linux/arch/s390/kernel/setup.c

1127 lines
30 KiB
C

/*
* S390 version
* Copyright IBM Corp. 1999, 2012
* Author(s): Hartmut Penner (hp@de.ibm.com),
* Martin Schwidefsky (schwidefsky@de.ibm.com)
*
* Derived from "arch/i386/kernel/setup.c"
* Copyright (C) 1995, Linus Torvalds
*/
/*
* This file handles the architecture-dependent parts of initialization
*/
#define KMSG_COMPONENT "setup"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/memblock.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/user.h>
#include <linux/tty.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/bootmem.h>
#include <linux/root_dev.h>
#include <linux/console.h>
#include <linux/kernel_stat.h>
#include <linux/device.h>
#include <linux/notifier.h>
#include <linux/pfn.h>
#include <linux/ctype.h>
#include <linux/reboot.h>
#include <linux/topology.h>
#include <linux/ftrace.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/memory.h>
#include <linux/compat.h>
#include <asm/ipl.h>
#include <asm/uaccess.h>
#include <asm/facility.h>
#include <asm/smp.h>
#include <asm/mmu_context.h>
#include <asm/cpcmd.h>
#include <asm/lowcore.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/sections.h>
#include <asm/ebcdic.h>
#include <asm/kvm_virtio.h>
#include <asm/diag.h>
#include <asm/os_info.h>
#include <asm/sclp.h>
#include "entry.h"
long psw_kernel_bits = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
PSW_MASK_EA | PSW_MASK_BA;
long psw_user_bits = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
PSW_MASK_PSTATE | PSW_ASC_HOME;
/*
* User copy operations.
*/
struct uaccess_ops uaccess;
EXPORT_SYMBOL(uaccess);
/*
* Machine setup..
*/
unsigned int console_mode = 0;
EXPORT_SYMBOL(console_mode);
unsigned int console_devno = -1;
EXPORT_SYMBOL(console_devno);
unsigned int console_irq = -1;
EXPORT_SYMBOL(console_irq);
unsigned long elf_hwcap = 0;
char elf_platform[ELF_PLATFORM_SIZE];
struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
int __initdata memory_end_set;
unsigned long __initdata memory_end;
unsigned long VMALLOC_START;
EXPORT_SYMBOL(VMALLOC_START);
unsigned long VMALLOC_END;
EXPORT_SYMBOL(VMALLOC_END);
struct page *vmemmap;
EXPORT_SYMBOL(vmemmap);
#ifdef CONFIG_64BIT
unsigned long MODULES_VADDR;
unsigned long MODULES_END;
#endif
/* An array with a pointer to the lowcore of every CPU. */
struct _lowcore *lowcore_ptr[NR_CPUS];
EXPORT_SYMBOL(lowcore_ptr);
/*
* This is set up by the setup-routine at boot-time
* for S390 need to find out, what we have to setup
* using address 0x10400 ...
*/
#include <asm/setup.h>
/*
* condev= and conmode= setup parameter.
*/
static int __init condev_setup(char *str)
{
int vdev;
vdev = simple_strtoul(str, &str, 0);
if (vdev >= 0 && vdev < 65536) {
console_devno = vdev;
console_irq = -1;
}
return 1;
}
__setup("condev=", condev_setup);
static void __init set_preferred_console(void)
{
if (MACHINE_IS_KVM) {
if (sclp_has_vt220())
add_preferred_console("ttyS", 1, NULL);
else if (sclp_has_linemode())
add_preferred_console("ttyS", 0, NULL);
else
add_preferred_console("hvc", 0, NULL);
} else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
add_preferred_console("ttyS", 0, NULL);
else if (CONSOLE_IS_3270)
add_preferred_console("tty3270", 0, NULL);
}
static int __init conmode_setup(char *str)
{
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
SET_CONSOLE_SCLP;
#endif
#if defined(CONFIG_TN3215_CONSOLE)
if (strncmp(str, "3215", 5) == 0)
SET_CONSOLE_3215;
#endif
#if defined(CONFIG_TN3270_CONSOLE)
if (strncmp(str, "3270", 5) == 0)
SET_CONSOLE_3270;
#endif
set_preferred_console();
return 1;
}
__setup("conmode=", conmode_setup);
static void __init conmode_default(void)
{
char query_buffer[1024];
char *ptr;
if (MACHINE_IS_VM) {
cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
ptr = strstr(query_buffer, "SUBCHANNEL =");
console_irq = simple_strtoul(ptr + 13, NULL, 16);
cpcmd("QUERY TERM", query_buffer, 1024, NULL);
ptr = strstr(query_buffer, "CONMODE");
/*
* Set the conmode to 3215 so that the device recognition
* will set the cu_type of the console to 3215. If the
* conmode is 3270 and we don't set it back then both
* 3215 and the 3270 driver will try to access the console
* device (3215 as console and 3270 as normal tty).
*/
cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
if (ptr == NULL) {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
return;
}
if (strncmp(ptr + 8, "3270", 4) == 0) {
#if defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
} else if (strncmp(ptr + 8, "3215", 4) == 0) {
#if defined(CONFIG_TN3215_CONSOLE)
SET_CONSOLE_3215;
#elif defined(CONFIG_TN3270_CONSOLE)
SET_CONSOLE_3270;
#elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
} else {
#if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
SET_CONSOLE_SCLP;
#endif
}
}
#ifdef CONFIG_ZFCPDUMP
static void __init setup_zfcpdump(unsigned int console_devno)
{
static char str[41];
if (ipl_info.type != IPL_TYPE_FCP_DUMP)
return;
if (OLDMEM_BASE)
return;
if (console_devno != -1)
sprintf(str, " cio_ignore=all,!0.0.%04x,!0.0.%04x",
ipl_info.data.fcp.dev_id.devno, console_devno);
else
sprintf(str, " cio_ignore=all,!0.0.%04x",
ipl_info.data.fcp.dev_id.devno);
strcat(boot_command_line, str);
console_loglevel = 2;
}
#else
static inline void setup_zfcpdump(unsigned int console_devno) {}
#endif /* CONFIG_ZFCPDUMP */
/*
* Reboot, halt and power_off stubs. They just call _machine_restart,
* _machine_halt or _machine_power_off.
*/
void machine_restart(char *command)
{
if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_restart(command);
}
void machine_halt(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_halt();
}
void machine_power_off(void)
{
if (!in_interrupt() || oops_in_progress)
/*
* Only unblank the console if we are called in enabled
* context or a bust_spinlocks cleared the way for us.
*/
console_unblank();
_machine_power_off();
}
/*
* Dummy power off function.
*/
void (*pm_power_off)(void) = machine_power_off;
static int __init early_parse_mem(char *p)
{
memory_end = memparse(p, &p);
memory_end_set = 1;
return 0;
}
early_param("mem", early_parse_mem);
static int __init parse_vmalloc(char *arg)
{
if (!arg)
return -EINVAL;
VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
return 0;
}
early_param("vmalloc", parse_vmalloc);
unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
EXPORT_SYMBOL_GPL(s390_user_mode);
static void __init set_user_mode_primary(void)
{
psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
#ifdef CONFIG_COMPAT
psw32_user_bits =
(psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
#endif
uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
}
static int __init early_parse_user_mode(char *p)
{
if (p && strcmp(p, "primary") == 0)
s390_user_mode = PRIMARY_SPACE_MODE;
else if (!p || strcmp(p, "home") == 0)
s390_user_mode = HOME_SPACE_MODE;
else
return 1;
return 0;
}
early_param("user_mode", early_parse_user_mode);
static void __init setup_addressing_mode(void)
{
if (s390_user_mode != PRIMARY_SPACE_MODE)
return;
set_user_mode_primary();
if (MACHINE_HAS_MVCOS)
pr_info("Address spaces switched, mvcos available\n");
else
pr_info("Address spaces switched, mvcos not available\n");
}
void *restart_stack __attribute__((__section__(".data")));
static void __init setup_lowcore(void)
{
struct _lowcore *lc;
/*
* Setup lowcore for boot cpu
*/
BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
lc->restart_psw.mask = psw_kernel_bits;
lc->restart_psw.addr =
PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
lc->external_new_psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_MCHECK;
lc->external_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
lc->svc_new_psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
lc->program_new_psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_MCHECK;
lc->program_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
lc->mcck_new_psw.mask = psw_kernel_bits;
lc->mcck_new_psw.addr =
PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
lc->io_new_psw.mask = psw_kernel_bits |
PSW_MASK_DAT | PSW_MASK_MCHECK;
lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
lc->clock_comparator = -1ULL;
lc->kernel_stack = ((unsigned long) &init_thread_union) + THREAD_SIZE;
lc->async_stack = (unsigned long)
__alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0) + ASYNC_SIZE;
lc->panic_stack = (unsigned long)
__alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0) + PAGE_SIZE;
lc->current_task = (unsigned long) init_thread_union.thread_info.task;
lc->thread_info = (unsigned long) &init_thread_union;
lc->machine_flags = S390_lowcore.machine_flags;
lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
MAX_FACILITY_BIT/8);
#ifndef CONFIG_64BIT
if (MACHINE_HAS_IEEE) {
lc->extended_save_area_addr = (__u32)
__alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
/* enable extended save area */
__ctl_set_bit(14, 29);
}
#else
lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
#endif
lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
lc->async_enter_timer = S390_lowcore.async_enter_timer;
lc->exit_timer = S390_lowcore.exit_timer;
lc->user_timer = S390_lowcore.user_timer;
lc->system_timer = S390_lowcore.system_timer;
lc->steal_timer = S390_lowcore.steal_timer;
lc->last_update_timer = S390_lowcore.last_update_timer;
lc->last_update_clock = S390_lowcore.last_update_clock;
lc->ftrace_func = S390_lowcore.ftrace_func;
restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
restart_stack += ASYNC_SIZE;
/*
* Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
* restart data to the absolute zero lowcore. This is necesary if
* PSW restart is done on an offline CPU that has lowcore zero.
*/
lc->restart_stack = (unsigned long) restart_stack;
lc->restart_fn = (unsigned long) do_restart;
lc->restart_data = 0;
lc->restart_source = -1UL;
/* Setup absolute zero lowcore */
mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
set_prefix((u32)(unsigned long) lc);
lowcore_ptr[0] = lc;
}
static struct resource code_resource = {
.name = "Kernel code",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource data_resource = {
.name = "Kernel data",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource bss_resource = {
.name = "Kernel bss",
.flags = IORESOURCE_BUSY | IORESOURCE_MEM,
};
static struct resource __initdata *standard_resources[] = {
&code_resource,
&data_resource,
&bss_resource,
};
static void __init setup_resources(void)
{
struct resource *res, *std_res, *sub_res;
int i, j;
code_resource.start = (unsigned long) &_text;
code_resource.end = (unsigned long) &_etext - 1;
data_resource.start = (unsigned long) &_etext;
data_resource.end = (unsigned long) &_edata - 1;
bss_resource.start = (unsigned long) &__bss_start;
bss_resource.end = (unsigned long) &__bss_stop - 1;
for (i = 0; i < MEMORY_CHUNKS; i++) {
if (!memory_chunk[i].size)
continue;
if (memory_chunk[i].type == CHUNK_OLDMEM ||
memory_chunk[i].type == CHUNK_CRASHK)
continue;
res = alloc_bootmem_low(sizeof(*res));
res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
switch (memory_chunk[i].type) {
case CHUNK_READ_WRITE:
case CHUNK_CRASHK:
res->name = "System RAM";
break;
case CHUNK_READ_ONLY:
res->name = "System ROM";
res->flags |= IORESOURCE_READONLY;
break;
default:
res->name = "reserved";
}
res->start = memory_chunk[i].addr;
res->end = res->start + memory_chunk[i].size - 1;
request_resource(&iomem_resource, res);
for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
std_res = standard_resources[j];
if (std_res->start < res->start ||
std_res->start > res->end)
continue;
if (std_res->end > res->end) {
sub_res = alloc_bootmem_low(sizeof(*sub_res));
*sub_res = *std_res;
sub_res->end = res->end;
std_res->start = res->end + 1;
request_resource(res, sub_res);
} else {
request_resource(res, std_res);
}
}
}
}
unsigned long real_memory_size;
EXPORT_SYMBOL_GPL(real_memory_size);
static void __init setup_memory_end(void)
{
unsigned long vmax, vmalloc_size, tmp;
int i;
#ifdef CONFIG_ZFCPDUMP
if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
memory_end = ZFCPDUMP_HSA_SIZE;
memory_end_set = 1;
}
#endif
real_memory_size = 0;
memory_end &= PAGE_MASK;
/*
* Make sure all chunks are MAX_ORDER aligned so we don't need the
* extra checks that HOLES_IN_ZONE would require.
*/
for (i = 0; i < MEMORY_CHUNKS; i++) {
unsigned long start, end;
struct mem_chunk *chunk;
unsigned long align;
chunk = &memory_chunk[i];
align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
start = (chunk->addr + align - 1) & ~(align - 1);
end = (chunk->addr + chunk->size) & ~(align - 1);
if (start >= end)
memset(chunk, 0, sizeof(*chunk));
else {
chunk->addr = start;
chunk->size = end - start;
}
real_memory_size = max(real_memory_size,
chunk->addr + chunk->size);
}
/* Choose kernel address space layout: 2, 3, or 4 levels. */
#ifdef CONFIG_64BIT
vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
if (tmp <= (1UL << 42))
vmax = 1UL << 42; /* 3-level kernel page table */
else
vmax = 1UL << 53; /* 4-level kernel page table */
/* module area is at the end of the kernel address space. */
MODULES_END = vmax;
MODULES_VADDR = MODULES_END - MODULES_LEN;
VMALLOC_END = MODULES_VADDR;
#else
vmalloc_size = VMALLOC_END ?: 96UL << 20;
vmax = 1UL << 31; /* 2-level kernel page table */
/* vmalloc area is at the end of the kernel address space. */
VMALLOC_END = vmax;
#endif
VMALLOC_START = vmax - vmalloc_size;
/* Split remaining virtual space between 1:1 mapping & vmemmap array */
tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
tmp = VMALLOC_START - tmp * sizeof(struct page);
tmp &= ~((vmax >> 11) - 1); /* align to page table level */
tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
vmemmap = (struct page *) tmp;
/* Take care that memory_end is set and <= vmemmap */
memory_end = min(memory_end ?: real_memory_size, tmp);
/* Fixup memory chunk array to fit into 0..memory_end */
for (i = 0; i < MEMORY_CHUNKS; i++) {
struct mem_chunk *chunk = &memory_chunk[i];
if (chunk->addr >= memory_end) {
memset(chunk, 0, sizeof(*chunk));
continue;
}
if (chunk->addr + chunk->size > memory_end)
chunk->size = memory_end - chunk->addr;
}
}
static void __init setup_vmcoreinfo(void)
{
mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
}
#ifdef CONFIG_CRASH_DUMP
/*
* Find suitable location for crashkernel memory
*/
static unsigned long __init find_crash_base(unsigned long crash_size,
char **msg)
{
unsigned long crash_base;
struct mem_chunk *chunk;
int i;
if (memory_chunk[0].size < crash_size) {
*msg = "first memory chunk must be at least crashkernel size";
return 0;
}
if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
return OLDMEM_BASE;
for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
chunk = &memory_chunk[i];
if (chunk->size == 0)
continue;
if (chunk->type != CHUNK_READ_WRITE)
continue;
if (chunk->size < crash_size)
continue;
crash_base = (chunk->addr + chunk->size) - crash_size;
if (crash_base < crash_size)
continue;
if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
continue;
if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
continue;
return crash_base;
}
*msg = "no suitable area found";
return 0;
}
/*
* Check if crash_base and crash_size is valid
*/
static int __init verify_crash_base(unsigned long crash_base,
unsigned long crash_size,
char **msg)
{
struct mem_chunk *chunk;
int i;
/*
* Because we do the swap to zero, we must have at least 'crash_size'
* bytes free space before crash_base
*/
if (crash_size > crash_base) {
*msg = "crashkernel offset must be greater than size";
return -EINVAL;
}
/* First memory chunk must be at least crash_size */
if (memory_chunk[0].size < crash_size) {
*msg = "first memory chunk must be at least crashkernel size";
return -EINVAL;
}
/* Check if we fit into the respective memory chunk */
for (i = 0; i < MEMORY_CHUNKS; i++) {
chunk = &memory_chunk[i];
if (chunk->size == 0)
continue;
if (crash_base < chunk->addr)
continue;
if (crash_base >= chunk->addr + chunk->size)
continue;
/* we have found the memory chunk */
if (crash_base + crash_size > chunk->addr + chunk->size) {
*msg = "selected memory chunk is too small for "
"crashkernel memory";
return -EINVAL;
}
return 0;
}
*msg = "invalid memory range specified";
return -EINVAL;
}
/*
* Reserve kdump memory by creating a memory hole in the mem_chunk array
*/
static void __init reserve_kdump_bootmem(unsigned long addr, unsigned long size,
int type)
{
create_mem_hole(memory_chunk, addr, size, type);
}
/*
* When kdump is enabled, we have to ensure that no memory from
* the area [0 - crashkernel memory size] and
* [crashk_res.start - crashk_res.end] is set offline.
*/
static int kdump_mem_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct memory_notify *arg = data;
if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
return NOTIFY_BAD;
if (arg->start_pfn > PFN_DOWN(crashk_res.end))
return NOTIFY_OK;
if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
return NOTIFY_OK;
return NOTIFY_BAD;
}
static struct notifier_block kdump_mem_nb = {
.notifier_call = kdump_mem_notifier,
};
#endif
/*
* Make sure that oldmem, where the dump is stored, is protected
*/
static void reserve_oldmem(void)
{
#ifdef CONFIG_CRASH_DUMP
if (!OLDMEM_BASE)
return;
reserve_kdump_bootmem(OLDMEM_BASE, OLDMEM_SIZE, CHUNK_OLDMEM);
reserve_kdump_bootmem(OLDMEM_SIZE, memory_end - OLDMEM_SIZE,
CHUNK_OLDMEM);
if (OLDMEM_BASE + OLDMEM_SIZE == real_memory_size)
saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
else
saved_max_pfn = PFN_DOWN(real_memory_size) - 1;
#endif
}
/*
* Reserve memory for kdump kernel to be loaded with kexec
*/
static void __init reserve_crashkernel(void)
{
#ifdef CONFIG_CRASH_DUMP
unsigned long long crash_base, crash_size;
char *msg = NULL;
int rc;
rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
&crash_base);
if (rc || crash_size == 0)
return;
crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
if (register_memory_notifier(&kdump_mem_nb))
return;
if (!crash_base)
crash_base = find_crash_base(crash_size, &msg);
if (!crash_base) {
pr_info("crashkernel reservation failed: %s\n", msg);
unregister_memory_notifier(&kdump_mem_nb);
return;
}
if (verify_crash_base(crash_base, crash_size, &msg)) {
pr_info("crashkernel reservation failed: %s\n", msg);
unregister_memory_notifier(&kdump_mem_nb);
return;
}
if (!OLDMEM_BASE && MACHINE_IS_VM)
diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
crashk_res.start = crash_base;
crashk_res.end = crash_base + crash_size - 1;
insert_resource(&iomem_resource, &crashk_res);
reserve_kdump_bootmem(crash_base, crash_size, CHUNK_CRASHK);
pr_info("Reserving %lluMB of memory at %lluMB "
"for crashkernel (System RAM: %luMB)\n",
crash_size >> 20, crash_base >> 20, memory_end >> 20);
os_info_crashkernel_add(crash_base, crash_size);
#endif
}
static void __init init_storage_keys(unsigned long start, unsigned long end)
{
unsigned long boundary, function, size;
while (start < end) {
if (MACHINE_HAS_EDAT2) {
/* set storage keys for a 2GB frame */
function = 0x22000 | PAGE_DEFAULT_KEY;
size = 1UL << 31;
boundary = (start + size) & ~(size - 1);
if (boundary <= end) {
do {
start = pfmf(function, start);
} while (start < boundary);
continue;
}
}
if (MACHINE_HAS_EDAT1) {
/* set storage keys for a 1MB frame */
function = 0x21000 | PAGE_DEFAULT_KEY;
size = 1UL << 20;
boundary = (start + size) & ~(size - 1);
if (boundary <= end) {
do {
start = pfmf(function, start);
} while (start < boundary);
continue;
}
}
page_set_storage_key(start, PAGE_DEFAULT_KEY, 0);
start += PAGE_SIZE;
}
}
static void __init setup_memory(void)
{
unsigned long bootmap_size;
unsigned long start_pfn, end_pfn;
int i;
/*
* partially used pages are not usable - thus
* we are rounding upwards:
*/
start_pfn = PFN_UP(__pa(&_end));
end_pfn = max_pfn = PFN_DOWN(memory_end);
#ifdef CONFIG_BLK_DEV_INITRD
/*
* Move the initrd in case the bitmap of the bootmem allocater
* would overwrite it.
*/
if (INITRD_START && INITRD_SIZE) {
unsigned long bmap_size;
unsigned long start;
bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
bmap_size = PFN_PHYS(bmap_size);
if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
#ifdef CONFIG_CRASH_DUMP
if (OLDMEM_BASE) {
/* Move initrd behind kdump oldmem */
if (start + INITRD_SIZE > OLDMEM_BASE &&
start < OLDMEM_BASE + OLDMEM_SIZE)
start = OLDMEM_BASE + OLDMEM_SIZE;
}
#endif
if (start + INITRD_SIZE > memory_end) {
pr_err("initrd extends beyond end of "
"memory (0x%08lx > 0x%08lx) "
"disabling initrd\n",
start + INITRD_SIZE, memory_end);
INITRD_START = INITRD_SIZE = 0;
} else {
pr_info("Moving initrd (0x%08lx -> "
"0x%08lx, size: %ld)\n",
INITRD_START, start, INITRD_SIZE);
memmove((void *) start, (void *) INITRD_START,
INITRD_SIZE);
INITRD_START = start;
}
}
}
#endif
/*
* Initialize the boot-time allocator
*/
bootmap_size = init_bootmem(start_pfn, end_pfn);
/*
* Register RAM areas with the bootmem allocator.
*/
for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
unsigned long start_chunk, end_chunk, pfn;
if (memory_chunk[i].type != CHUNK_READ_WRITE &&
memory_chunk[i].type != CHUNK_CRASHK)
continue;
start_chunk = PFN_DOWN(memory_chunk[i].addr);
end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
end_chunk = min(end_chunk, end_pfn);
if (start_chunk >= end_chunk)
continue;
memblock_add_node(PFN_PHYS(start_chunk),
PFN_PHYS(end_chunk - start_chunk), 0);
pfn = max(start_chunk, start_pfn);
init_storage_keys(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
}
psw_set_key(PAGE_DEFAULT_KEY);
free_bootmem_with_active_regions(0, max_pfn);
/*
* Reserve memory used for lowcore/command line/kernel image.
*/
reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
reserve_bootmem((unsigned long)_stext,
PFN_PHYS(start_pfn) - (unsigned long)_stext,
BOOTMEM_DEFAULT);
/*
* Reserve the bootmem bitmap itself as well. We do this in two
* steps (first step was init_bootmem()) because this catches
* the (very unlikely) case of us accidentally initializing the
* bootmem allocator with an invalid RAM area.
*/
reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
BOOTMEM_DEFAULT);
#ifdef CONFIG_CRASH_DUMP
if (crashk_res.start)
reserve_bootmem(crashk_res.start,
crashk_res.end - crashk_res.start + 1,
BOOTMEM_DEFAULT);
if (is_kdump_kernel())
reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
#endif
#ifdef CONFIG_BLK_DEV_INITRD
if (INITRD_START && INITRD_SIZE) {
if (INITRD_START + INITRD_SIZE <= memory_end) {
reserve_bootmem(INITRD_START, INITRD_SIZE,
BOOTMEM_DEFAULT);
initrd_start = INITRD_START;
initrd_end = initrd_start + INITRD_SIZE;
} else {
pr_err("initrd extends beyond end of "
"memory (0x%08lx > 0x%08lx) "
"disabling initrd\n",
initrd_start + INITRD_SIZE, memory_end);
initrd_start = initrd_end = 0;
}
}
#endif
}
/*
* Setup hardware capabilities.
*/
static void __init setup_hwcaps(void)
{
static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
struct cpuid cpu_id;
int i;
/*
* The store facility list bits numbers as found in the principles
* of operation are numbered with bit 1UL<<31 as number 0 to
* bit 1UL<<0 as number 31.
* Bit 0: instructions named N3, "backported" to esa-mode
* Bit 2: z/Architecture mode is active
* Bit 7: the store-facility-list-extended facility is installed
* Bit 17: the message-security assist is installed
* Bit 19: the long-displacement facility is installed
* Bit 21: the extended-immediate facility is installed
* Bit 22: extended-translation facility 3 is installed
* Bit 30: extended-translation facility 3 enhancement facility
* These get translated to:
* HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
* HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
* HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
* HWCAP_S390_ETF3EH bit 8 (22 && 30).
*/
for (i = 0; i < 6; i++)
if (test_facility(stfl_bits[i]))
elf_hwcap |= 1UL << i;
if (test_facility(22) && test_facility(30))
elf_hwcap |= HWCAP_S390_ETF3EH;
/*
* Check for additional facilities with store-facility-list-extended.
* stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
* and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
* as stored by stfl, bits 32-xxx contain additional facilities.
* How many facility words are stored depends on the number of
* doublewords passed to the instruction. The additional facilities
* are:
* Bit 42: decimal floating point facility is installed
* Bit 44: perform floating point operation facility is installed
* translated to:
* HWCAP_S390_DFP bit 6 (42 && 44).
*/
if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
elf_hwcap |= HWCAP_S390_DFP;
/*
* Huge page support HWCAP_S390_HPAGE is bit 7.
*/
if (MACHINE_HAS_HPAGE)
elf_hwcap |= HWCAP_S390_HPAGE;
#if defined(CONFIG_64BIT)
/*
* 64-bit register support for 31-bit processes
* HWCAP_S390_HIGH_GPRS is bit 9.
*/
elf_hwcap |= HWCAP_S390_HIGH_GPRS;
/*
* Transactional execution support HWCAP_S390_TE is bit 10.
*/
if (test_facility(50) && test_facility(73))
elf_hwcap |= HWCAP_S390_TE;
#endif
get_cpu_id(&cpu_id);
switch (cpu_id.machine) {
case 0x9672:
#if !defined(CONFIG_64BIT)
default: /* Use "g5" as default for 31 bit kernels. */
#endif
strcpy(elf_platform, "g5");
break;
case 0x2064:
case 0x2066:
#if defined(CONFIG_64BIT)
default: /* Use "z900" as default for 64 bit kernels. */
#endif
strcpy(elf_platform, "z900");
break;
case 0x2084:
case 0x2086:
strcpy(elf_platform, "z990");
break;
case 0x2094:
case 0x2096:
strcpy(elf_platform, "z9-109");
break;
case 0x2097:
case 0x2098:
strcpy(elf_platform, "z10");
break;
case 0x2817:
case 0x2818:
strcpy(elf_platform, "z196");
break;
}
}
/*
* Setup function called from init/main.c just after the banner
* was printed.
*/
void __init setup_arch(char **cmdline_p)
{
/*
* print what head.S has found out about the machine
*/
#ifndef CONFIG_64BIT
if (MACHINE_IS_VM)
pr_info("Linux is running as a z/VM "
"guest operating system in 31-bit mode\n");
else if (MACHINE_IS_LPAR)
pr_info("Linux is running natively in 31-bit mode\n");
if (MACHINE_HAS_IEEE)
pr_info("The hardware system has IEEE compatible "
"floating point units\n");
else
pr_info("The hardware system has no IEEE compatible "
"floating point units\n");
#else /* CONFIG_64BIT */
if (MACHINE_IS_VM)
pr_info("Linux is running as a z/VM "
"guest operating system in 64-bit mode\n");
else if (MACHINE_IS_KVM)
pr_info("Linux is running under KVM in 64-bit mode\n");
else if (MACHINE_IS_LPAR)
pr_info("Linux is running natively in 64-bit mode\n");
#endif /* CONFIG_64BIT */
/* Have one command line that is parsed and saved in /proc/cmdline */
/* boot_command_line has been already set up in early.c */
*cmdline_p = boot_command_line;
ROOT_DEV = Root_RAM0;
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) &_etext;
init_mm.end_data = (unsigned long) &_edata;
init_mm.brk = (unsigned long) &_end;
if (MACHINE_HAS_MVCOS)
memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
else
memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
parse_early_param();
os_info_init();
setup_ipl();
setup_memory_end();
setup_addressing_mode();
reserve_oldmem();
reserve_crashkernel();
setup_memory();
setup_resources();
setup_vmcoreinfo();
setup_lowcore();
cpu_init();
s390_init_cpu_topology();
/*
* Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
*/
setup_hwcaps();
/*
* Create kernel page tables and switch to virtual addressing.
*/
paging_init();
/* Setup default console */
conmode_default();
set_preferred_console();
/* Setup zfcpdump support */
setup_zfcpdump(console_devno);
}