMD_WRITE_READ &&
(cmd->read_len == 0 || cmd->write_len == 0))) {
dev_err(&pmcmsptwi_adapter.dev,
"%s: Cannot transfer less than 1 byte\n",
__func__);
return -EINVAL;
}
if (cmd->read_len > MSP_MAX_BYTES_PER_RW ||
cmd->write_len > MSP_MAX_BYTES_PER_RW) {
dev_err(&pmcmsptwi_adapter.dev,
"%s: Cannot transfer more than %d bytes\n",
__func__, MSP_MAX_BYTES_PER_RW);
return -EINVAL;
}
mutex_lock(&data->lock);
dev_dbg(&pmcmsptwi_adapter.dev,
"Setting address to 0x%04x\n", cmd->addr);
pmcmsptwi_writel(cmd->addr, data->iobase + MSP_TWI_ADD_REG_OFFSET);
if (cmd->type == MSP_TWI_CMD_WRITE ||
cmd->type == MSP_TWI_CMD_WRITE_READ) {
__be64 tmp = cpu_to_be64p((u64 *)cmd->write_data);
tmp >>= (MSP_MAX_BYTES_PER_RW - cmd->write_len) * 8;
dev_dbg(&pmcmsptwi_adapter.dev, "Writing 0x%016llx\n", tmp);
pmcmsptwi_writel(tmp & 0x00000000ffffffffLL,
data->iobase + MSP_TWI_DAT_0_REG_OFFSET);
if (cmd->write_len > 4)
pmcmsptwi_writel(tmp >> 32,
data->iobase + MSP_TWI_DAT_1_REG_OFFSET);
}
retval = pmcmsptwi_do_xfer(pmcmsptwi_cmd_to_reg(cmd), data);
if (retval != MSP_TWI_XFER_OK)
goto xfer_err;
if (cmd->type == MSP_TWI_CMD_READ ||
cmd->type == MSP_TWI_CMD_WRITE_READ) {
int i;
u64 rmsk = ~(0xffffffffffffffffLL << (cmd->read_len * 8));
u64 tmp = (u64)pmcmsptwi_readl(data->iobase +
MSP_TWI_DAT_0_REG_OFFSET);
if (cmd->read_len > 4)
tmp |= (u64)pmcmsptwi_readl(data->iobase +
MSP_TWI_DAT_1_REG_OFFSET) << 32;
tmp &= rmsk;
dev_dbg(&pmcmsptwi_adapter.dev, "Read 0x%016llx\n", tmp);
for (i = 0; i < cmd->read_len; i++)
cmd->read_data[i] = tmp >> i;
}
xfer_err:
mutex_unlock(&data->lock);
return retval;
}
/* -- Algorithm functions -- */
/*
* Sends an i2c command out on the adapter
*/
static int pmcmsptwi_master_xfer(struct i2c_adapter *adap,
struct i2c_msg *msg, int num)
{
struct pmcmsptwi_data *data = i2c_get_adapdata(adap);
struct pmcmsptwi_cmd cmd;
struct pmcmsptwi_cfg oldcfg, newcfg;
int ret;
if (num > 2) {
dev_dbg(&adap->dev, "%d messages unsupported\n", num);
return -EINVAL;
} else if (num == 2) {
/* Check for a dual write-then-read command */
struct i2c_msg *nextmsg = msg + 1;
if (!(msg->flags & I2C_M_RD) &&
(nextmsg->flags & I2C_M_RD) &&
msg->addr == nextmsg->addr) {
cmd.type = MSP_TWI_CMD_WRITE_READ;
cmd.write_len = msg->len;
cmd.write_data = msg->buf;
cmd.read_len = nextmsg->len;
cmd.read_data = nextmsg->buf;
} else {
dev_dbg(&adap->dev,
"Non write-read dual messages unsupported\n");
return -EINVAL;
}
} else if (msg->flags & I2C_M_RD) {
cmd.type = MSP_TWI_CMD_READ;
cmd.read_len = msg->len;
cmd.read_data = msg->buf;
cmd.write_len = 0;
cmd.write_data = NULL;
} else {
cmd.type = MSP_TWI_CMD_WRITE;
cmd.read_len = 0;
cmd.read_data = NULL;
cmd.write_len = msg->len;
cmd.write_data = msg->buf;
}
if (msg->len == 0) {
dev_err(&adap->dev, "Zero-byte messages unsupported\n");
return -EINVAL;
}
cmd.addr = msg->addr;
if (msg->flags & I2C_M_TEN) {
pmcmsptwi_get_twi_config(&newcfg, data);
memcpy(&oldcfg, &newcfg, sizeof(oldcfg));
/* Set the special 10-bit address flag */
newcfg.add10 = 1;
pmcmsptwi_set_twi_config(&newcfg, data);
}
/* Execute the command */
ret = pmcmsptwi_xfer_cmd(&cmd, data);
if (msg->flags & I2C_M_TEN)
pmcmsptwi_set_twi_config(&oldcfg, data);
dev_dbg(&adap->dev, "I2C %s of %d bytes %s\n",
(msg->flags & I2C_M_RD) ? "read" : "write", msg->len,
(ret == MSP_TWI_XFER_OK) ? "succeeded" : "failed");
if (ret != MSP_TWI_XFER_OK) {
/*
* TODO: We could potentially loop and retry in the case
* of MSP_TWI_XFER_TIMEOUT.
*/
return -1;
}
return 0;
}
static u32 pmcmsptwi_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_10BIT_ADDR |
I2C_FUNC_SMBUS_BYTE | I2C_FUNC_SMBUS_BYTE_DATA |
I2C_FUNC_SMBUS_WORD_DATA | I2C_FUNC_SMBUS_PROC_CALL;
}
/* -- Initialization -- */
static struct i2c_algorithm pmcmsptwi_algo = {
.master_xfer = pmcmsptwi_master_xfer,
.functionality = pmcmsptwi_i2c_func,
};
static struct i2c_adapter pmcmsptwi_adapter = {
.owner = THIS_MODULE,
.class = I2C_CLASS_HWMON,
.algo = &pmcmsptwi_algo,
.name = DRV_NAME,
};
/* work with hotplug and coldplug */
MODULE_ALIAS("platform:" DRV_NAME);
static struct platform_driver pmcmsptwi_driver = {
.probe = pmcmsptwi_probe,
.remove = __devexit_p(pmcmsptwi_remove),
.driver = {
.name = DRV_NAME,
.owner = THIS_MODULE,
},
};
static int __init pmcmsptwi_init(void)
{
return platform_driver_register(&pmcmsptwi_driver);
}
static void __exit pmcmsptwi_exit(void)
{
platform_driver_unregister(&pmcmsptwi_driver);
}
MODULE_DESCRIPTION("PMC MSP TWI/SMBus/I2C driver");
MODULE_LICENSE("GPL");
module_init(pmcmsptwi_init);
module_exit(pmcmsptwi_exit);