linux/arch/powerpc/kvm/book3s.c

1408 lines
36 KiB
C

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* Description:
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define DEBUG_EXT */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr);
/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "exits", VCPU_STAT(sum_exits) },
{ "mmio", VCPU_STAT(mmio_exits) },
{ "sig", VCPU_STAT(signal_exits) },
{ "sysc", VCPU_STAT(syscall_exits) },
{ "inst_emu", VCPU_STAT(emulated_inst_exits) },
{ "dec", VCPU_STAT(dec_exits) },
{ "ext_intr", VCPU_STAT(ext_intr_exits) },
{ "queue_intr", VCPU_STAT(queue_intr) },
{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
{ "pf_storage", VCPU_STAT(pf_storage) },
{ "sp_storage", VCPU_STAT(sp_storage) },
{ "pf_instruc", VCPU_STAT(pf_instruc) },
{ "sp_instruc", VCPU_STAT(sp_instruc) },
{ "ld", VCPU_STAT(ld) },
{ "ld_slow", VCPU_STAT(ld_slow) },
{ "st", VCPU_STAT(st) },
{ "st_slow", VCPU_STAT(st_slow) },
{ NULL }
};
void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
{
}
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
memcpy(to_svcpu(vcpu)->slb, to_book3s(vcpu)->slb_shadow, sizeof(to_svcpu(vcpu)->slb));
memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_svcpu(vcpu)->slb_max = to_book3s(vcpu)->slb_shadow_max;
#endif
#ifdef CONFIG_PPC_BOOK3S_32
current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
#endif
}
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
memcpy(to_book3s(vcpu)->slb_shadow, to_svcpu(vcpu)->slb, sizeof(to_svcpu(vcpu)->slb));
memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
sizeof(get_paca()->shadow_vcpu));
to_book3s(vcpu)->slb_shadow_max = to_svcpu(vcpu)->slb_max;
#endif
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
}
#if defined(EXIT_DEBUG)
static u32 kvmppc_get_dec(struct kvm_vcpu *vcpu)
{
u64 jd = mftb() - vcpu->arch.dec_jiffies;
return vcpu->arch.dec - jd;
}
#endif
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
vcpu->arch.shadow_msr = vcpu->arch.msr;
/* Guest MSR values */
vcpu->arch.shadow_msr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE |
MSR_BE | MSR_DE;
/* Process MSR values */
vcpu->arch.shadow_msr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR |
MSR_EE;
/* External providers the guest reserved */
vcpu->arch.shadow_msr |= (vcpu->arch.msr & vcpu->arch.guest_owned_ext);
/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.shadow_msr |= MSR_ISF | MSR_HV;
#endif
}
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = vcpu->arch.msr;
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
vcpu->arch.msr = msr;
kvmppc_recalc_shadow_msr(vcpu);
if (msr & (MSR_WE|MSR_POW)) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
vcpu->stat.halt_wakeup++;
}
}
if ((vcpu->arch.msr & (MSR_PR|MSR_IR|MSR_DR)) !=
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
}
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}
void kvmppc_inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 flags)
{
vcpu->arch.srr0 = kvmppc_get_pc(vcpu);
vcpu->arch.srr1 = vcpu->arch.msr | flags;
kvmppc_set_pc(vcpu, to_book3s(vcpu)->hior + vec);
vcpu->arch.mmu.reset_msr(vcpu);
}
static int kvmppc_book3s_vec2irqprio(unsigned int vec)
{
unsigned int prio;
switch (vec) {
case 0x100: prio = BOOK3S_IRQPRIO_SYSTEM_RESET; break;
case 0x200: prio = BOOK3S_IRQPRIO_MACHINE_CHECK; break;
case 0x300: prio = BOOK3S_IRQPRIO_DATA_STORAGE; break;
case 0x380: prio = BOOK3S_IRQPRIO_DATA_SEGMENT; break;
case 0x400: prio = BOOK3S_IRQPRIO_INST_STORAGE; break;
case 0x480: prio = BOOK3S_IRQPRIO_INST_SEGMENT; break;
case 0x500: prio = BOOK3S_IRQPRIO_EXTERNAL; break;
case 0x600: prio = BOOK3S_IRQPRIO_ALIGNMENT; break;
case 0x700: prio = BOOK3S_IRQPRIO_PROGRAM; break;
case 0x800: prio = BOOK3S_IRQPRIO_FP_UNAVAIL; break;
case 0x900: prio = BOOK3S_IRQPRIO_DECREMENTER; break;
case 0xc00: prio = BOOK3S_IRQPRIO_SYSCALL; break;
case 0xd00: prio = BOOK3S_IRQPRIO_DEBUG; break;
case 0xf20: prio = BOOK3S_IRQPRIO_ALTIVEC; break;
case 0xf40: prio = BOOK3S_IRQPRIO_VSX; break;
default: prio = BOOK3S_IRQPRIO_MAX; break;
}
return prio;
}
static void kvmppc_book3s_dequeue_irqprio(struct kvm_vcpu *vcpu,
unsigned int vec)
{
clear_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
}
void kvmppc_book3s_queue_irqprio(struct kvm_vcpu *vcpu, unsigned int vec)
{
vcpu->stat.queue_intr++;
set_bit(kvmppc_book3s_vec2irqprio(vec),
&vcpu->arch.pending_exceptions);
#ifdef EXIT_DEBUG
printk(KERN_INFO "Queueing interrupt %x\n", vec);
#endif
}
void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags)
{
to_book3s(vcpu)->prog_flags = flags;
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_PROGRAM);
}
void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
return test_bit(BOOK3S_INTERRUPT_DECREMENTER >> 7, &vcpu->arch.pending_exceptions);
}
void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_DECREMENTER);
}
void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu,
struct kvm_interrupt *irq)
{
kvmppc_book3s_dequeue_irqprio(vcpu, BOOK3S_INTERRUPT_EXTERNAL);
}
int kvmppc_book3s_irqprio_deliver(struct kvm_vcpu *vcpu, unsigned int priority)
{
int deliver = 1;
int vec = 0;
ulong flags = 0ULL;
switch (priority) {
case BOOK3S_IRQPRIO_DECREMENTER:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_DECREMENTER;
break;
case BOOK3S_IRQPRIO_EXTERNAL:
deliver = vcpu->arch.msr & MSR_EE;
vec = BOOK3S_INTERRUPT_EXTERNAL;
break;
case BOOK3S_IRQPRIO_SYSTEM_RESET:
vec = BOOK3S_INTERRUPT_SYSTEM_RESET;
break;
case BOOK3S_IRQPRIO_MACHINE_CHECK:
vec = BOOK3S_INTERRUPT_MACHINE_CHECK;
break;
case BOOK3S_IRQPRIO_DATA_STORAGE:
vec = BOOK3S_INTERRUPT_DATA_STORAGE;
break;
case BOOK3S_IRQPRIO_INST_STORAGE:
vec = BOOK3S_INTERRUPT_INST_STORAGE;
break;
case BOOK3S_IRQPRIO_DATA_SEGMENT:
vec = BOOK3S_INTERRUPT_DATA_SEGMENT;
break;
case BOOK3S_IRQPRIO_INST_SEGMENT:
vec = BOOK3S_INTERRUPT_INST_SEGMENT;
break;
case BOOK3S_IRQPRIO_ALIGNMENT:
vec = BOOK3S_INTERRUPT_ALIGNMENT;
break;
case BOOK3S_IRQPRIO_PROGRAM:
vec = BOOK3S_INTERRUPT_PROGRAM;
flags = to_book3s(vcpu)->prog_flags;
break;
case BOOK3S_IRQPRIO_VSX:
vec = BOOK3S_INTERRUPT_VSX;
break;
case BOOK3S_IRQPRIO_ALTIVEC:
vec = BOOK3S_INTERRUPT_ALTIVEC;
break;
case BOOK3S_IRQPRIO_FP_UNAVAIL:
vec = BOOK3S_INTERRUPT_FP_UNAVAIL;
break;
case BOOK3S_IRQPRIO_SYSCALL:
vec = BOOK3S_INTERRUPT_SYSCALL;
break;
case BOOK3S_IRQPRIO_DEBUG:
vec = BOOK3S_INTERRUPT_TRACE;
break;
case BOOK3S_IRQPRIO_PERFORMANCE_MONITOR:
vec = BOOK3S_INTERRUPT_PERFMON;
break;
default:
deliver = 0;
printk(KERN_ERR "KVM: Unknown interrupt: 0x%x\n", priority);
break;
}
#if 0
printk(KERN_INFO "Deliver interrupt 0x%x? %x\n", vec, deliver);
#endif
if (deliver)
kvmppc_inject_interrupt(vcpu, vec, flags);
return deliver;
}
void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned int priority;
#ifdef EXIT_DEBUG
if (vcpu->arch.pending_exceptions)
printk(KERN_EMERG "KVM: Check pending: %lx\n", vcpu->arch.pending_exceptions);
#endif
priority = __ffs(*pending);
while (priority < BOOK3S_IRQPRIO_MAX) {
if (kvmppc_book3s_irqprio_deliver(vcpu, priority) &&
(priority != BOOK3S_IRQPRIO_DECREMENTER)) {
/* DEC interrupts get cleared by mtdec */
clear_bit(priority, &vcpu->arch.pending_exceptions);
break;
}
priority = find_next_bit(pending,
BITS_PER_BYTE * sizeof(*pending),
priority + 1);
}
}
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
{
u32 host_pvr;
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
} else
#endif
{
kvmppc_mmu_book3s_32_init(vcpu);
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
}
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
really needs them in a VM on Cell and force disable them. */
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
#ifdef CONFIG_PPC_BOOK3S_32
/* 32 bit Book3S always has 32 byte dcbz */
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif
/* On some CPUs we can execute paired single operations natively */
asm ( "mfpvr %0" : "=r"(host_pvr));
switch (host_pvr) {
case 0x00080200: /* lonestar 2.0 */
case 0x00088202: /* lonestar 2.2 */
case 0x70000100: /* gekko 1.0 */
case 0x00080100: /* gekko 2.0 */
case 0x00083203: /* gekko 2.3a */
case 0x00083213: /* gekko 2.3b */
case 0x00083204: /* gekko 2.4 */
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
case 0x00087200: /* broadway */
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
/* Enable HID2.PSE - in case we need it later */
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
}
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
struct page *hpage;
u64 hpage_offset;
u32 *page;
int i;
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (is_error_page(hpage))
return;
hpage_offset = pte->raddr & ~PAGE_MASK;
hpage_offset &= ~0xFFFULL;
hpage_offset /= 4;
get_page(hpage);
page = kmap_atomic(hpage, KM_USER0);
/* patch dcbz into reserved instruction, so we trap */
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
if ((page[i] & 0xff0007ff) == INS_DCBZ)
page[i] &= 0xfffffff7;
kunmap_atomic(page, KM_USER0);
put_page(hpage);
}
static int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, bool data,
struct kvmppc_pte *pte)
{
int relocated = (vcpu->arch.msr & (data ? MSR_DR : MSR_IR));
int r;
if (relocated) {
r = vcpu->arch.mmu.xlate(vcpu, eaddr, pte, data);
} else {
pte->eaddr = eaddr;
pte->raddr = eaddr & 0xffffffff;
pte->vpage = VSID_REAL | eaddr >> 12;
pte->may_read = true;
pte->may_write = true;
pte->may_execute = true;
r = 0;
}
return r;
}
static hva_t kvmppc_bad_hva(void)
{
return PAGE_OFFSET;
}
static hva_t kvmppc_pte_to_hva(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte,
bool read)
{
hva_t hpage;
if (read && !pte->may_read)
goto err;
if (!read && !pte->may_write)
goto err;
hpage = gfn_to_hva(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpage))
goto err;
return hpage | (pte->raddr & ~PAGE_MASK);
err:
return kvmppc_bad_hva();
}
int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
vcpu->stat.st++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
return -ENOENT;
*eaddr = pte.raddr;
if (!pte.may_write)
return -EPERM;
if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
bool data)
{
struct kvmppc_pte pte;
hva_t hva = *eaddr;
vcpu->stat.ld++;
if (kvmppc_xlate(vcpu, *eaddr, data, &pte))
goto nopte;
*eaddr = pte.raddr;
hva = kvmppc_pte_to_hva(vcpu, &pte, true);
if (kvm_is_error_hva(hva))
goto mmio;
if (copy_from_user(ptr, (void __user *)hva, size)) {
printk(KERN_INFO "kvmppc_ld at 0x%lx failed\n", hva);
goto mmio;
}
return EMULATE_DONE;
nopte:
return -ENOENT;
mmio:
return EMULATE_DO_MMIO;
}
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
return kvm_is_visible_gfn(vcpu->kvm, gfn);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
bool dr = (vcpu->arch.msr & MSR_DR) ? true : false;
bool ir = (vcpu->arch.msr & MSR_IR) ? true : false;
u64 vsid;
relocated = data ? dr : ir;
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & 0xffffffff;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
}
switch (vcpu->arch.msr & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
break;
case MSR_DR:
case MSR_IR:
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
if ((vcpu->arch.msr & (MSR_DR|MSR_IR)) == MSR_DR)
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
else
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
pte.vpage |= vsid;
if (vsid == -1)
page_found = -EINVAL;
break;
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr & ~DSISR_NOHPTE;
to_book3s(vcpu)->dsisr |= DSISR_PROTFAULT;
vcpu->arch.msr |= (to_svcpu(vcpu)->shadow_srr1 & 0x00000000f8000000ULL);
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
}
return r;
}
static inline int get_fpr_index(int i)
{
#ifdef CONFIG_VSX
i *= 2;
#endif
return i;
}
/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
if (!(vcpu->arch.guest_owned_ext & msr))
return;
#ifdef DEBUG_EXT
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif
switch (msr) {
case MSR_FP:
giveup_fpu(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
vcpu->arch.fpscr = t->fpscr.val;
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
giveup_altivec(current);
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
vcpu->arch.vscr = t->vscr;
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
__giveup_vsx(current);
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext &= ~msr;
current->thread.regs->msr &= ~msr;
kvmppc_recalc_shadow_msr(vcpu);
}
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
ulong srr0 = kvmppc_get_pc(vcpu);
u32 last_inst = kvmppc_get_last_inst(vcpu);
int ret;
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
if (ret == -ENOENT) {
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 33, 33, 1);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 34, 36, 0);
vcpu->arch.msr = kvmppc_set_field(vcpu->arch.msr, 42, 47, 0);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
return EMULATE_AGAIN;
}
return EMULATE_DONE;
}
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
/* Need to do paired single emulation? */
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
return EMULATE_DONE;
/* Read out the instruction */
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
/* Need to emulate */
return EMULATE_FAIL;
return EMULATE_AGAIN;
}
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr)
{
struct thread_struct *t = &current->thread;
u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
u64 *thread_fpr = (u64*)t->fpr;
int i;
/* When we have paired singles, we emulate in software */
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
return RESUME_GUEST;
if (!(vcpu->arch.msr & msr)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
return RESUME_GUEST;
}
/* We already own the ext */
if (vcpu->arch.guest_owned_ext & msr) {
return RESUME_GUEST;
}
#ifdef DEBUG_EXT
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif
current->thread.regs->msr |= msr;
switch (msr) {
case MSR_FP:
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
t->fpscr.val = vcpu->arch.fpscr;
t->fpexc_mode = 0;
kvmppc_load_up_fpu();
break;
case MSR_VEC:
#ifdef CONFIG_ALTIVEC
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
t->vscr = vcpu->arch.vscr;
t->vrsave = -1;
kvmppc_load_up_altivec();
#endif
break;
case MSR_VSX:
#ifdef CONFIG_VSX
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
kvmppc_load_up_vsx();
#endif
break;
default:
BUG();
}
vcpu->arch.guest_owned_ext |= msr;
kvmppc_recalc_shadow_msr(vcpu);
return RESUME_GUEST;
}
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
#ifdef EXIT_DEBUG
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | dec=0x%x | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
kvmppc_get_dec(vcpu), to_svcpu(vcpu)->shadow_srr1);
#elif defined (EXIT_DEBUG_SIMPLE)
if ((exit_nr != 0x900) && (exit_nr != 0x500))
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | dar=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), kvmppc_get_fault_dar(vcpu),
vcpu->arch.msr);
#endif
kvm_resched(vcpu);
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
vcpu->stat.pf_instruc++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if (to_svcpu(vcpu)->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]
== SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
r = RESUME_GUEST;
break;
}
#endif
/* only care about PTEG not found errors, but leave NX alone */
if (to_svcpu(vcpu)->shadow_srr1 & 0x40000000) {
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
} else {
vcpu->arch.msr |= to_svcpu(vcpu)->shadow_srr1 & 0x58000000;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_DATA_STORAGE:
{
ulong dar = kvmppc_get_fault_dar(vcpu);
vcpu->stat.pf_storage++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
if ((to_svcpu(vcpu)->sr[dar >> SID_SHIFT]) == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, dar);
r = RESUME_GUEST;
break;
}
#endif
/* The only case we need to handle is missing shadow PTEs */
if (to_svcpu(vcpu)->fault_dsisr & DSISR_NOHPTE) {
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
} else {
vcpu->arch.dear = dar;
to_book3s(vcpu)->dsisr = to_svcpu(vcpu)->fault_dsisr;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
kvmppc_mmu_pte_flush(vcpu, vcpu->arch.dear, ~0xFFFUL);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
vcpu->arch.dear = kvmppc_get_fault_dar(vcpu);
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
{
enum emulation_result er;
ulong flags;
program_interrupt:
flags = to_svcpu(vcpu)->shadow_srr1 & 0x1f0000ull;
if (vcpu->arch.msr & MSR_PR) {
#ifdef EXIT_DEBUG
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST_NV;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
// XXX make user settable
if (vcpu->arch.osi_enabled &&
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
u64 *gprs = run->osi.gprs;
int i;
run->exit_reason = KVM_EXIT_OSI;
for (i = 0; i < 32; i++)
gprs[i] = kvmppc_get_gpr(vcpu, i);
vcpu->arch.osi_needed = 1;
r = RESUME_HOST_NV;
} else {
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
{
int ext_msr = 0;
switch (exit_nr) {
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
}
switch (kvmppc_check_ext(vcpu, exit_nr)) {
case EMULATE_DONE:
/* everything ok - let's enable the ext */
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
break;
case EMULATE_FAIL:
/* we need to emulate this instruction */
goto program_interrupt;
break;
default:
/* nothing to worry about - go again */
break;
}
break;
}
case BOOK3S_INTERRUPT_ALIGNMENT:
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
to_book3s(vcpu)->dsisr = kvmppc_alignment_dsisr(vcpu,
kvmppc_get_last_inst(vcpu));
vcpu->arch.dear = kvmppc_alignment_dar(vcpu,
kvmppc_get_last_inst(vcpu));
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_MACHINE_CHECK:
case BOOK3S_INTERRUPT_TRACE:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
default:
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), to_svcpu(vcpu)->shadow_srr1);
r = RESUME_HOST;
BUG();
break;
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
if (signal_pending(current)) {
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM: Going back to host\n");
#endif
vcpu->stat.signal_exits++;
run->exit_reason = KVM_EXIT_INTR;
r = -EINTR;
} else {
/* In case an interrupt came in that was triggered
* from userspace (like DEC), we need to check what
* to inject now! */
kvmppc_core_deliver_interrupts(vcpu);
}
}
#ifdef EXIT_DEBUG
printk(KERN_EMERG "KVM exit: vcpu=0x%p pc=0x%lx r=0x%x\n", vcpu, kvmppc_get_pc(vcpu), r);
#endif
return r;
}
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
regs->pc = kvmppc_get_pc(vcpu);
regs->cr = kvmppc_get_cr(vcpu);
regs->ctr = kvmppc_get_ctr(vcpu);
regs->lr = kvmppc_get_lr(vcpu);
regs->xer = kvmppc_get_xer(vcpu);
regs->msr = vcpu->arch.msr;
regs->srr0 = vcpu->arch.srr0;
regs->srr1 = vcpu->arch.srr1;
regs->pid = vcpu->arch.pid;
regs->sprg0 = vcpu->arch.sprg0;
regs->sprg1 = vcpu->arch.sprg1;
regs->sprg2 = vcpu->arch.sprg2;
regs->sprg3 = vcpu->arch.sprg3;
regs->sprg5 = vcpu->arch.sprg4;
regs->sprg6 = vcpu->arch.sprg5;
regs->sprg7 = vcpu->arch.sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
kvmppc_set_pc(vcpu, regs->pc);
kvmppc_set_cr(vcpu, regs->cr);
kvmppc_set_ctr(vcpu, regs->ctr);
kvmppc_set_lr(vcpu, regs->lr);
kvmppc_set_xer(vcpu, regs->xer);
kvmppc_set_msr(vcpu, regs->msr);
vcpu->arch.srr0 = regs->srr0;
vcpu->arch.srr1 = regs->srr1;
vcpu->arch.sprg0 = regs->sprg0;
vcpu->arch.sprg1 = regs->sprg1;
vcpu->arch.sprg2 = regs->sprg2;
vcpu->arch.sprg3 = regs->sprg3;
vcpu->arch.sprg5 = regs->sprg4;
vcpu->arch.sprg6 = regs->sprg5;
vcpu->arch.sprg7 = regs->sprg6;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
return 0;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu3s->slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu3s->slb[i].origv;
}
} else {
for (i = 0; i < 16; i++) {
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
sregs->u.s.ppc32.sr[i] = vcpu3s->sr[i].raw;
}
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOTSUPP;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
int kvmppc_core_check_processor_compat(void)
{
return 0;
}
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err = -ENOMEM;
vcpu_book3s = vmalloc(sizeof(struct kvmppc_vcpu_book3s));
if (!vcpu_book3s)
goto out;
memset(vcpu_book3s, 0, sizeof(struct kvmppc_vcpu_book3s));
vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *)
kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
if (!vcpu_book3s->shadow_vcpu)
goto free_vcpu;
vcpu = &vcpu_book3s->vcpu;
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_shadow_vcpu;
vcpu->arch.host_retip = kvm_return_point;
vcpu->arch.host_msr = mfmsr();
#ifdef CONFIG_PPC_BOOK3S_64
/* default to book3s_64 (970fx) */
vcpu->arch.pvr = 0x3C0301;
#else
/* default to book3s_32 (750) */
vcpu->arch.pvr = 0x84202;
#endif
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
vcpu_book3s->slb_nr = 64;
/* remember where some real-mode handlers are */
vcpu->arch.trampoline_lowmem = kvmppc_trampoline_lowmem;
vcpu->arch.trampoline_enter = kvmppc_trampoline_enter;
vcpu->arch.highmem_handler = (ulong)kvmppc_handler_highmem;
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.rmcall = *(ulong*)kvmppc_rmcall;
#else
vcpu->arch.rmcall = (ulong)kvmppc_rmcall;
#endif
vcpu->arch.shadow_msr = MSR_USER64;
err = kvmppc_mmu_init(vcpu);
if (err < 0)
goto free_shadow_vcpu;
return vcpu;
free_shadow_vcpu:
kfree(vcpu_book3s->shadow_vcpu);
free_vcpu:
vfree(vcpu_book3s);
out:
return ERR_PTR(err);
}
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
kvm_vcpu_uninit(vcpu);
kfree(vcpu_book3s->shadow_vcpu);
vfree(vcpu_book3s);
}
extern int __kvmppc_vcpu_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
int __kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
double fpr[32][TS_FPRWIDTH];
unsigned int fpscr;
int fpexc_mode;
#ifdef CONFIG_ALTIVEC
vector128 vr[32];
vector128 vscr;
unsigned long uninitialized_var(vrsave);
int used_vr;
#endif
#ifdef CONFIG_VSX
int used_vsr;
#endif
ulong ext_msr;
/* No need to go into the guest when all we do is going out */
if (signal_pending(current)) {
kvm_run->exit_reason = KVM_EXIT_INTR;
return -EINTR;
}
/* Save FPU state in stack */
if (current->thread.regs->msr & MSR_FP)
giveup_fpu(current);
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
fpscr = current->thread.fpscr.val;
fpexc_mode = current->thread.fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Save Altivec state in stack */
used_vr = current->thread.used_vr;
if (used_vr) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
vscr = current->thread.vscr;
vrsave = current->thread.vrsave;
}
#endif
#ifdef CONFIG_VSX
/* Save VSX state in stack */
used_vsr = current->thread.used_vsr;
if (used_vsr && (current->thread.regs->msr & MSR_VSX))
__giveup_vsx(current);
#endif
/* Remember the MSR with disabled extensions */
ext_msr = current->thread.regs->msr;
/* XXX we get called with irq disabled - change that! */
local_irq_enable();
/* Preload FPU if it's enabled */
if (vcpu->arch.msr & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
ret = __kvmppc_vcpu_entry(kvm_run, vcpu);
local_irq_disable();
current->thread.regs->msr = ext_msr;
/* Make sure we save the guest FPU/Altivec/VSX state */
kvmppc_giveup_ext(vcpu, MSR_FP);
kvmppc_giveup_ext(vcpu, MSR_VEC);
kvmppc_giveup_ext(vcpu, MSR_VSX);
/* Restore FPU state from stack */
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
current->thread.fpscr.val = fpscr;
current->thread.fpexc_mode = fpexc_mode;
#ifdef CONFIG_ALTIVEC
/* Restore Altivec state from stack */
if (used_vr && current->thread.used_vr) {
memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
current->thread.vscr = vscr;
current->thread.vrsave = vrsave;
}
current->thread.used_vr = used_vr;
#endif
#ifdef CONFIG_VSX
current->thread.used_vsr = used_vsr;
#endif
return ret;
}
static int kvmppc_book3s_init(void)
{
int r;
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
THIS_MODULE);
if (r)
return r;
r = kvmppc_mmu_hpte_sysinit();
return r;
}
static void kvmppc_book3s_exit(void)
{
kvmppc_mmu_hpte_sysexit();
kvm_exit();
}
module_init(kvmppc_book3s_init);
module_exit(kvmppc_book3s_exit);