linux/drivers/thermal/mtk_thermal.c

1128 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015 MediaTek Inc.
* Author: Hanyi Wu <hanyi.wu@mediatek.com>
* Sascha Hauer <s.hauer@pengutronix.de>
* Dawei Chien <dawei.chien@mediatek.com>
* Louis Yu <louis.yu@mediatek.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/nvmem-consumer.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/thermal.h>
#include <linux/reset.h>
#include <linux/types.h>
/* AUXADC Registers */
#define AUXADC_CON1_SET_V 0x008
#define AUXADC_CON1_CLR_V 0x00c
#define AUXADC_CON2_V 0x010
#define AUXADC_DATA(channel) (0x14 + (channel) * 4)
#define APMIXED_SYS_TS_CON1 0x604
/* Thermal Controller Registers */
#define TEMP_MONCTL0 0x000
#define TEMP_MONCTL1 0x004
#define TEMP_MONCTL2 0x008
#define TEMP_MONIDET0 0x014
#define TEMP_MONIDET1 0x018
#define TEMP_MSRCTL0 0x038
#define TEMP_MSRCTL1 0x03c
#define TEMP_AHBPOLL 0x040
#define TEMP_AHBTO 0x044
#define TEMP_ADCPNP0 0x048
#define TEMP_ADCPNP1 0x04c
#define TEMP_ADCPNP2 0x050
#define TEMP_ADCPNP3 0x0b4
#define TEMP_ADCMUX 0x054
#define TEMP_ADCEN 0x060
#define TEMP_PNPMUXADDR 0x064
#define TEMP_ADCMUXADDR 0x068
#define TEMP_ADCENADDR 0x074
#define TEMP_ADCVALIDADDR 0x078
#define TEMP_ADCVOLTADDR 0x07c
#define TEMP_RDCTRL 0x080
#define TEMP_ADCVALIDMASK 0x084
#define TEMP_ADCVOLTAGESHIFT 0x088
#define TEMP_ADCWRITECTRL 0x08c
#define TEMP_MSR0 0x090
#define TEMP_MSR1 0x094
#define TEMP_MSR2 0x098
#define TEMP_MSR3 0x0B8
#define TEMP_SPARE0 0x0f0
#define TEMP_ADCPNP0_1 0x148
#define TEMP_ADCPNP1_1 0x14c
#define TEMP_ADCPNP2_1 0x150
#define TEMP_MSR0_1 0x190
#define TEMP_MSR1_1 0x194
#define TEMP_MSR2_1 0x198
#define TEMP_ADCPNP3_1 0x1b4
#define TEMP_MSR3_1 0x1B8
#define PTPCORESEL 0x400
#define TEMP_MONCTL1_PERIOD_UNIT(x) ((x) & 0x3ff)
#define TEMP_MONCTL2_FILTER_INTERVAL(x) (((x) & 0x3ff) << 16)
#define TEMP_MONCTL2_SENSOR_INTERVAL(x) ((x) & 0x3ff)
#define TEMP_AHBPOLL_ADC_POLL_INTERVAL(x) (x)
#define TEMP_ADCWRITECTRL_ADC_PNP_WRITE BIT(0)
#define TEMP_ADCWRITECTRL_ADC_MUX_WRITE BIT(1)
#define TEMP_ADCVALIDMASK_VALID_HIGH BIT(5)
#define TEMP_ADCVALIDMASK_VALID_POS(bit) (bit)
/* MT8173 thermal sensors */
#define MT8173_TS1 0
#define MT8173_TS2 1
#define MT8173_TS3 2
#define MT8173_TS4 3
#define MT8173_TSABB 4
/* AUXADC channel 11 is used for the temperature sensors */
#define MT8173_TEMP_AUXADC_CHANNEL 11
/* The total number of temperature sensors in the MT8173 */
#define MT8173_NUM_SENSORS 5
/* The number of banks in the MT8173 */
#define MT8173_NUM_ZONES 4
/* The number of sensing points per bank */
#define MT8173_NUM_SENSORS_PER_ZONE 4
/* The number of controller in the MT8173 */
#define MT8173_NUM_CONTROLLER 1
/* The calibration coefficient of sensor */
#define MT8173_CALIBRATION 165
/*
* Layout of the fuses providing the calibration data
* These macros could be used for MT8183, MT8173, MT2701, and MT2712.
* MT8183 has 6 sensors and needs 6 VTS calibration data.
* MT8173 has 5 sensors and needs 5 VTS calibration data.
* MT2701 has 3 sensors and needs 3 VTS calibration data.
* MT2712 has 4 sensors and needs 4 VTS calibration data.
*/
#define CALIB_BUF0_VALID_V1 BIT(0)
#define CALIB_BUF1_ADC_GE_V1(x) (((x) >> 22) & 0x3ff)
#define CALIB_BUF0_VTS_TS1_V1(x) (((x) >> 17) & 0x1ff)
#define CALIB_BUF0_VTS_TS2_V1(x) (((x) >> 8) & 0x1ff)
#define CALIB_BUF1_VTS_TS3_V1(x) (((x) >> 0) & 0x1ff)
#define CALIB_BUF2_VTS_TS4_V1(x) (((x) >> 23) & 0x1ff)
#define CALIB_BUF2_VTS_TS5_V1(x) (((x) >> 5) & 0x1ff)
#define CALIB_BUF2_VTS_TSABB_V1(x) (((x) >> 14) & 0x1ff)
#define CALIB_BUF0_DEGC_CALI_V1(x) (((x) >> 1) & 0x3f)
#define CALIB_BUF0_O_SLOPE_V1(x) (((x) >> 26) & 0x3f)
#define CALIB_BUF0_O_SLOPE_SIGN_V1(x) (((x) >> 7) & 0x1)
#define CALIB_BUF1_ID_V1(x) (((x) >> 9) & 0x1)
/*
* Layout of the fuses providing the calibration data
* These macros could be used for MT7622.
*/
#define CALIB_BUF0_ADC_OE_V2(x) (((x) >> 22) & 0x3ff)
#define CALIB_BUF0_ADC_GE_V2(x) (((x) >> 12) & 0x3ff)
#define CALIB_BUF0_DEGC_CALI_V2(x) (((x) >> 6) & 0x3f)
#define CALIB_BUF0_O_SLOPE_V2(x) (((x) >> 0) & 0x3f)
#define CALIB_BUF1_VTS_TS1_V2(x) (((x) >> 23) & 0x1ff)
#define CALIB_BUF1_VTS_TS2_V2(x) (((x) >> 14) & 0x1ff)
#define CALIB_BUF1_VTS_TSABB_V2(x) (((x) >> 5) & 0x1ff)
#define CALIB_BUF1_VALID_V2(x) (((x) >> 4) & 0x1)
#define CALIB_BUF1_O_SLOPE_SIGN_V2(x) (((x) >> 3) & 0x1)
enum {
VTS1,
VTS2,
VTS3,
VTS4,
VTS5,
VTSABB,
MAX_NUM_VTS,
};
enum mtk_thermal_version {
MTK_THERMAL_V1 = 1,
MTK_THERMAL_V2,
};
/* MT2701 thermal sensors */
#define MT2701_TS1 0
#define MT2701_TS2 1
#define MT2701_TSABB 2
/* AUXADC channel 11 is used for the temperature sensors */
#define MT2701_TEMP_AUXADC_CHANNEL 11
/* The total number of temperature sensors in the MT2701 */
#define MT2701_NUM_SENSORS 3
/* The number of sensing points per bank */
#define MT2701_NUM_SENSORS_PER_ZONE 3
/* The number of controller in the MT2701 */
#define MT2701_NUM_CONTROLLER 1
/* The calibration coefficient of sensor */
#define MT2701_CALIBRATION 165
/* MT2712 thermal sensors */
#define MT2712_TS1 0
#define MT2712_TS2 1
#define MT2712_TS3 2
#define MT2712_TS4 3
/* AUXADC channel 11 is used for the temperature sensors */
#define MT2712_TEMP_AUXADC_CHANNEL 11
/* The total number of temperature sensors in the MT2712 */
#define MT2712_NUM_SENSORS 4
/* The number of sensing points per bank */
#define MT2712_NUM_SENSORS_PER_ZONE 4
/* The number of controller in the MT2712 */
#define MT2712_NUM_CONTROLLER 1
/* The calibration coefficient of sensor */
#define MT2712_CALIBRATION 165
#define MT7622_TEMP_AUXADC_CHANNEL 11
#define MT7622_NUM_SENSORS 1
#define MT7622_NUM_ZONES 1
#define MT7622_NUM_SENSORS_PER_ZONE 1
#define MT7622_TS1 0
#define MT7622_NUM_CONTROLLER 1
/* The maximum number of banks */
#define MAX_NUM_ZONES 8
/* The calibration coefficient of sensor */
#define MT7622_CALIBRATION 165
/* MT8183 thermal sensors */
#define MT8183_TS1 0
#define MT8183_TS2 1
#define MT8183_TS3 2
#define MT8183_TS4 3
#define MT8183_TS5 4
#define MT8183_TSABB 5
/* AUXADC channel is used for the temperature sensors */
#define MT8183_TEMP_AUXADC_CHANNEL 11
/* The total number of temperature sensors in the MT8183 */
#define MT8183_NUM_SENSORS 6
/* The number of banks in the MT8183 */
#define MT8183_NUM_ZONES 1
/* The number of sensing points per bank */
#define MT8183_NUM_SENSORS_PER_ZONE 6
/* The number of controller in the MT8183 */
#define MT8183_NUM_CONTROLLER 2
/* The calibration coefficient of sensor */
#define MT8183_CALIBRATION 153
struct mtk_thermal;
struct thermal_bank_cfg {
unsigned int num_sensors;
const int *sensors;
};
struct mtk_thermal_bank {
struct mtk_thermal *mt;
int id;
};
struct mtk_thermal_data {
s32 num_banks;
s32 num_sensors;
s32 auxadc_channel;
const int *vts_index;
const int *sensor_mux_values;
const int *msr;
const int *adcpnp;
const int cali_val;
const int num_controller;
const int *controller_offset;
bool need_switch_bank;
struct thermal_bank_cfg bank_data[MAX_NUM_ZONES];
enum mtk_thermal_version version;
};
struct mtk_thermal {
struct device *dev;
void __iomem *thermal_base;
struct clk *clk_peri_therm;
struct clk *clk_auxadc;
/* lock: for getting and putting banks */
struct mutex lock;
/* Calibration values */
s32 adc_ge;
s32 adc_oe;
s32 degc_cali;
s32 o_slope;
s32 o_slope_sign;
s32 vts[MAX_NUM_VTS];
const struct mtk_thermal_data *conf;
struct mtk_thermal_bank banks[MAX_NUM_ZONES];
};
/* MT8183 thermal sensor data */
static const int mt8183_bank_data[MT8183_NUM_SENSORS] = {
MT8183_TS1, MT8183_TS2, MT8183_TS3, MT8183_TS4, MT8183_TS5, MT8183_TSABB
};
static const int mt8183_msr[MT8183_NUM_SENSORS_PER_ZONE] = {
TEMP_MSR0_1, TEMP_MSR1_1, TEMP_MSR2_1, TEMP_MSR1, TEMP_MSR0, TEMP_MSR3_1
};
static const int mt8183_adcpnp[MT8183_NUM_SENSORS_PER_ZONE] = {
TEMP_ADCPNP0_1, TEMP_ADCPNP1_1, TEMP_ADCPNP2_1,
TEMP_ADCPNP1, TEMP_ADCPNP0, TEMP_ADCPNP3_1
};
static const int mt8183_mux_values[MT8183_NUM_SENSORS] = { 0, 1, 2, 3, 4, 0 };
static const int mt8183_tc_offset[MT8183_NUM_CONTROLLER] = {0x0, 0x100};
static const int mt8183_vts_index[MT8183_NUM_SENSORS] = {
VTS1, VTS2, VTS3, VTS4, VTS5, VTSABB
};
/* MT8173 thermal sensor data */
static const int mt8173_bank_data[MT8173_NUM_ZONES][3] = {
{ MT8173_TS2, MT8173_TS3 },
{ MT8173_TS2, MT8173_TS4 },
{ MT8173_TS1, MT8173_TS2, MT8173_TSABB },
{ MT8173_TS2 },
};
static const int mt8173_msr[MT8173_NUM_SENSORS_PER_ZONE] = {
TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
};
static const int mt8173_adcpnp[MT8173_NUM_SENSORS_PER_ZONE] = {
TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
};
static const int mt8173_mux_values[MT8173_NUM_SENSORS] = { 0, 1, 2, 3, 16 };
static const int mt8173_tc_offset[MT8173_NUM_CONTROLLER] = { 0x0, };
static const int mt8173_vts_index[MT8173_NUM_SENSORS] = {
VTS1, VTS2, VTS3, VTS4, VTSABB
};
/* MT2701 thermal sensor data */
static const int mt2701_bank_data[MT2701_NUM_SENSORS] = {
MT2701_TS1, MT2701_TS2, MT2701_TSABB
};
static const int mt2701_msr[MT2701_NUM_SENSORS_PER_ZONE] = {
TEMP_MSR0, TEMP_MSR1, TEMP_MSR2
};
static const int mt2701_adcpnp[MT2701_NUM_SENSORS_PER_ZONE] = {
TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2
};
static const int mt2701_mux_values[MT2701_NUM_SENSORS] = { 0, 1, 16 };
static const int mt2701_tc_offset[MT2701_NUM_CONTROLLER] = { 0x0, };
static const int mt2701_vts_index[MT2701_NUM_SENSORS] = {
VTS1, VTS2, VTS3
};
/* MT2712 thermal sensor data */
static const int mt2712_bank_data[MT2712_NUM_SENSORS] = {
MT2712_TS1, MT2712_TS2, MT2712_TS3, MT2712_TS4
};
static const int mt2712_msr[MT2712_NUM_SENSORS_PER_ZONE] = {
TEMP_MSR0, TEMP_MSR1, TEMP_MSR2, TEMP_MSR3
};
static const int mt2712_adcpnp[MT2712_NUM_SENSORS_PER_ZONE] = {
TEMP_ADCPNP0, TEMP_ADCPNP1, TEMP_ADCPNP2, TEMP_ADCPNP3
};
static const int mt2712_mux_values[MT2712_NUM_SENSORS] = { 0, 1, 2, 3 };
static const int mt2712_tc_offset[MT2712_NUM_CONTROLLER] = { 0x0, };
static const int mt2712_vts_index[MT2712_NUM_SENSORS] = {
VTS1, VTS2, VTS3, VTS4
};
/* MT7622 thermal sensor data */
static const int mt7622_bank_data[MT7622_NUM_SENSORS] = { MT7622_TS1, };
static const int mt7622_msr[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_MSR0, };
static const int mt7622_adcpnp[MT7622_NUM_SENSORS_PER_ZONE] = { TEMP_ADCPNP0, };
static const int mt7622_mux_values[MT7622_NUM_SENSORS] = { 0, };
static const int mt7622_vts_index[MT7622_NUM_SENSORS] = { VTS1 };
static const int mt7622_tc_offset[MT7622_NUM_CONTROLLER] = { 0x0, };
/*
* The MT8173 thermal controller has four banks. Each bank can read up to
* four temperature sensors simultaneously. The MT8173 has a total of 5
* temperature sensors. We use each bank to measure a certain area of the
* SoC. Since TS2 is located centrally in the SoC it is influenced by multiple
* areas, hence is used in different banks.
*
* The thermal core only gets the maximum temperature of all banks, so
* the bank concept wouldn't be necessary here. However, the SVS (Smart
* Voltage Scaling) unit makes its decisions based on the same bank
* data, and this indeed needs the temperatures of the individual banks
* for making better decisions.
*/
static const struct mtk_thermal_data mt8173_thermal_data = {
.auxadc_channel = MT8173_TEMP_AUXADC_CHANNEL,
.num_banks = MT8173_NUM_ZONES,
.num_sensors = MT8173_NUM_SENSORS,
.vts_index = mt8173_vts_index,
.cali_val = MT8173_CALIBRATION,
.num_controller = MT8173_NUM_CONTROLLER,
.controller_offset = mt8173_tc_offset,
.need_switch_bank = true,
.bank_data = {
{
.num_sensors = 2,
.sensors = mt8173_bank_data[0],
}, {
.num_sensors = 2,
.sensors = mt8173_bank_data[1],
}, {
.num_sensors = 3,
.sensors = mt8173_bank_data[2],
}, {
.num_sensors = 1,
.sensors = mt8173_bank_data[3],
},
},
.msr = mt8173_msr,
.adcpnp = mt8173_adcpnp,
.sensor_mux_values = mt8173_mux_values,
.version = MTK_THERMAL_V1,
};
/*
* The MT2701 thermal controller has one bank, which can read up to
* three temperature sensors simultaneously. The MT2701 has a total of 3
* temperature sensors.
*
* The thermal core only gets the maximum temperature of this one bank,
* so the bank concept wouldn't be necessary here. However, the SVS (Smart
* Voltage Scaling) unit makes its decisions based on the same bank
* data.
*/
static const struct mtk_thermal_data mt2701_thermal_data = {
.auxadc_channel = MT2701_TEMP_AUXADC_CHANNEL,
.num_banks = 1,
.num_sensors = MT2701_NUM_SENSORS,
.vts_index = mt2701_vts_index,
.cali_val = MT2701_CALIBRATION,
.num_controller = MT2701_NUM_CONTROLLER,
.controller_offset = mt2701_tc_offset,
.need_switch_bank = true,
.bank_data = {
{
.num_sensors = 3,
.sensors = mt2701_bank_data,
},
},
.msr = mt2701_msr,
.adcpnp = mt2701_adcpnp,
.sensor_mux_values = mt2701_mux_values,
.version = MTK_THERMAL_V1,
};
/*
* The MT2712 thermal controller has one bank, which can read up to
* four temperature sensors simultaneously. The MT2712 has a total of 4
* temperature sensors.
*
* The thermal core only gets the maximum temperature of this one bank,
* so the bank concept wouldn't be necessary here. However, the SVS (Smart
* Voltage Scaling) unit makes its decisions based on the same bank
* data.
*/
static const struct mtk_thermal_data mt2712_thermal_data = {
.auxadc_channel = MT2712_TEMP_AUXADC_CHANNEL,
.num_banks = 1,
.num_sensors = MT2712_NUM_SENSORS,
.vts_index = mt2712_vts_index,
.cali_val = MT2712_CALIBRATION,
.num_controller = MT2712_NUM_CONTROLLER,
.controller_offset = mt2712_tc_offset,
.need_switch_bank = true,
.bank_data = {
{
.num_sensors = 4,
.sensors = mt2712_bank_data,
},
},
.msr = mt2712_msr,
.adcpnp = mt2712_adcpnp,
.sensor_mux_values = mt2712_mux_values,
.version = MTK_THERMAL_V1,
};
/*
* MT7622 have only one sensing point which uses AUXADC Channel 11 for raw data
* access.
*/
static const struct mtk_thermal_data mt7622_thermal_data = {
.auxadc_channel = MT7622_TEMP_AUXADC_CHANNEL,
.num_banks = MT7622_NUM_ZONES,
.num_sensors = MT7622_NUM_SENSORS,
.vts_index = mt7622_vts_index,
.cali_val = MT7622_CALIBRATION,
.num_controller = MT7622_NUM_CONTROLLER,
.controller_offset = mt7622_tc_offset,
.need_switch_bank = true,
.bank_data = {
{
.num_sensors = 1,
.sensors = mt7622_bank_data,
},
},
.msr = mt7622_msr,
.adcpnp = mt7622_adcpnp,
.sensor_mux_values = mt7622_mux_values,
.version = MTK_THERMAL_V2,
};
/*
* The MT8183 thermal controller has one bank for the current SW framework.
* The MT8183 has a total of 6 temperature sensors.
* There are two thermal controller to control the six sensor.
* The first one bind 2 sensor, and the other bind 4 sensors.
* The thermal core only gets the maximum temperature of all sensor, so
* the bank concept wouldn't be necessary here. However, the SVS (Smart
* Voltage Scaling) unit makes its decisions based on the same bank
* data, and this indeed needs the temperatures of the individual banks
* for making better decisions.
*/
static const struct mtk_thermal_data mt8183_thermal_data = {
.auxadc_channel = MT8183_TEMP_AUXADC_CHANNEL,
.num_banks = MT8183_NUM_ZONES,
.num_sensors = MT8183_NUM_SENSORS,
.vts_index = mt8183_vts_index,
.cali_val = MT8183_CALIBRATION,
.num_controller = MT8183_NUM_CONTROLLER,
.controller_offset = mt8183_tc_offset,
.need_switch_bank = false,
.bank_data = {
{
.num_sensors = 6,
.sensors = mt8183_bank_data,
},
},
.msr = mt8183_msr,
.adcpnp = mt8183_adcpnp,
.sensor_mux_values = mt8183_mux_values,
.version = MTK_THERMAL_V1,
};
/**
* raw_to_mcelsius - convert a raw ADC value to mcelsius
* @mt: The thermal controller
* @sensno: sensor number
* @raw: raw ADC value
*
* This converts the raw ADC value to mcelsius using the SoC specific
* calibration constants
*/
static int raw_to_mcelsius_v1(struct mtk_thermal *mt, int sensno, s32 raw)
{
s32 tmp;
raw &= 0xfff;
tmp = 203450520 << 3;
tmp /= mt->conf->cali_val + mt->o_slope;
tmp /= 10000 + mt->adc_ge;
tmp *= raw - mt->vts[sensno] - 3350;
tmp >>= 3;
return mt->degc_cali * 500 - tmp;
}
static int raw_to_mcelsius_v2(struct mtk_thermal *mt, int sensno, s32 raw)
{
s32 format_1 = 0;
s32 format_2 = 0;
s32 g_oe = 1;
s32 g_gain = 1;
s32 g_x_roomt = 0;
s32 tmp = 0;
if (raw == 0)
return 0;
raw &= 0xfff;
g_gain = 10000 + (((mt->adc_ge - 512) * 10000) >> 12);
g_oe = mt->adc_oe - 512;
format_1 = mt->vts[VTS2] + 3105 - g_oe;
format_2 = (mt->degc_cali * 10) >> 1;
g_x_roomt = (((format_1 * 10000) >> 12) * 10000) / g_gain;
tmp = (((((raw - g_oe) * 10000) >> 12) * 10000) / g_gain) - g_x_roomt;
tmp = tmp * 10 * 100 / 11;
if (mt->o_slope_sign == 0)
tmp = tmp / (165 - mt->o_slope);
else
tmp = tmp / (165 + mt->o_slope);
return (format_2 - tmp) * 100;
}
/**
* mtk_thermal_get_bank - get bank
* @bank: The bank
*
* The bank registers are banked, we have to select a bank in the
* PTPCORESEL register to access it.
*/
static void mtk_thermal_get_bank(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
u32 val;
if (mt->conf->need_switch_bank) {
mutex_lock(&mt->lock);
val = readl(mt->thermal_base + PTPCORESEL);
val &= ~0xf;
val |= bank->id;
writel(val, mt->thermal_base + PTPCORESEL);
}
}
/**
* mtk_thermal_put_bank - release bank
* @bank: The bank
*
* release a bank previously taken with mtk_thermal_get_bank,
*/
static void mtk_thermal_put_bank(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
if (mt->conf->need_switch_bank)
mutex_unlock(&mt->lock);
}
/**
* mtk_thermal_bank_temperature - get the temperature of a bank
* @bank: The bank
*
* The temperature of a bank is considered the maximum temperature of
* the sensors associated to the bank.
*/
static int mtk_thermal_bank_temperature(struct mtk_thermal_bank *bank)
{
struct mtk_thermal *mt = bank->mt;
const struct mtk_thermal_data *conf = mt->conf;
int i, temp = INT_MIN, max = INT_MIN;
u32 raw;
for (i = 0; i < conf->bank_data[bank->id].num_sensors; i++) {
raw = readl(mt->thermal_base + conf->msr[i]);
if (mt->conf->version == MTK_THERMAL_V1) {
temp = raw_to_mcelsius_v1(
mt, conf->bank_data[bank->id].sensors[i], raw);
} else {
temp = raw_to_mcelsius_v2(
mt, conf->bank_data[bank->id].sensors[i], raw);
}
/*
* The first read of a sensor often contains very high bogus
* temperature value. Filter these out so that the system does
* not immediately shut down.
*/
if (temp > 200000)
temp = 0;
if (temp > max)
max = temp;
}
return max;
}
static int mtk_read_temp(void *data, int *temperature)
{
struct mtk_thermal *mt = data;
int i;
int tempmax = INT_MIN;
for (i = 0; i < mt->conf->num_banks; i++) {
struct mtk_thermal_bank *bank = &mt->banks[i];
mtk_thermal_get_bank(bank);
tempmax = max(tempmax, mtk_thermal_bank_temperature(bank));
mtk_thermal_put_bank(bank);
}
*temperature = tempmax;
return 0;
}
static const struct thermal_zone_of_device_ops mtk_thermal_ops = {
.get_temp = mtk_read_temp,
};
static void mtk_thermal_init_bank(struct mtk_thermal *mt, int num,
u32 apmixed_phys_base, u32 auxadc_phys_base,
int ctrl_id)
{
struct mtk_thermal_bank *bank = &mt->banks[num];
const struct mtk_thermal_data *conf = mt->conf;
int i;
int offset = mt->conf->controller_offset[ctrl_id];
void __iomem *controller_base = mt->thermal_base + offset;
bank->id = num;
bank->mt = mt;
mtk_thermal_get_bank(bank);
/* bus clock 66M counting unit is 12 * 15.15ns * 256 = 46.540us */
writel(TEMP_MONCTL1_PERIOD_UNIT(12), controller_base + TEMP_MONCTL1);
/*
* filt interval is 1 * 46.540us = 46.54us,
* sen interval is 429 * 46.540us = 19.96ms
*/
writel(TEMP_MONCTL2_FILTER_INTERVAL(1) |
TEMP_MONCTL2_SENSOR_INTERVAL(429),
controller_base + TEMP_MONCTL2);
/* poll is set to 10u */
writel(TEMP_AHBPOLL_ADC_POLL_INTERVAL(768),
controller_base + TEMP_AHBPOLL);
/* temperature sampling control, 1 sample */
writel(0x0, controller_base + TEMP_MSRCTL0);
/* exceed this polling time, IRQ would be inserted */
writel(0xffffffff, controller_base + TEMP_AHBTO);
/* number of interrupts per event, 1 is enough */
writel(0x0, controller_base + TEMP_MONIDET0);
writel(0x0, controller_base + TEMP_MONIDET1);
/*
* The MT8173 thermal controller does not have its own ADC. Instead it
* uses AHB bus accesses to control the AUXADC. To do this the thermal
* controller has to be programmed with the physical addresses of the
* AUXADC registers and with the various bit positions in the AUXADC.
* Also the thermal controller controls a mux in the APMIXEDSYS register
* space.
*/
/*
* this value will be stored to TEMP_PNPMUXADDR (TEMP_SPARE0)
* automatically by hw
*/
writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCMUX);
/* AHB address for auxadc mux selection */
writel(auxadc_phys_base + AUXADC_CON1_CLR_V,
controller_base + TEMP_ADCMUXADDR);
if (mt->conf->version == MTK_THERMAL_V1) {
/* AHB address for pnp sensor mux selection */
writel(apmixed_phys_base + APMIXED_SYS_TS_CON1,
controller_base + TEMP_PNPMUXADDR);
}
/* AHB value for auxadc enable */
writel(BIT(conf->auxadc_channel), controller_base + TEMP_ADCEN);
/* AHB address for auxadc enable (channel 0 immediate mode selected) */
writel(auxadc_phys_base + AUXADC_CON1_SET_V,
controller_base + TEMP_ADCENADDR);
/* AHB address for auxadc valid bit */
writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
controller_base + TEMP_ADCVALIDADDR);
/* AHB address for auxadc voltage output */
writel(auxadc_phys_base + AUXADC_DATA(conf->auxadc_channel),
controller_base + TEMP_ADCVOLTADDR);
/* read valid & voltage are at the same register */
writel(0x0, controller_base + TEMP_RDCTRL);
/* indicate where the valid bit is */
writel(TEMP_ADCVALIDMASK_VALID_HIGH | TEMP_ADCVALIDMASK_VALID_POS(12),
controller_base + TEMP_ADCVALIDMASK);
/* no shift */
writel(0x0, controller_base + TEMP_ADCVOLTAGESHIFT);
/* enable auxadc mux write transaction */
writel(TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
controller_base + TEMP_ADCWRITECTRL);
for (i = 0; i < conf->bank_data[num].num_sensors; i++)
writel(conf->sensor_mux_values[conf->bank_data[num].sensors[i]],
mt->thermal_base + conf->adcpnp[i]);
writel((1 << conf->bank_data[num].num_sensors) - 1,
controller_base + TEMP_MONCTL0);
writel(TEMP_ADCWRITECTRL_ADC_PNP_WRITE |
TEMP_ADCWRITECTRL_ADC_MUX_WRITE,
controller_base + TEMP_ADCWRITECTRL);
mtk_thermal_put_bank(bank);
}
static u64 of_get_phys_base(struct device_node *np)
{
u64 size64;
const __be32 *regaddr_p;
regaddr_p = of_get_address(np, 0, &size64, NULL);
if (!regaddr_p)
return OF_BAD_ADDR;
return of_translate_address(np, regaddr_p);
}
static int mtk_thermal_extract_efuse_v1(struct mtk_thermal *mt, u32 *buf)
{
int i;
if (!(buf[0] & CALIB_BUF0_VALID_V1))
return -EINVAL;
mt->adc_ge = CALIB_BUF1_ADC_GE_V1(buf[1]);
for (i = 0; i < mt->conf->num_sensors; i++) {
switch (mt->conf->vts_index[i]) {
case VTS1:
mt->vts[VTS1] = CALIB_BUF0_VTS_TS1_V1(buf[0]);
break;
case VTS2:
mt->vts[VTS2] = CALIB_BUF0_VTS_TS2_V1(buf[0]);
break;
case VTS3:
mt->vts[VTS3] = CALIB_BUF1_VTS_TS3_V1(buf[1]);
break;
case VTS4:
mt->vts[VTS4] = CALIB_BUF2_VTS_TS4_V1(buf[2]);
break;
case VTS5:
mt->vts[VTS5] = CALIB_BUF2_VTS_TS5_V1(buf[2]);
break;
case VTSABB:
mt->vts[VTSABB] =
CALIB_BUF2_VTS_TSABB_V1(buf[2]);
break;
default:
break;
}
}
mt->degc_cali = CALIB_BUF0_DEGC_CALI_V1(buf[0]);
if (CALIB_BUF1_ID_V1(buf[1]) &
CALIB_BUF0_O_SLOPE_SIGN_V1(buf[0]))
mt->o_slope = -CALIB_BUF0_O_SLOPE_V1(buf[0]);
else
mt->o_slope = CALIB_BUF0_O_SLOPE_V1(buf[0]);
return 0;
}
static int mtk_thermal_extract_efuse_v2(struct mtk_thermal *mt, u32 *buf)
{
if (!CALIB_BUF1_VALID_V2(buf[1]))
return -EINVAL;
mt->adc_oe = CALIB_BUF0_ADC_OE_V2(buf[0]);
mt->adc_ge = CALIB_BUF0_ADC_GE_V2(buf[0]);
mt->degc_cali = CALIB_BUF0_DEGC_CALI_V2(buf[0]);
mt->o_slope = CALIB_BUF0_O_SLOPE_V2(buf[0]);
mt->vts[VTS1] = CALIB_BUF1_VTS_TS1_V2(buf[1]);
mt->vts[VTS2] = CALIB_BUF1_VTS_TS2_V2(buf[1]);
mt->vts[VTSABB] = CALIB_BUF1_VTS_TSABB_V2(buf[1]);
mt->o_slope_sign = CALIB_BUF1_O_SLOPE_SIGN_V2(buf[1]);
return 0;
}
static int mtk_thermal_get_calibration_data(struct device *dev,
struct mtk_thermal *mt)
{
struct nvmem_cell *cell;
u32 *buf;
size_t len;
int i, ret = 0;
/* Start with default values */
mt->adc_ge = 512;
for (i = 0; i < mt->conf->num_sensors; i++)
mt->vts[i] = 260;
mt->degc_cali = 40;
mt->o_slope = 0;
cell = nvmem_cell_get(dev, "calibration-data");
if (IS_ERR(cell)) {
if (PTR_ERR(cell) == -EPROBE_DEFER)
return PTR_ERR(cell);
return 0;
}
buf = (u32 *)nvmem_cell_read(cell, &len);
nvmem_cell_put(cell);
if (IS_ERR(buf))
return PTR_ERR(buf);
if (len < 3 * sizeof(u32)) {
dev_warn(dev, "invalid calibration data\n");
ret = -EINVAL;
goto out;
}
if (mt->conf->version == MTK_THERMAL_V1)
ret = mtk_thermal_extract_efuse_v1(mt, buf);
else
ret = mtk_thermal_extract_efuse_v2(mt, buf);
if (ret) {
dev_info(dev, "Device not calibrated, using default calibration values\n");
ret = 0;
}
out:
kfree(buf);
return ret;
}
static const struct of_device_id mtk_thermal_of_match[] = {
{
.compatible = "mediatek,mt8173-thermal",
.data = (void *)&mt8173_thermal_data,
},
{
.compatible = "mediatek,mt2701-thermal",
.data = (void *)&mt2701_thermal_data,
},
{
.compatible = "mediatek,mt2712-thermal",
.data = (void *)&mt2712_thermal_data,
},
{
.compatible = "mediatek,mt7622-thermal",
.data = (void *)&mt7622_thermal_data,
},
{
.compatible = "mediatek,mt8183-thermal",
.data = (void *)&mt8183_thermal_data,
}, {
},
};
MODULE_DEVICE_TABLE(of, mtk_thermal_of_match);
static void mtk_thermal_turn_on_buffer(void __iomem *apmixed_base)
{
int tmp;
tmp = readl(apmixed_base + APMIXED_SYS_TS_CON1);
tmp &= ~(0x37);
tmp |= 0x1;
writel(tmp, apmixed_base + APMIXED_SYS_TS_CON1);
udelay(200);
}
static void mtk_thermal_release_periodic_ts(struct mtk_thermal *mt,
void __iomem *auxadc_base)
{
int tmp;
writel(0x800, auxadc_base + AUXADC_CON1_SET_V);
writel(0x1, mt->thermal_base + TEMP_MONCTL0);
tmp = readl(mt->thermal_base + TEMP_MSRCTL1);
writel((tmp & (~0x10e)), mt->thermal_base + TEMP_MSRCTL1);
}
static int mtk_thermal_probe(struct platform_device *pdev)
{
int ret, i, ctrl_id;
struct device_node *auxadc, *apmixedsys, *np = pdev->dev.of_node;
struct mtk_thermal *mt;
struct resource *res;
u64 auxadc_phys_base, apmixed_phys_base;
struct thermal_zone_device *tzdev;
void __iomem *apmixed_base, *auxadc_base;
mt = devm_kzalloc(&pdev->dev, sizeof(*mt), GFP_KERNEL);
if (!mt)
return -ENOMEM;
mt->conf = of_device_get_match_data(&pdev->dev);
mt->clk_peri_therm = devm_clk_get(&pdev->dev, "therm");
if (IS_ERR(mt->clk_peri_therm))
return PTR_ERR(mt->clk_peri_therm);
mt->clk_auxadc = devm_clk_get(&pdev->dev, "auxadc");
if (IS_ERR(mt->clk_auxadc))
return PTR_ERR(mt->clk_auxadc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mt->thermal_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mt->thermal_base))
return PTR_ERR(mt->thermal_base);
ret = mtk_thermal_get_calibration_data(&pdev->dev, mt);
if (ret)
return ret;
mutex_init(&mt->lock);
mt->dev = &pdev->dev;
auxadc = of_parse_phandle(np, "mediatek,auxadc", 0);
if (!auxadc) {
dev_err(&pdev->dev, "missing auxadc node\n");
return -ENODEV;
}
auxadc_base = of_iomap(auxadc, 0);
auxadc_phys_base = of_get_phys_base(auxadc);
of_node_put(auxadc);
if (auxadc_phys_base == OF_BAD_ADDR) {
dev_err(&pdev->dev, "Can't get auxadc phys address\n");
return -EINVAL;
}
apmixedsys = of_parse_phandle(np, "mediatek,apmixedsys", 0);
if (!apmixedsys) {
dev_err(&pdev->dev, "missing apmixedsys node\n");
return -ENODEV;
}
apmixed_base = of_iomap(apmixedsys, 0);
apmixed_phys_base = of_get_phys_base(apmixedsys);
of_node_put(apmixedsys);
if (apmixed_phys_base == OF_BAD_ADDR) {
dev_err(&pdev->dev, "Can't get auxadc phys address\n");
return -EINVAL;
}
ret = device_reset_optional(&pdev->dev);
if (ret)
return ret;
ret = clk_prepare_enable(mt->clk_auxadc);
if (ret) {
dev_err(&pdev->dev, "Can't enable auxadc clk: %d\n", ret);
return ret;
}
ret = clk_prepare_enable(mt->clk_peri_therm);
if (ret) {
dev_err(&pdev->dev, "Can't enable peri clk: %d\n", ret);
goto err_disable_clk_auxadc;
}
if (mt->conf->version == MTK_THERMAL_V2) {
mtk_thermal_turn_on_buffer(apmixed_base);
mtk_thermal_release_periodic_ts(mt, auxadc_base);
}
for (ctrl_id = 0; ctrl_id < mt->conf->num_controller ; ctrl_id++)
for (i = 0; i < mt->conf->num_banks; i++)
mtk_thermal_init_bank(mt, i, apmixed_phys_base,
auxadc_phys_base, ctrl_id);
platform_set_drvdata(pdev, mt);
tzdev = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, mt,
&mtk_thermal_ops);
if (IS_ERR(tzdev)) {
ret = PTR_ERR(tzdev);
goto err_disable_clk_peri_therm;
}
return 0;
err_disable_clk_peri_therm:
clk_disable_unprepare(mt->clk_peri_therm);
err_disable_clk_auxadc:
clk_disable_unprepare(mt->clk_auxadc);
return ret;
}
static int mtk_thermal_remove(struct platform_device *pdev)
{
struct mtk_thermal *mt = platform_get_drvdata(pdev);
clk_disable_unprepare(mt->clk_peri_therm);
clk_disable_unprepare(mt->clk_auxadc);
return 0;
}
static struct platform_driver mtk_thermal_driver = {
.probe = mtk_thermal_probe,
.remove = mtk_thermal_remove,
.driver = {
.name = "mtk-thermal",
.of_match_table = mtk_thermal_of_match,
},
};
module_platform_driver(mtk_thermal_driver);
MODULE_AUTHOR("Michael Kao <michael.kao@mediatek.com>");
MODULE_AUTHOR("Louis Yu <louis.yu@mediatek.com>");
MODULE_AUTHOR("Dawei Chien <dawei.chien@mediatek.com>");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_AUTHOR("Hanyi Wu <hanyi.wu@mediatek.com>");
MODULE_DESCRIPTION("Mediatek thermal driver");
MODULE_LICENSE("GPL v2");