mirror of https://gitee.com/openkylin/linux.git
3555 lines
94 KiB
C
3555 lines
94 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
|
|
*
|
|
* This driver supports the memory controllers found on the Intel
|
|
* processor family Sandy Bridge.
|
|
*
|
|
* Copyright (c) 2011 by:
|
|
* Mauro Carvalho Chehab
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/pci_ids.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/edac.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/intel-family.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/mce.h>
|
|
|
|
#include "edac_module.h"
|
|
|
|
/* Static vars */
|
|
static LIST_HEAD(sbridge_edac_list);
|
|
|
|
/*
|
|
* Alter this version for the module when modifications are made
|
|
*/
|
|
#define SBRIDGE_REVISION " Ver: 1.1.2 "
|
|
#define EDAC_MOD_STR "sb_edac"
|
|
|
|
/*
|
|
* Debug macros
|
|
*/
|
|
#define sbridge_printk(level, fmt, arg...) \
|
|
edac_printk(level, "sbridge", fmt, ##arg)
|
|
|
|
#define sbridge_mc_printk(mci, level, fmt, arg...) \
|
|
edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
|
|
|
|
/*
|
|
* Get a bit field at register value <v>, from bit <lo> to bit <hi>
|
|
*/
|
|
#define GET_BITFIELD(v, lo, hi) \
|
|
(((v) & GENMASK_ULL(hi, lo)) >> (lo))
|
|
|
|
/* Devices 12 Function 6, Offsets 0x80 to 0xcc */
|
|
static const u32 sbridge_dram_rule[] = {
|
|
0x80, 0x88, 0x90, 0x98, 0xa0,
|
|
0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
|
|
};
|
|
|
|
static const u32 ibridge_dram_rule[] = {
|
|
0x60, 0x68, 0x70, 0x78, 0x80,
|
|
0x88, 0x90, 0x98, 0xa0, 0xa8,
|
|
0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
|
|
0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
|
|
};
|
|
|
|
static const u32 knl_dram_rule[] = {
|
|
0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
|
|
0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
|
|
0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
|
|
0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
|
|
0x100, 0x108, 0x110, 0x118, /* 20-23 */
|
|
};
|
|
|
|
#define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
|
|
#define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
|
|
|
|
static char *show_dram_attr(u32 attr)
|
|
{
|
|
switch (attr) {
|
|
case 0:
|
|
return "DRAM";
|
|
case 1:
|
|
return "MMCFG";
|
|
case 2:
|
|
return "NXM";
|
|
default:
|
|
return "unknown";
|
|
}
|
|
}
|
|
|
|
static const u32 sbridge_interleave_list[] = {
|
|
0x84, 0x8c, 0x94, 0x9c, 0xa4,
|
|
0xac, 0xb4, 0xbc, 0xc4, 0xcc,
|
|
};
|
|
|
|
static const u32 ibridge_interleave_list[] = {
|
|
0x64, 0x6c, 0x74, 0x7c, 0x84,
|
|
0x8c, 0x94, 0x9c, 0xa4, 0xac,
|
|
0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
|
|
0xdc, 0xe4, 0xec, 0xf4, 0xfc,
|
|
};
|
|
|
|
static const u32 knl_interleave_list[] = {
|
|
0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
|
|
0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
|
|
0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
|
|
0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
|
|
0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
|
|
};
|
|
#define MAX_INTERLEAVE \
|
|
(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
|
|
max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
|
|
ARRAY_SIZE(knl_interleave_list))))
|
|
|
|
struct interleave_pkg {
|
|
unsigned char start;
|
|
unsigned char end;
|
|
};
|
|
|
|
static const struct interleave_pkg sbridge_interleave_pkg[] = {
|
|
{ 0, 2 },
|
|
{ 3, 5 },
|
|
{ 8, 10 },
|
|
{ 11, 13 },
|
|
{ 16, 18 },
|
|
{ 19, 21 },
|
|
{ 24, 26 },
|
|
{ 27, 29 },
|
|
};
|
|
|
|
static const struct interleave_pkg ibridge_interleave_pkg[] = {
|
|
{ 0, 3 },
|
|
{ 4, 7 },
|
|
{ 8, 11 },
|
|
{ 12, 15 },
|
|
{ 16, 19 },
|
|
{ 20, 23 },
|
|
{ 24, 27 },
|
|
{ 28, 31 },
|
|
};
|
|
|
|
static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
|
|
int interleave)
|
|
{
|
|
return GET_BITFIELD(reg, table[interleave].start,
|
|
table[interleave].end);
|
|
}
|
|
|
|
/* Devices 12 Function 7 */
|
|
|
|
#define TOLM 0x80
|
|
#define TOHM 0x84
|
|
#define HASWELL_TOLM 0xd0
|
|
#define HASWELL_TOHM_0 0xd4
|
|
#define HASWELL_TOHM_1 0xd8
|
|
#define KNL_TOLM 0xd0
|
|
#define KNL_TOHM_0 0xd4
|
|
#define KNL_TOHM_1 0xd8
|
|
|
|
#define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
|
|
#define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
|
|
|
|
/* Device 13 Function 6 */
|
|
|
|
#define SAD_TARGET 0xf0
|
|
|
|
#define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
|
|
|
|
#define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
|
|
|
|
#define SAD_CONTROL 0xf4
|
|
|
|
/* Device 14 function 0 */
|
|
|
|
static const u32 tad_dram_rule[] = {
|
|
0x40, 0x44, 0x48, 0x4c,
|
|
0x50, 0x54, 0x58, 0x5c,
|
|
0x60, 0x64, 0x68, 0x6c,
|
|
};
|
|
#define MAX_TAD ARRAY_SIZE(tad_dram_rule)
|
|
|
|
#define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
|
|
#define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
|
|
#define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
|
|
#define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
|
|
#define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
|
|
#define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
|
|
#define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
|
|
|
|
/* Device 15, function 0 */
|
|
|
|
#define MCMTR 0x7c
|
|
#define KNL_MCMTR 0x624
|
|
|
|
#define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
|
|
#define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
|
|
#define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
|
|
|
|
/* Device 15, function 1 */
|
|
|
|
#define RASENABLES 0xac
|
|
#define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
|
|
|
|
/* Device 15, functions 2-5 */
|
|
|
|
static const int mtr_regs[] = {
|
|
0x80, 0x84, 0x88,
|
|
};
|
|
|
|
static const int knl_mtr_reg = 0xb60;
|
|
|
|
#define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
|
|
#define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
|
|
#define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
|
|
#define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
|
|
#define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
|
|
|
|
static const u32 tad_ch_nilv_offset[] = {
|
|
0x90, 0x94, 0x98, 0x9c,
|
|
0xa0, 0xa4, 0xa8, 0xac,
|
|
0xb0, 0xb4, 0xb8, 0xbc,
|
|
};
|
|
#define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
|
|
#define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
|
|
|
|
static const u32 rir_way_limit[] = {
|
|
0x108, 0x10c, 0x110, 0x114, 0x118,
|
|
};
|
|
#define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
|
|
|
|
#define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
|
|
#define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
|
|
|
|
#define MAX_RIR_WAY 8
|
|
|
|
static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
|
|
{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
|
|
{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
|
|
{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
|
|
{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
|
|
{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
|
|
};
|
|
|
|
#define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
|
|
GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
|
|
|
|
#define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
|
|
GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
|
|
|
|
/* Device 16, functions 2-7 */
|
|
|
|
/*
|
|
* FIXME: Implement the error count reads directly
|
|
*/
|
|
|
|
#define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
|
|
#define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
|
|
#define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
|
|
#define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
|
|
|
|
#if 0 /* Currently unused*/
|
|
static const u32 correrrcnt[] = {
|
|
0x104, 0x108, 0x10c, 0x110,
|
|
};
|
|
|
|
static const u32 correrrthrsld[] = {
|
|
0x11c, 0x120, 0x124, 0x128,
|
|
};
|
|
#endif
|
|
|
|
#define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
|
|
#define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
|
|
|
|
|
|
/* Device 17, function 0 */
|
|
|
|
#define SB_RANK_CFG_A 0x0328
|
|
|
|
#define IB_RANK_CFG_A 0x0320
|
|
|
|
/*
|
|
* sbridge structs
|
|
*/
|
|
|
|
#define NUM_CHANNELS 6 /* Max channels per MC */
|
|
#define MAX_DIMMS 3 /* Max DIMMS per channel */
|
|
#define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
|
|
#define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
|
|
#define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
|
|
#define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
|
|
|
|
enum type {
|
|
SANDY_BRIDGE,
|
|
IVY_BRIDGE,
|
|
HASWELL,
|
|
BROADWELL,
|
|
KNIGHTS_LANDING,
|
|
};
|
|
|
|
enum domain {
|
|
IMC0 = 0,
|
|
IMC1,
|
|
SOCK,
|
|
};
|
|
|
|
enum mirroring_mode {
|
|
NON_MIRRORING,
|
|
ADDR_RANGE_MIRRORING,
|
|
FULL_MIRRORING,
|
|
};
|
|
|
|
struct sbridge_pvt;
|
|
struct sbridge_info {
|
|
enum type type;
|
|
u32 mcmtr;
|
|
u32 rankcfgr;
|
|
u64 (*get_tolm)(struct sbridge_pvt *pvt);
|
|
u64 (*get_tohm)(struct sbridge_pvt *pvt);
|
|
u64 (*rir_limit)(u32 reg);
|
|
u64 (*sad_limit)(u32 reg);
|
|
u32 (*interleave_mode)(u32 reg);
|
|
u32 (*dram_attr)(u32 reg);
|
|
const u32 *dram_rule;
|
|
const u32 *interleave_list;
|
|
const struct interleave_pkg *interleave_pkg;
|
|
u8 max_sad;
|
|
u8 (*get_node_id)(struct sbridge_pvt *pvt);
|
|
u8 (*get_ha)(u8 bank);
|
|
enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
|
|
enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
|
|
struct pci_dev *pci_vtd;
|
|
};
|
|
|
|
struct sbridge_channel {
|
|
u32 ranks;
|
|
u32 dimms;
|
|
};
|
|
|
|
struct pci_id_descr {
|
|
int dev_id;
|
|
int optional;
|
|
enum domain dom;
|
|
};
|
|
|
|
struct pci_id_table {
|
|
const struct pci_id_descr *descr;
|
|
int n_devs_per_imc;
|
|
int n_devs_per_sock;
|
|
int n_imcs_per_sock;
|
|
enum type type;
|
|
};
|
|
|
|
struct sbridge_dev {
|
|
struct list_head list;
|
|
int seg;
|
|
u8 bus, mc;
|
|
u8 node_id, source_id;
|
|
struct pci_dev **pdev;
|
|
enum domain dom;
|
|
int n_devs;
|
|
int i_devs;
|
|
struct mem_ctl_info *mci;
|
|
};
|
|
|
|
struct knl_pvt {
|
|
struct pci_dev *pci_cha[KNL_MAX_CHAS];
|
|
struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
|
|
struct pci_dev *pci_mc0;
|
|
struct pci_dev *pci_mc1;
|
|
struct pci_dev *pci_mc0_misc;
|
|
struct pci_dev *pci_mc1_misc;
|
|
struct pci_dev *pci_mc_info; /* tolm, tohm */
|
|
};
|
|
|
|
struct sbridge_pvt {
|
|
/* Devices per socket */
|
|
struct pci_dev *pci_ddrio;
|
|
struct pci_dev *pci_sad0, *pci_sad1;
|
|
struct pci_dev *pci_br0, *pci_br1;
|
|
/* Devices per memory controller */
|
|
struct pci_dev *pci_ha, *pci_ta, *pci_ras;
|
|
struct pci_dev *pci_tad[NUM_CHANNELS];
|
|
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
struct sbridge_info info;
|
|
struct sbridge_channel channel[NUM_CHANNELS];
|
|
|
|
/* Memory type detection */
|
|
bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
|
|
bool is_chan_hash;
|
|
enum mirroring_mode mirror_mode;
|
|
|
|
/* Memory description */
|
|
u64 tolm, tohm;
|
|
struct knl_pvt knl;
|
|
};
|
|
|
|
#define PCI_DESCR(device_id, opt, domain) \
|
|
.dev_id = (device_id), \
|
|
.optional = opt, \
|
|
.dom = domain
|
|
|
|
static const struct pci_id_descr pci_dev_descr_sbridge[] = {
|
|
/* Processor Home Agent */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
|
|
|
|
/* Memory controller */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
|
|
|
|
/* System Address Decoder */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
|
|
|
|
/* Broadcast Registers */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
|
|
};
|
|
|
|
#define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
|
|
.descr = A, \
|
|
.n_devs_per_imc = N, \
|
|
.n_devs_per_sock = ARRAY_SIZE(A), \
|
|
.n_imcs_per_sock = M, \
|
|
.type = T \
|
|
}
|
|
|
|
static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
/* This changes depending if 1HA or 2HA:
|
|
* 1HA:
|
|
* 0x0eb8 (17.0) is DDRIO0
|
|
* 2HA:
|
|
* 0x0ebc (17.4) is DDRIO0
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
|
|
|
|
/* pci ids */
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
|
|
#define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
|
|
|
|
static const struct pci_id_descr pci_dev_descr_ibridge[] = {
|
|
/* Processor Home Agent */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
|
|
|
|
/* Memory controller */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
|
|
|
|
/* Optional, mode 2HA */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
|
|
|
|
/* System Address Decoder */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
|
|
|
|
/* Broadcast Registers */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
|
|
|
|
};
|
|
|
|
static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
/* Haswell support */
|
|
/* EN processor:
|
|
* - 1 IMC
|
|
* - 3 DDR3 channels, 2 DPC per channel
|
|
* EP processor:
|
|
* - 1 or 2 IMC
|
|
* - 4 DDR4 channels, 3 DPC per channel
|
|
* EP 4S processor:
|
|
* - 2 IMC
|
|
* - 4 DDR4 channels, 3 DPC per channel
|
|
* EX processor:
|
|
* - 2 IMC
|
|
* - each IMC interfaces with a SMI 2 channel
|
|
* - each SMI channel interfaces with a scalable memory buffer
|
|
* - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
|
|
*/
|
|
#define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
|
|
#define HASWELL_HASYSDEFEATURE2 0x84
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
|
|
#define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
|
|
static const struct pci_id_descr pci_dev_descr_haswell[] = {
|
|
/* first item must be the HA */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
|
|
};
|
|
|
|
static const struct pci_id_table pci_dev_descr_haswell_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
/* Knight's Landing Support */
|
|
/*
|
|
* KNL's memory channels are swizzled between memory controllers.
|
|
* MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
|
|
*/
|
|
#define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
|
|
|
|
/* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
|
|
/* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
|
|
/* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
|
|
/* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
|
|
/* SAD target - 1-29-1 (1 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
|
|
/* Caching / Home Agent */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
|
|
/* Device with TOLM and TOHM, 0-5-0 (1 of these) */
|
|
#define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
|
|
|
|
/*
|
|
* KNL differs from SB, IB, and Haswell in that it has multiple
|
|
* instances of the same device with the same device ID, so we handle that
|
|
* by creating as many copies in the table as we expect to find.
|
|
* (Like device ID must be grouped together.)
|
|
*/
|
|
|
|
static const struct pci_id_descr pci_dev_descr_knl[] = {
|
|
[0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
|
|
[2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
|
|
[8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
|
|
[9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
|
|
[10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
|
|
[11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
|
|
[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
|
|
};
|
|
|
|
static const struct pci_id_table pci_dev_descr_knl_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
|
|
{0,}
|
|
};
|
|
|
|
/*
|
|
* Broadwell support
|
|
*
|
|
* DE processor:
|
|
* - 1 IMC
|
|
* - 2 DDR3 channels, 2 DPC per channel
|
|
* EP processor:
|
|
* - 1 or 2 IMC
|
|
* - 4 DDR4 channels, 3 DPC per channel
|
|
* EP 4S processor:
|
|
* - 2 IMC
|
|
* - 4 DDR4 channels, 3 DPC per channel
|
|
* EX processor:
|
|
* - 2 IMC
|
|
* - each IMC interfaces with a SMI 2 channel
|
|
* - each SMI channel interfaces with a scalable memory buffer
|
|
* - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
|
|
*/
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
|
|
#define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
|
|
|
|
static const struct pci_id_descr pci_dev_descr_broadwell[] = {
|
|
/* first item must be the HA */
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
|
|
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
|
|
{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
|
|
};
|
|
|
|
static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
|
|
PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
|
|
{0,} /* 0 terminated list. */
|
|
};
|
|
|
|
|
|
/****************************************************************************
|
|
Ancillary status routines
|
|
****************************************************************************/
|
|
|
|
static inline int numrank(enum type type, u32 mtr)
|
|
{
|
|
int ranks = (1 << RANK_CNT_BITS(mtr));
|
|
int max = 4;
|
|
|
|
if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
|
|
max = 8;
|
|
|
|
if (ranks > max) {
|
|
edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
|
|
ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ranks;
|
|
}
|
|
|
|
static inline int numrow(u32 mtr)
|
|
{
|
|
int rows = (RANK_WIDTH_BITS(mtr) + 12);
|
|
|
|
if (rows < 13 || rows > 18) {
|
|
edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
|
|
rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 1 << rows;
|
|
}
|
|
|
|
static inline int numcol(u32 mtr)
|
|
{
|
|
int cols = (COL_WIDTH_BITS(mtr) + 10);
|
|
|
|
if (cols > 12) {
|
|
edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
|
|
cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 1 << cols;
|
|
}
|
|
|
|
static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
|
|
int multi_bus,
|
|
struct sbridge_dev *prev)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
/*
|
|
* If we have devices scattered across several busses that pertain
|
|
* to the same memory controller, we'll lump them all together.
|
|
*/
|
|
if (multi_bus) {
|
|
return list_first_entry_or_null(&sbridge_edac_list,
|
|
struct sbridge_dev, list);
|
|
}
|
|
|
|
sbridge_dev = list_entry(prev ? prev->list.next
|
|
: sbridge_edac_list.next, struct sbridge_dev, list);
|
|
|
|
list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
|
|
if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
|
|
(dom == SOCK || dom == sbridge_dev->dom))
|
|
return sbridge_dev;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
|
|
const struct pci_id_table *table)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
|
|
if (!sbridge_dev)
|
|
return NULL;
|
|
|
|
sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
|
|
sizeof(*sbridge_dev->pdev),
|
|
GFP_KERNEL);
|
|
if (!sbridge_dev->pdev) {
|
|
kfree(sbridge_dev);
|
|
return NULL;
|
|
}
|
|
|
|
sbridge_dev->seg = seg;
|
|
sbridge_dev->bus = bus;
|
|
sbridge_dev->dom = dom;
|
|
sbridge_dev->n_devs = table->n_devs_per_imc;
|
|
list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
|
|
|
|
return sbridge_dev;
|
|
}
|
|
|
|
static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
list_del(&sbridge_dev->list);
|
|
kfree(sbridge_dev->pdev);
|
|
kfree(sbridge_dev);
|
|
}
|
|
|
|
static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
/* Address range is 32:28 */
|
|
pci_read_config_dword(pvt->pci_sad1, TOLM, ®);
|
|
return GET_TOLM(reg);
|
|
}
|
|
|
|
static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_sad1, TOHM, ®);
|
|
return GET_TOHM(reg);
|
|
}
|
|
|
|
static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_br1, TOLM, ®);
|
|
|
|
return GET_TOLM(reg);
|
|
}
|
|
|
|
static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_br1, TOHM, ®);
|
|
|
|
return GET_TOHM(reg);
|
|
}
|
|
|
|
static u64 rir_limit(u32 reg)
|
|
{
|
|
return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
|
|
}
|
|
|
|
static u64 sad_limit(u32 reg)
|
|
{
|
|
return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
|
|
}
|
|
|
|
static u32 interleave_mode(u32 reg)
|
|
{
|
|
return GET_BITFIELD(reg, 1, 1);
|
|
}
|
|
|
|
static u32 dram_attr(u32 reg)
|
|
{
|
|
return GET_BITFIELD(reg, 2, 3);
|
|
}
|
|
|
|
static u64 knl_sad_limit(u32 reg)
|
|
{
|
|
return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
|
|
}
|
|
|
|
static u32 knl_interleave_mode(u32 reg)
|
|
{
|
|
return GET_BITFIELD(reg, 1, 2);
|
|
}
|
|
|
|
static const char * const knl_intlv_mode[] = {
|
|
"[8:6]", "[10:8]", "[14:12]", "[32:30]"
|
|
};
|
|
|
|
static const char *get_intlv_mode_str(u32 reg, enum type t)
|
|
{
|
|
if (t == KNIGHTS_LANDING)
|
|
return knl_intlv_mode[knl_interleave_mode(reg)];
|
|
else
|
|
return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
|
|
}
|
|
|
|
static u32 dram_attr_knl(u32 reg)
|
|
{
|
|
return GET_BITFIELD(reg, 3, 4);
|
|
}
|
|
|
|
|
|
static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
enum mem_type mtype;
|
|
|
|
if (pvt->pci_ddrio) {
|
|
pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
|
|
®);
|
|
if (GET_BITFIELD(reg, 11, 11))
|
|
/* FIXME: Can also be LRDIMM */
|
|
mtype = MEM_RDDR3;
|
|
else
|
|
mtype = MEM_DDR3;
|
|
} else
|
|
mtype = MEM_UNKNOWN;
|
|
|
|
return mtype;
|
|
}
|
|
|
|
static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
bool registered = false;
|
|
enum mem_type mtype = MEM_UNKNOWN;
|
|
|
|
if (!pvt->pci_ddrio)
|
|
goto out;
|
|
|
|
pci_read_config_dword(pvt->pci_ddrio,
|
|
HASWELL_DDRCRCLKCONTROLS, ®);
|
|
/* Is_Rdimm */
|
|
if (GET_BITFIELD(reg, 16, 16))
|
|
registered = true;
|
|
|
|
pci_read_config_dword(pvt->pci_ta, MCMTR, ®);
|
|
if (GET_BITFIELD(reg, 14, 14)) {
|
|
if (registered)
|
|
mtype = MEM_RDDR4;
|
|
else
|
|
mtype = MEM_DDR4;
|
|
} else {
|
|
if (registered)
|
|
mtype = MEM_RDDR3;
|
|
else
|
|
mtype = MEM_DDR3;
|
|
}
|
|
|
|
out:
|
|
return mtype;
|
|
}
|
|
|
|
static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
|
|
{
|
|
/* for KNL value is fixed */
|
|
return DEV_X16;
|
|
}
|
|
|
|
static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
|
|
{
|
|
/* there's no way to figure out */
|
|
return DEV_UNKNOWN;
|
|
}
|
|
|
|
static enum dev_type __ibridge_get_width(u32 mtr)
|
|
{
|
|
enum dev_type type = DEV_UNKNOWN;
|
|
|
|
switch (mtr) {
|
|
case 2:
|
|
type = DEV_X16;
|
|
break;
|
|
case 1:
|
|
type = DEV_X8;
|
|
break;
|
|
case 0:
|
|
type = DEV_X4;
|
|
break;
|
|
}
|
|
|
|
return type;
|
|
}
|
|
|
|
static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
|
|
{
|
|
/*
|
|
* ddr3_width on the documentation but also valid for DDR4 on
|
|
* Haswell
|
|
*/
|
|
return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
|
|
}
|
|
|
|
static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
|
|
{
|
|
/* ddr3_width on the documentation but also valid for DDR4 */
|
|
return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
|
|
}
|
|
|
|
static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
|
|
{
|
|
/* DDR4 RDIMMS and LRDIMMS are supported */
|
|
return MEM_RDDR4;
|
|
}
|
|
|
|
static u8 get_node_id(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®);
|
|
return GET_BITFIELD(reg, 0, 2);
|
|
}
|
|
|
|
static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
|
|
return GET_BITFIELD(reg, 0, 3);
|
|
}
|
|
|
|
static u8 knl_get_node_id(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®);
|
|
return GET_BITFIELD(reg, 0, 2);
|
|
}
|
|
|
|
/*
|
|
* Use the reporting bank number to determine which memory
|
|
* controller (also known as "ha" for "home agent"). Sandy
|
|
* Bridge only has one memory controller per socket, so the
|
|
* answer is always zero.
|
|
*/
|
|
static u8 sbridge_get_ha(u8 bank)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* On Ivy Bridge, Haswell and Broadwell the error may be in a
|
|
* home agent bank (7, 8), or one of the per-channel memory
|
|
* controller banks (9 .. 16).
|
|
*/
|
|
static u8 ibridge_get_ha(u8 bank)
|
|
{
|
|
switch (bank) {
|
|
case 7 ... 8:
|
|
return bank - 7;
|
|
case 9 ... 16:
|
|
return (bank - 9) / 4;
|
|
default:
|
|
return 0xff;
|
|
}
|
|
}
|
|
|
|
/* Not used, but included for safety/symmetry */
|
|
static u8 knl_get_ha(u8 bank)
|
|
{
|
|
return 0xff;
|
|
}
|
|
|
|
static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®);
|
|
return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
|
|
}
|
|
|
|
static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u64 rc;
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®);
|
|
rc = GET_BITFIELD(reg, 26, 31);
|
|
pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®);
|
|
rc = ((reg << 6) | rc) << 26;
|
|
|
|
return rc | 0x1ffffff;
|
|
}
|
|
|
|
static u64 knl_get_tolm(struct sbridge_pvt *pvt)
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®);
|
|
return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
|
|
}
|
|
|
|
static u64 knl_get_tohm(struct sbridge_pvt *pvt)
|
|
{
|
|
u64 rc;
|
|
u32 reg_lo, reg_hi;
|
|
|
|
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo);
|
|
pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi);
|
|
rc = ((u64)reg_hi << 32) | reg_lo;
|
|
return rc | 0x3ffffff;
|
|
}
|
|
|
|
|
|
static u64 haswell_rir_limit(u32 reg)
|
|
{
|
|
return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
|
|
}
|
|
|
|
static inline u8 sad_pkg_socket(u8 pkg)
|
|
{
|
|
/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
|
|
return ((pkg >> 3) << 2) | (pkg & 0x3);
|
|
}
|
|
|
|
static inline u8 sad_pkg_ha(u8 pkg)
|
|
{
|
|
return (pkg >> 2) & 0x1;
|
|
}
|
|
|
|
static int haswell_chan_hash(int idx, u64 addr)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* XOR even bits from 12:26 to bit0 of idx,
|
|
* odd bits from 13:27 to bit1
|
|
*/
|
|
for (i = 12; i < 28; i += 2)
|
|
idx ^= (addr >> i) & 3;
|
|
|
|
return idx;
|
|
}
|
|
|
|
/* Low bits of TAD limit, and some metadata. */
|
|
static const u32 knl_tad_dram_limit_lo[] = {
|
|
0x400, 0x500, 0x600, 0x700,
|
|
0x800, 0x900, 0xa00, 0xb00,
|
|
};
|
|
|
|
/* Low bits of TAD offset. */
|
|
static const u32 knl_tad_dram_offset_lo[] = {
|
|
0x404, 0x504, 0x604, 0x704,
|
|
0x804, 0x904, 0xa04, 0xb04,
|
|
};
|
|
|
|
/* High 16 bits of TAD limit and offset. */
|
|
static const u32 knl_tad_dram_hi[] = {
|
|
0x408, 0x508, 0x608, 0x708,
|
|
0x808, 0x908, 0xa08, 0xb08,
|
|
};
|
|
|
|
/* Number of ways a tad entry is interleaved. */
|
|
static const u32 knl_tad_ways[] = {
|
|
8, 6, 4, 3, 2, 1,
|
|
};
|
|
|
|
/*
|
|
* Retrieve the n'th Target Address Decode table entry
|
|
* from the memory controller's TAD table.
|
|
*
|
|
* @pvt: driver private data
|
|
* @entry: which entry you want to retrieve
|
|
* @mc: which memory controller (0 or 1)
|
|
* @offset: output tad range offset
|
|
* @limit: output address of first byte above tad range
|
|
* @ways: output number of interleave ways
|
|
*
|
|
* The offset value has curious semantics. It's a sort of running total
|
|
* of the sizes of all the memory regions that aren't mapped in this
|
|
* tad table.
|
|
*/
|
|
static int knl_get_tad(const struct sbridge_pvt *pvt,
|
|
const int entry,
|
|
const int mc,
|
|
u64 *offset,
|
|
u64 *limit,
|
|
int *ways)
|
|
{
|
|
u32 reg_limit_lo, reg_offset_lo, reg_hi;
|
|
struct pci_dev *pci_mc;
|
|
int way_id;
|
|
|
|
switch (mc) {
|
|
case 0:
|
|
pci_mc = pvt->knl.pci_mc0;
|
|
break;
|
|
case 1:
|
|
pci_mc = pvt->knl.pci_mc1;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pci_read_config_dword(pci_mc,
|
|
knl_tad_dram_limit_lo[entry], ®_limit_lo);
|
|
pci_read_config_dword(pci_mc,
|
|
knl_tad_dram_offset_lo[entry], ®_offset_lo);
|
|
pci_read_config_dword(pci_mc,
|
|
knl_tad_dram_hi[entry], ®_hi);
|
|
|
|
/* Is this TAD entry enabled? */
|
|
if (!GET_BITFIELD(reg_limit_lo, 0, 0))
|
|
return -ENODEV;
|
|
|
|
way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
|
|
|
|
if (way_id < ARRAY_SIZE(knl_tad_ways)) {
|
|
*ways = knl_tad_ways[way_id];
|
|
} else {
|
|
*ways = 0;
|
|
sbridge_printk(KERN_ERR,
|
|
"Unexpected value %d in mc_tad_limit_lo wayness field\n",
|
|
way_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* The least significant 6 bits of base and limit are truncated.
|
|
* For limit, we fill the missing bits with 1s.
|
|
*/
|
|
*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
|
|
((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
|
|
*limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
|
|
((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Determine which memory controller is responsible for a given channel. */
|
|
static int knl_channel_mc(int channel)
|
|
{
|
|
WARN_ON(channel < 0 || channel >= 6);
|
|
|
|
return channel < 3 ? 1 : 0;
|
|
}
|
|
|
|
/*
|
|
* Get the Nth entry from EDC_ROUTE_TABLE register.
|
|
* (This is the per-tile mapping of logical interleave targets to
|
|
* physical EDC modules.)
|
|
*
|
|
* entry 0: 0:2
|
|
* 1: 3:5
|
|
* 2: 6:8
|
|
* 3: 9:11
|
|
* 4: 12:14
|
|
* 5: 15:17
|
|
* 6: 18:20
|
|
* 7: 21:23
|
|
* reserved: 24:31
|
|
*/
|
|
static u32 knl_get_edc_route(int entry, u32 reg)
|
|
{
|
|
WARN_ON(entry >= KNL_MAX_EDCS);
|
|
return GET_BITFIELD(reg, entry*3, (entry*3)+2);
|
|
}
|
|
|
|
/*
|
|
* Get the Nth entry from MC_ROUTE_TABLE register.
|
|
* (This is the per-tile mapping of logical interleave targets to
|
|
* physical DRAM channels modules.)
|
|
*
|
|
* entry 0: mc 0:2 channel 18:19
|
|
* 1: mc 3:5 channel 20:21
|
|
* 2: mc 6:8 channel 22:23
|
|
* 3: mc 9:11 channel 24:25
|
|
* 4: mc 12:14 channel 26:27
|
|
* 5: mc 15:17 channel 28:29
|
|
* reserved: 30:31
|
|
*
|
|
* Though we have 3 bits to identify the MC, we should only see
|
|
* the values 0 or 1.
|
|
*/
|
|
|
|
static u32 knl_get_mc_route(int entry, u32 reg)
|
|
{
|
|
int mc, chan;
|
|
|
|
WARN_ON(entry >= KNL_MAX_CHANNELS);
|
|
|
|
mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
|
|
chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
|
|
|
|
return knl_channel_remap(mc, chan);
|
|
}
|
|
|
|
/*
|
|
* Render the EDC_ROUTE register in human-readable form.
|
|
* Output string s should be at least KNL_MAX_EDCS*2 bytes.
|
|
*/
|
|
static void knl_show_edc_route(u32 reg, char *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KNL_MAX_EDCS; i++) {
|
|
s[i*2] = knl_get_edc_route(i, reg) + '0';
|
|
s[i*2+1] = '-';
|
|
}
|
|
|
|
s[KNL_MAX_EDCS*2 - 1] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Render the MC_ROUTE register in human-readable form.
|
|
* Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
|
|
*/
|
|
static void knl_show_mc_route(u32 reg, char *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KNL_MAX_CHANNELS; i++) {
|
|
s[i*2] = knl_get_mc_route(i, reg) + '0';
|
|
s[i*2+1] = '-';
|
|
}
|
|
|
|
s[KNL_MAX_CHANNELS*2 - 1] = '\0';
|
|
}
|
|
|
|
#define KNL_EDC_ROUTE 0xb8
|
|
#define KNL_MC_ROUTE 0xb4
|
|
|
|
/* Is this dram rule backed by regular DRAM in flat mode? */
|
|
#define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
|
|
|
|
/* Is this dram rule cached? */
|
|
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
|
|
|
|
/* Is this rule backed by edc ? */
|
|
#define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
|
|
|
|
/* Is this rule backed by DRAM, cacheable in EDRAM? */
|
|
#define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
|
|
|
|
/* Is this rule mod3? */
|
|
#define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
|
|
|
|
/*
|
|
* Figure out how big our RAM modules are.
|
|
*
|
|
* The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
|
|
* have to figure this out from the SAD rules, interleave lists, route tables,
|
|
* and TAD rules.
|
|
*
|
|
* SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
|
|
* inspect the TAD rules to figure out how large the SAD regions really are.
|
|
*
|
|
* When we know the real size of a SAD region and how many ways it's
|
|
* interleaved, we know the individual contribution of each channel to
|
|
* TAD is size/ways.
|
|
*
|
|
* Finally, we have to check whether each channel participates in each SAD
|
|
* region.
|
|
*
|
|
* Fortunately, KNL only supports one DIMM per channel, so once we know how
|
|
* much memory the channel uses, we know the DIMM is at least that large.
|
|
* (The BIOS might possibly choose not to map all available memory, in which
|
|
* case we will underreport the size of the DIMM.)
|
|
*
|
|
* In theory, we could try to determine the EDC sizes as well, but that would
|
|
* only work in flat mode, not in cache mode.
|
|
*
|
|
* @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
|
|
* elements)
|
|
*/
|
|
static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
|
|
{
|
|
u64 sad_base, sad_limit = 0;
|
|
u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
|
|
int sad_rule = 0;
|
|
int tad_rule = 0;
|
|
int intrlv_ways, tad_ways;
|
|
u32 first_pkg, pkg;
|
|
int i;
|
|
u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
|
|
u32 dram_rule, interleave_reg;
|
|
u32 mc_route_reg[KNL_MAX_CHAS];
|
|
u32 edc_route_reg[KNL_MAX_CHAS];
|
|
int edram_only;
|
|
char edc_route_string[KNL_MAX_EDCS*2];
|
|
char mc_route_string[KNL_MAX_CHANNELS*2];
|
|
int cur_reg_start;
|
|
int mc;
|
|
int channel;
|
|
int participants[KNL_MAX_CHANNELS];
|
|
|
|
for (i = 0; i < KNL_MAX_CHANNELS; i++)
|
|
mc_sizes[i] = 0;
|
|
|
|
/* Read the EDC route table in each CHA. */
|
|
cur_reg_start = 0;
|
|
for (i = 0; i < KNL_MAX_CHAS; i++) {
|
|
pci_read_config_dword(pvt->knl.pci_cha[i],
|
|
KNL_EDC_ROUTE, &edc_route_reg[i]);
|
|
|
|
if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
|
|
knl_show_edc_route(edc_route_reg[i-1],
|
|
edc_route_string);
|
|
if (cur_reg_start == i-1)
|
|
edac_dbg(0, "edc route table for CHA %d: %s\n",
|
|
cur_reg_start, edc_route_string);
|
|
else
|
|
edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
|
|
cur_reg_start, i-1, edc_route_string);
|
|
cur_reg_start = i;
|
|
}
|
|
}
|
|
knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
|
|
if (cur_reg_start == i-1)
|
|
edac_dbg(0, "edc route table for CHA %d: %s\n",
|
|
cur_reg_start, edc_route_string);
|
|
else
|
|
edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
|
|
cur_reg_start, i-1, edc_route_string);
|
|
|
|
/* Read the MC route table in each CHA. */
|
|
cur_reg_start = 0;
|
|
for (i = 0; i < KNL_MAX_CHAS; i++) {
|
|
pci_read_config_dword(pvt->knl.pci_cha[i],
|
|
KNL_MC_ROUTE, &mc_route_reg[i]);
|
|
|
|
if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
|
|
knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
|
|
if (cur_reg_start == i-1)
|
|
edac_dbg(0, "mc route table for CHA %d: %s\n",
|
|
cur_reg_start, mc_route_string);
|
|
else
|
|
edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
|
|
cur_reg_start, i-1, mc_route_string);
|
|
cur_reg_start = i;
|
|
}
|
|
}
|
|
knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
|
|
if (cur_reg_start == i-1)
|
|
edac_dbg(0, "mc route table for CHA %d: %s\n",
|
|
cur_reg_start, mc_route_string);
|
|
else
|
|
edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
|
|
cur_reg_start, i-1, mc_route_string);
|
|
|
|
/* Process DRAM rules */
|
|
for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
|
|
/* previous limit becomes the new base */
|
|
sad_base = sad_limit;
|
|
|
|
pci_read_config_dword(pvt->pci_sad0,
|
|
pvt->info.dram_rule[sad_rule], &dram_rule);
|
|
|
|
if (!DRAM_RULE_ENABLE(dram_rule))
|
|
break;
|
|
|
|
edram_only = KNL_EDRAM_ONLY(dram_rule);
|
|
|
|
sad_limit = pvt->info.sad_limit(dram_rule)+1;
|
|
|
|
pci_read_config_dword(pvt->pci_sad0,
|
|
pvt->info.interleave_list[sad_rule], &interleave_reg);
|
|
|
|
/*
|
|
* Find out how many ways this dram rule is interleaved.
|
|
* We stop when we see the first channel again.
|
|
*/
|
|
first_pkg = sad_pkg(pvt->info.interleave_pkg,
|
|
interleave_reg, 0);
|
|
for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
|
|
pkg = sad_pkg(pvt->info.interleave_pkg,
|
|
interleave_reg, intrlv_ways);
|
|
|
|
if ((pkg & 0x8) == 0) {
|
|
/*
|
|
* 0 bit means memory is non-local,
|
|
* which KNL doesn't support
|
|
*/
|
|
edac_dbg(0, "Unexpected interleave target %d\n",
|
|
pkg);
|
|
return -1;
|
|
}
|
|
|
|
if (pkg == first_pkg)
|
|
break;
|
|
}
|
|
if (KNL_MOD3(dram_rule))
|
|
intrlv_ways *= 3;
|
|
|
|
edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
|
|
sad_rule,
|
|
sad_base,
|
|
sad_limit,
|
|
intrlv_ways,
|
|
edram_only ? ", EDRAM" : "");
|
|
|
|
/*
|
|
* Find out how big the SAD region really is by iterating
|
|
* over TAD tables (SAD regions may contain holes).
|
|
* Each memory controller might have a different TAD table, so
|
|
* we have to look at both.
|
|
*
|
|
* Livespace is the memory that's mapped in this TAD table,
|
|
* deadspace is the holes (this could be the MMIO hole, or it
|
|
* could be memory that's mapped by the other TAD table but
|
|
* not this one).
|
|
*/
|
|
for (mc = 0; mc < 2; mc++) {
|
|
sad_actual_size[mc] = 0;
|
|
tad_livespace = 0;
|
|
for (tad_rule = 0;
|
|
tad_rule < ARRAY_SIZE(
|
|
knl_tad_dram_limit_lo);
|
|
tad_rule++) {
|
|
if (knl_get_tad(pvt,
|
|
tad_rule,
|
|
mc,
|
|
&tad_deadspace,
|
|
&tad_limit,
|
|
&tad_ways))
|
|
break;
|
|
|
|
tad_size = (tad_limit+1) -
|
|
(tad_livespace + tad_deadspace);
|
|
tad_livespace += tad_size;
|
|
tad_base = (tad_limit+1) - tad_size;
|
|
|
|
if (tad_base < sad_base) {
|
|
if (tad_limit > sad_base)
|
|
edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
|
|
} else if (tad_base < sad_limit) {
|
|
if (tad_limit+1 > sad_limit) {
|
|
edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
|
|
} else {
|
|
/* TAD region is completely inside SAD region */
|
|
edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
|
|
tad_rule, tad_base,
|
|
tad_limit, tad_size,
|
|
mc);
|
|
sad_actual_size[mc] += tad_size;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (mc = 0; mc < 2; mc++) {
|
|
edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
|
|
mc, sad_actual_size[mc], sad_actual_size[mc]);
|
|
}
|
|
|
|
/* Ignore EDRAM rule */
|
|
if (edram_only)
|
|
continue;
|
|
|
|
/* Figure out which channels participate in interleave. */
|
|
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
|
|
participants[channel] = 0;
|
|
|
|
/* For each channel, does at least one CHA have
|
|
* this channel mapped to the given target?
|
|
*/
|
|
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
|
|
int target;
|
|
int cha;
|
|
|
|
for (target = 0; target < KNL_MAX_CHANNELS; target++) {
|
|
for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
|
|
if (knl_get_mc_route(target,
|
|
mc_route_reg[cha]) == channel
|
|
&& !participants[channel]) {
|
|
participants[channel] = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
|
|
mc = knl_channel_mc(channel);
|
|
if (participants[channel]) {
|
|
edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
|
|
channel,
|
|
sad_actual_size[mc]/intrlv_ways,
|
|
sad_rule);
|
|
mc_sizes[channel] +=
|
|
sad_actual_size[mc]/intrlv_ways;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void get_source_id(struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
u32 reg;
|
|
|
|
if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
|
|
pvt->info.type == KNIGHTS_LANDING)
|
|
pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®);
|
|
else
|
|
pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®);
|
|
|
|
if (pvt->info.type == KNIGHTS_LANDING)
|
|
pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
|
|
else
|
|
pvt->sbridge_dev->source_id = SOURCE_ID(reg);
|
|
}
|
|
|
|
static int __populate_dimms(struct mem_ctl_info *mci,
|
|
u64 knl_mc_sizes[KNL_MAX_CHANNELS],
|
|
enum edac_type mode)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
|
|
: NUM_CHANNELS;
|
|
unsigned int i, j, banks, ranks, rows, cols, npages;
|
|
struct dimm_info *dimm;
|
|
enum mem_type mtype;
|
|
u64 size;
|
|
|
|
mtype = pvt->info.get_memory_type(pvt);
|
|
if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
|
|
edac_dbg(0, "Memory is registered\n");
|
|
else if (mtype == MEM_UNKNOWN)
|
|
edac_dbg(0, "Cannot determine memory type\n");
|
|
else
|
|
edac_dbg(0, "Memory is unregistered\n");
|
|
|
|
if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
|
|
banks = 16;
|
|
else
|
|
banks = 8;
|
|
|
|
for (i = 0; i < channels; i++) {
|
|
u32 mtr;
|
|
|
|
int max_dimms_per_channel;
|
|
|
|
if (pvt->info.type == KNIGHTS_LANDING) {
|
|
max_dimms_per_channel = 1;
|
|
if (!pvt->knl.pci_channel[i])
|
|
continue;
|
|
} else {
|
|
max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
|
|
if (!pvt->pci_tad[i])
|
|
continue;
|
|
}
|
|
|
|
for (j = 0; j < max_dimms_per_channel; j++) {
|
|
dimm = edac_get_dimm(mci, i, j, 0);
|
|
if (pvt->info.type == KNIGHTS_LANDING) {
|
|
pci_read_config_dword(pvt->knl.pci_channel[i],
|
|
knl_mtr_reg, &mtr);
|
|
} else {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
mtr_regs[j], &mtr);
|
|
}
|
|
edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
|
|
if (IS_DIMM_PRESENT(mtr)) {
|
|
if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
|
|
sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
|
|
pvt->sbridge_dev->source_id,
|
|
pvt->sbridge_dev->dom, i);
|
|
return -ENODEV;
|
|
}
|
|
pvt->channel[i].dimms++;
|
|
|
|
ranks = numrank(pvt->info.type, mtr);
|
|
|
|
if (pvt->info.type == KNIGHTS_LANDING) {
|
|
/* For DDR4, this is fixed. */
|
|
cols = 1 << 10;
|
|
rows = knl_mc_sizes[i] /
|
|
((u64) cols * ranks * banks * 8);
|
|
} else {
|
|
rows = numrow(mtr);
|
|
cols = numcol(mtr);
|
|
}
|
|
|
|
size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
|
|
npages = MiB_TO_PAGES(size);
|
|
|
|
edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
|
|
pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
|
|
size, npages,
|
|
banks, ranks, rows, cols);
|
|
|
|
dimm->nr_pages = npages;
|
|
dimm->grain = 32;
|
|
dimm->dtype = pvt->info.get_width(pvt, mtr);
|
|
dimm->mtype = mtype;
|
|
dimm->edac_mode = mode;
|
|
snprintf(dimm->label, sizeof(dimm->label),
|
|
"CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_dimm_config(struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
u64 knl_mc_sizes[KNL_MAX_CHANNELS];
|
|
enum edac_type mode;
|
|
u32 reg;
|
|
|
|
pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
|
|
edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
|
|
pvt->sbridge_dev->mc,
|
|
pvt->sbridge_dev->node_id,
|
|
pvt->sbridge_dev->source_id);
|
|
|
|
/* KNL doesn't support mirroring or lockstep,
|
|
* and is always closed page
|
|
*/
|
|
if (pvt->info.type == KNIGHTS_LANDING) {
|
|
mode = EDAC_S4ECD4ED;
|
|
pvt->mirror_mode = NON_MIRRORING;
|
|
pvt->is_cur_addr_mirrored = false;
|
|
|
|
if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
|
|
return -1;
|
|
if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
|
|
edac_dbg(0, "Failed to read KNL_MCMTR register\n");
|
|
return -ENODEV;
|
|
}
|
|
} else {
|
|
if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
|
|
if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) {
|
|
edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
|
|
return -ENODEV;
|
|
}
|
|
pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
|
|
if (GET_BITFIELD(reg, 28, 28)) {
|
|
pvt->mirror_mode = ADDR_RANGE_MIRRORING;
|
|
edac_dbg(0, "Address range partial memory mirroring is enabled\n");
|
|
goto next;
|
|
}
|
|
}
|
|
if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) {
|
|
edac_dbg(0, "Failed to read RASENABLES register\n");
|
|
return -ENODEV;
|
|
}
|
|
if (IS_MIRROR_ENABLED(reg)) {
|
|
pvt->mirror_mode = FULL_MIRRORING;
|
|
edac_dbg(0, "Full memory mirroring is enabled\n");
|
|
} else {
|
|
pvt->mirror_mode = NON_MIRRORING;
|
|
edac_dbg(0, "Memory mirroring is disabled\n");
|
|
}
|
|
|
|
next:
|
|
if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
|
|
edac_dbg(0, "Failed to read MCMTR register\n");
|
|
return -ENODEV;
|
|
}
|
|
if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
|
|
edac_dbg(0, "Lockstep is enabled\n");
|
|
mode = EDAC_S8ECD8ED;
|
|
pvt->is_lockstep = true;
|
|
} else {
|
|
edac_dbg(0, "Lockstep is disabled\n");
|
|
mode = EDAC_S4ECD4ED;
|
|
pvt->is_lockstep = false;
|
|
}
|
|
if (IS_CLOSE_PG(pvt->info.mcmtr)) {
|
|
edac_dbg(0, "address map is on closed page mode\n");
|
|
pvt->is_close_pg = true;
|
|
} else {
|
|
edac_dbg(0, "address map is on open page mode\n");
|
|
pvt->is_close_pg = false;
|
|
}
|
|
}
|
|
|
|
return __populate_dimms(mci, knl_mc_sizes, mode);
|
|
}
|
|
|
|
static void get_memory_layout(const struct mem_ctl_info *mci)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
int i, j, k, n_sads, n_tads, sad_interl;
|
|
u32 reg;
|
|
u64 limit, prv = 0;
|
|
u64 tmp_mb;
|
|
u32 gb, mb;
|
|
u32 rir_way;
|
|
|
|
/*
|
|
* Step 1) Get TOLM/TOHM ranges
|
|
*/
|
|
|
|
pvt->tolm = pvt->info.get_tolm(pvt);
|
|
tmp_mb = (1 + pvt->tolm) >> 20;
|
|
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
|
|
gb, (mb*1000)/1024, (u64)pvt->tolm);
|
|
|
|
/* Address range is already 45:25 */
|
|
pvt->tohm = pvt->info.get_tohm(pvt);
|
|
tmp_mb = (1 + pvt->tohm) >> 20;
|
|
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
|
|
gb, (mb*1000)/1024, (u64)pvt->tohm);
|
|
|
|
/*
|
|
* Step 2) Get SAD range and SAD Interleave list
|
|
* TAD registers contain the interleave wayness. However, it
|
|
* seems simpler to just discover it indirectly, with the
|
|
* algorithm bellow.
|
|
*/
|
|
prv = 0;
|
|
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
|
|
/* SAD_LIMIT Address range is 45:26 */
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
|
|
®);
|
|
limit = pvt->info.sad_limit(reg);
|
|
|
|
if (!DRAM_RULE_ENABLE(reg))
|
|
continue;
|
|
|
|
if (limit <= prv)
|
|
break;
|
|
|
|
tmp_mb = (limit + 1) >> 20;
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
|
|
n_sads,
|
|
show_dram_attr(pvt->info.dram_attr(reg)),
|
|
gb, (mb*1000)/1024,
|
|
((u64)tmp_mb) << 20L,
|
|
get_intlv_mode_str(reg, pvt->info.type),
|
|
reg);
|
|
prv = limit;
|
|
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
|
|
®);
|
|
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
|
|
for (j = 0; j < 8; j++) {
|
|
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
|
|
if (j > 0 && sad_interl == pkg)
|
|
break;
|
|
|
|
edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
|
|
n_sads, j, pkg);
|
|
}
|
|
}
|
|
|
|
if (pvt->info.type == KNIGHTS_LANDING)
|
|
return;
|
|
|
|
/*
|
|
* Step 3) Get TAD range
|
|
*/
|
|
prv = 0;
|
|
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
|
|
pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®);
|
|
limit = TAD_LIMIT(reg);
|
|
if (limit <= prv)
|
|
break;
|
|
tmp_mb = (limit + 1) >> 20;
|
|
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
|
|
n_tads, gb, (mb*1000)/1024,
|
|
((u64)tmp_mb) << 20L,
|
|
(u32)(1 << TAD_SOCK(reg)),
|
|
(u32)TAD_CH(reg) + 1,
|
|
(u32)TAD_TGT0(reg),
|
|
(u32)TAD_TGT1(reg),
|
|
(u32)TAD_TGT2(reg),
|
|
(u32)TAD_TGT3(reg),
|
|
reg);
|
|
prv = limit;
|
|
}
|
|
|
|
/*
|
|
* Step 4) Get TAD offsets, per each channel
|
|
*/
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->channel[i].dimms)
|
|
continue;
|
|
for (j = 0; j < n_tads; j++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
tad_ch_nilv_offset[j],
|
|
®);
|
|
tmp_mb = TAD_OFFSET(reg) >> 20;
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
|
|
i, j,
|
|
gb, (mb*1000)/1024,
|
|
((u64)tmp_mb) << 20L,
|
|
reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Step 6) Get RIR Wayness/Limit, per each channel
|
|
*/
|
|
for (i = 0; i < NUM_CHANNELS; i++) {
|
|
if (!pvt->channel[i].dimms)
|
|
continue;
|
|
for (j = 0; j < MAX_RIR_RANGES; j++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
rir_way_limit[j],
|
|
®);
|
|
|
|
if (!IS_RIR_VALID(reg))
|
|
continue;
|
|
|
|
tmp_mb = pvt->info.rir_limit(reg) >> 20;
|
|
rir_way = 1 << RIR_WAY(reg);
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
|
|
i, j,
|
|
gb, (mb*1000)/1024,
|
|
((u64)tmp_mb) << 20L,
|
|
rir_way,
|
|
reg);
|
|
|
|
for (k = 0; k < rir_way; k++) {
|
|
pci_read_config_dword(pvt->pci_tad[i],
|
|
rir_offset[j][k],
|
|
®);
|
|
tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
|
|
|
|
gb = div_u64_rem(tmp_mb, 1024, &mb);
|
|
edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
|
|
i, j, k,
|
|
gb, (mb*1000)/1024,
|
|
((u64)tmp_mb) << 20L,
|
|
(u32)RIR_RNK_TGT(pvt->info.type, reg),
|
|
reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
|
|
if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
|
|
return sbridge_dev->mci;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int get_memory_error_data(struct mem_ctl_info *mci,
|
|
u64 addr,
|
|
u8 *socket, u8 *ha,
|
|
long *channel_mask,
|
|
u8 *rank,
|
|
char **area_type, char *msg)
|
|
{
|
|
struct mem_ctl_info *new_mci;
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pci_ha;
|
|
int n_rir, n_sads, n_tads, sad_way, sck_xch;
|
|
int sad_interl, idx, base_ch;
|
|
int interleave_mode, shiftup = 0;
|
|
unsigned int sad_interleave[MAX_INTERLEAVE];
|
|
u32 reg, dram_rule;
|
|
u8 ch_way, sck_way, pkg, sad_ha = 0;
|
|
u32 tad_offset;
|
|
u32 rir_way;
|
|
u32 mb, gb;
|
|
u64 ch_addr, offset, limit = 0, prv = 0;
|
|
|
|
|
|
/*
|
|
* Step 0) Check if the address is at special memory ranges
|
|
* The check bellow is probably enough to fill all cases where
|
|
* the error is not inside a memory, except for the legacy
|
|
* range (e. g. VGA addresses). It is unlikely, however, that the
|
|
* memory controller would generate an error on that range.
|
|
*/
|
|
if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
|
|
sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
|
|
return -EINVAL;
|
|
}
|
|
if (addr >= (u64)pvt->tohm) {
|
|
sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Step 1) Get socket
|
|
*/
|
|
for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
|
|
®);
|
|
|
|
if (!DRAM_RULE_ENABLE(reg))
|
|
continue;
|
|
|
|
limit = pvt->info.sad_limit(reg);
|
|
if (limit <= prv) {
|
|
sprintf(msg, "Can't discover the memory socket");
|
|
return -EINVAL;
|
|
}
|
|
if (addr <= limit)
|
|
break;
|
|
prv = limit;
|
|
}
|
|
if (n_sads == pvt->info.max_sad) {
|
|
sprintf(msg, "Can't discover the memory socket");
|
|
return -EINVAL;
|
|
}
|
|
dram_rule = reg;
|
|
*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
|
|
interleave_mode = pvt->info.interleave_mode(dram_rule);
|
|
|
|
pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
|
|
®);
|
|
|
|
if (pvt->info.type == SANDY_BRIDGE) {
|
|
sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
|
|
for (sad_way = 0; sad_way < 8; sad_way++) {
|
|
u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
|
|
if (sad_way > 0 && sad_interl == pkg)
|
|
break;
|
|
sad_interleave[sad_way] = pkg;
|
|
edac_dbg(0, "SAD interleave #%d: %d\n",
|
|
sad_way, sad_interleave[sad_way]);
|
|
}
|
|
edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
|
|
pvt->sbridge_dev->mc,
|
|
n_sads,
|
|
addr,
|
|
limit,
|
|
sad_way + 7,
|
|
!interleave_mode ? "" : "XOR[18:16]");
|
|
if (interleave_mode)
|
|
idx = ((addr >> 6) ^ (addr >> 16)) & 7;
|
|
else
|
|
idx = (addr >> 6) & 7;
|
|
switch (sad_way) {
|
|
case 1:
|
|
idx = 0;
|
|
break;
|
|
case 2:
|
|
idx = idx & 1;
|
|
break;
|
|
case 4:
|
|
idx = idx & 3;
|
|
break;
|
|
case 8:
|
|
break;
|
|
default:
|
|
sprintf(msg, "Can't discover socket interleave");
|
|
return -EINVAL;
|
|
}
|
|
*socket = sad_interleave[idx];
|
|
edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
|
|
idx, sad_way, *socket);
|
|
} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
|
|
int bits, a7mode = A7MODE(dram_rule);
|
|
|
|
if (a7mode) {
|
|
/* A7 mode swaps P9 with P6 */
|
|
bits = GET_BITFIELD(addr, 7, 8) << 1;
|
|
bits |= GET_BITFIELD(addr, 9, 9);
|
|
} else
|
|
bits = GET_BITFIELD(addr, 6, 8);
|
|
|
|
if (interleave_mode == 0) {
|
|
/* interleave mode will XOR {8,7,6} with {18,17,16} */
|
|
idx = GET_BITFIELD(addr, 16, 18);
|
|
idx ^= bits;
|
|
} else
|
|
idx = bits;
|
|
|
|
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
|
|
*socket = sad_pkg_socket(pkg);
|
|
sad_ha = sad_pkg_ha(pkg);
|
|
|
|
if (a7mode) {
|
|
/* MCChanShiftUpEnable */
|
|
pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®);
|
|
shiftup = GET_BITFIELD(reg, 22, 22);
|
|
}
|
|
|
|
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
|
|
idx, *socket, sad_ha, shiftup);
|
|
} else {
|
|
/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
|
|
idx = (addr >> 6) & 7;
|
|
pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
|
|
*socket = sad_pkg_socket(pkg);
|
|
sad_ha = sad_pkg_ha(pkg);
|
|
edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
|
|
idx, *socket, sad_ha);
|
|
}
|
|
|
|
*ha = sad_ha;
|
|
|
|
/*
|
|
* Move to the proper node structure, in order to access the
|
|
* right PCI registers
|
|
*/
|
|
new_mci = get_mci_for_node_id(*socket, sad_ha);
|
|
if (!new_mci) {
|
|
sprintf(msg, "Struct for socket #%u wasn't initialized",
|
|
*socket);
|
|
return -EINVAL;
|
|
}
|
|
mci = new_mci;
|
|
pvt = mci->pvt_info;
|
|
|
|
/*
|
|
* Step 2) Get memory channel
|
|
*/
|
|
prv = 0;
|
|
pci_ha = pvt->pci_ha;
|
|
for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
|
|
pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®);
|
|
limit = TAD_LIMIT(reg);
|
|
if (limit <= prv) {
|
|
sprintf(msg, "Can't discover the memory channel");
|
|
return -EINVAL;
|
|
}
|
|
if (addr <= limit)
|
|
break;
|
|
prv = limit;
|
|
}
|
|
if (n_tads == MAX_TAD) {
|
|
sprintf(msg, "Can't discover the memory channel");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ch_way = TAD_CH(reg) + 1;
|
|
sck_way = TAD_SOCK(reg);
|
|
|
|
if (ch_way == 3)
|
|
idx = addr >> 6;
|
|
else {
|
|
idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
|
|
if (pvt->is_chan_hash)
|
|
idx = haswell_chan_hash(idx, addr);
|
|
}
|
|
idx = idx % ch_way;
|
|
|
|
/*
|
|
* FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
|
|
*/
|
|
switch (idx) {
|
|
case 0:
|
|
base_ch = TAD_TGT0(reg);
|
|
break;
|
|
case 1:
|
|
base_ch = TAD_TGT1(reg);
|
|
break;
|
|
case 2:
|
|
base_ch = TAD_TGT2(reg);
|
|
break;
|
|
case 3:
|
|
base_ch = TAD_TGT3(reg);
|
|
break;
|
|
default:
|
|
sprintf(msg, "Can't discover the TAD target");
|
|
return -EINVAL;
|
|
}
|
|
*channel_mask = 1 << base_ch;
|
|
|
|
pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
|
|
|
|
if (pvt->mirror_mode == FULL_MIRRORING ||
|
|
(pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
|
|
*channel_mask |= 1 << ((base_ch + 2) % 4);
|
|
switch(ch_way) {
|
|
case 2:
|
|
case 4:
|
|
sck_xch = (1 << sck_way) * (ch_way >> 1);
|
|
break;
|
|
default:
|
|
sprintf(msg, "Invalid mirror set. Can't decode addr");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pvt->is_cur_addr_mirrored = true;
|
|
} else {
|
|
sck_xch = (1 << sck_way) * ch_way;
|
|
pvt->is_cur_addr_mirrored = false;
|
|
}
|
|
|
|
if (pvt->is_lockstep)
|
|
*channel_mask |= 1 << ((base_ch + 1) % 4);
|
|
|
|
offset = TAD_OFFSET(tad_offset);
|
|
|
|
edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
|
|
n_tads,
|
|
addr,
|
|
limit,
|
|
sck_way,
|
|
ch_way,
|
|
offset,
|
|
idx,
|
|
base_ch,
|
|
*channel_mask);
|
|
|
|
/* Calculate channel address */
|
|
/* Remove the TAD offset */
|
|
|
|
if (offset > addr) {
|
|
sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
|
|
offset, addr);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ch_addr = addr - offset;
|
|
ch_addr >>= (6 + shiftup);
|
|
ch_addr /= sck_xch;
|
|
ch_addr <<= (6 + shiftup);
|
|
ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
|
|
|
|
/*
|
|
* Step 3) Decode rank
|
|
*/
|
|
for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
|
|
pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®);
|
|
|
|
if (!IS_RIR_VALID(reg))
|
|
continue;
|
|
|
|
limit = pvt->info.rir_limit(reg);
|
|
gb = div_u64_rem(limit >> 20, 1024, &mb);
|
|
edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
|
|
n_rir,
|
|
gb, (mb*1000)/1024,
|
|
limit,
|
|
1 << RIR_WAY(reg));
|
|
if (ch_addr <= limit)
|
|
break;
|
|
}
|
|
if (n_rir == MAX_RIR_RANGES) {
|
|
sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
|
|
ch_addr);
|
|
return -EINVAL;
|
|
}
|
|
rir_way = RIR_WAY(reg);
|
|
|
|
if (pvt->is_close_pg)
|
|
idx = (ch_addr >> 6);
|
|
else
|
|
idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
|
|
idx %= 1 << rir_way;
|
|
|
|
pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®);
|
|
*rank = RIR_RNK_TGT(pvt->info.type, reg);
|
|
|
|
edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
|
|
n_rir,
|
|
ch_addr,
|
|
limit,
|
|
rir_way,
|
|
idx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
|
|
const struct mce *m, u8 *socket,
|
|
u8 *ha, long *channel_mask,
|
|
char *msg)
|
|
{
|
|
u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
|
|
struct mem_ctl_info *new_mci;
|
|
struct sbridge_pvt *pvt;
|
|
struct pci_dev *pci_ha;
|
|
bool tad0;
|
|
|
|
if (channel >= NUM_CHANNELS) {
|
|
sprintf(msg, "Invalid channel 0x%x", channel);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pvt = mci->pvt_info;
|
|
if (!pvt->info.get_ha) {
|
|
sprintf(msg, "No get_ha()");
|
|
return -EINVAL;
|
|
}
|
|
*ha = pvt->info.get_ha(m->bank);
|
|
if (*ha != 0 && *ha != 1) {
|
|
sprintf(msg, "Impossible bank %d", m->bank);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*socket = m->socketid;
|
|
new_mci = get_mci_for_node_id(*socket, *ha);
|
|
if (!new_mci) {
|
|
strcpy(msg, "mci socket got corrupted!");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pvt = new_mci->pvt_info;
|
|
pci_ha = pvt->pci_ha;
|
|
pci_read_config_dword(pci_ha, tad_dram_rule[0], ®);
|
|
tad0 = m->addr <= TAD_LIMIT(reg);
|
|
|
|
*channel_mask = 1 << channel;
|
|
if (pvt->mirror_mode == FULL_MIRRORING ||
|
|
(pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
|
|
*channel_mask |= 1 << ((channel + 2) % 4);
|
|
pvt->is_cur_addr_mirrored = true;
|
|
} else {
|
|
pvt->is_cur_addr_mirrored = false;
|
|
}
|
|
|
|
if (pvt->is_lockstep)
|
|
*channel_mask |= 1 << ((channel + 1) % 4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/****************************************************************************
|
|
Device initialization routines: put/get, init/exit
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* sbridge_put_all_devices 'put' all the devices that we have
|
|
* reserved via 'get'
|
|
*/
|
|
static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
int i;
|
|
|
|
edac_dbg(0, "\n");
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
struct pci_dev *pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
edac_dbg(0, "Removing dev %02x:%02x.%d\n",
|
|
pdev->bus->number,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
|
|
pci_dev_put(pdev);
|
|
}
|
|
}
|
|
|
|
static void sbridge_put_all_devices(void)
|
|
{
|
|
struct sbridge_dev *sbridge_dev, *tmp;
|
|
|
|
list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
|
|
sbridge_put_devices(sbridge_dev);
|
|
free_sbridge_dev(sbridge_dev);
|
|
}
|
|
}
|
|
|
|
static int sbridge_get_onedevice(struct pci_dev **prev,
|
|
u8 *num_mc,
|
|
const struct pci_id_table *table,
|
|
const unsigned devno,
|
|
const int multi_bus)
|
|
{
|
|
struct sbridge_dev *sbridge_dev = NULL;
|
|
const struct pci_id_descr *dev_descr = &table->descr[devno];
|
|
struct pci_dev *pdev = NULL;
|
|
int seg = 0;
|
|
u8 bus = 0;
|
|
int i = 0;
|
|
|
|
sbridge_printk(KERN_DEBUG,
|
|
"Seeking for: PCI ID %04x:%04x\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
dev_descr->dev_id, *prev);
|
|
|
|
if (!pdev) {
|
|
if (*prev) {
|
|
*prev = pdev;
|
|
return 0;
|
|
}
|
|
|
|
if (dev_descr->optional)
|
|
return 0;
|
|
|
|
/* if the HA wasn't found */
|
|
if (devno == 0)
|
|
return -ENODEV;
|
|
|
|
sbridge_printk(KERN_INFO,
|
|
"Device not found: %04x:%04x\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
/* End of list, leave */
|
|
return -ENODEV;
|
|
}
|
|
seg = pci_domain_nr(pdev->bus);
|
|
bus = pdev->bus->number;
|
|
|
|
next_imc:
|
|
sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
|
|
multi_bus, sbridge_dev);
|
|
if (!sbridge_dev) {
|
|
/* If the HA1 wasn't found, don't create EDAC second memory controller */
|
|
if (dev_descr->dom == IMC1 && devno != 1) {
|
|
edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
pci_dev_put(pdev);
|
|
return 0;
|
|
}
|
|
|
|
if (dev_descr->dom == SOCK)
|
|
goto out_imc;
|
|
|
|
sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
|
|
if (!sbridge_dev) {
|
|
pci_dev_put(pdev);
|
|
return -ENOMEM;
|
|
}
|
|
(*num_mc)++;
|
|
}
|
|
|
|
if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Duplicated device for %04x:%04x\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
pci_dev_put(pdev);
|
|
return -ENODEV;
|
|
}
|
|
|
|
sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
|
|
|
|
/* pdev belongs to more than one IMC, do extra gets */
|
|
if (++i > 1)
|
|
pci_dev_get(pdev);
|
|
|
|
if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
|
|
goto next_imc;
|
|
|
|
out_imc:
|
|
/* Be sure that the device is enabled */
|
|
if (unlikely(pci_enable_device(pdev) < 0)) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Couldn't enable %04x:%04x\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
return -ENODEV;
|
|
}
|
|
|
|
edac_dbg(0, "Detected %04x:%04x\n",
|
|
PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
|
|
|
|
/*
|
|
* As stated on drivers/pci/search.c, the reference count for
|
|
* @from is always decremented if it is not %NULL. So, as we need
|
|
* to get all devices up to null, we need to do a get for the device
|
|
*/
|
|
pci_dev_get(pdev);
|
|
|
|
*prev = pdev;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
|
|
* devices we want to reference for this driver.
|
|
* @num_mc: pointer to the memory controllers count, to be incremented in case
|
|
* of success.
|
|
* @table: model specific table
|
|
*
|
|
* returns 0 in case of success or error code
|
|
*/
|
|
static int sbridge_get_all_devices(u8 *num_mc,
|
|
const struct pci_id_table *table)
|
|
{
|
|
int i, rc;
|
|
struct pci_dev *pdev = NULL;
|
|
int allow_dups = 0;
|
|
int multi_bus = 0;
|
|
|
|
if (table->type == KNIGHTS_LANDING)
|
|
allow_dups = multi_bus = 1;
|
|
while (table && table->descr) {
|
|
for (i = 0; i < table->n_devs_per_sock; i++) {
|
|
if (!allow_dups || i == 0 ||
|
|
table->descr[i].dev_id !=
|
|
table->descr[i-1].dev_id) {
|
|
pdev = NULL;
|
|
}
|
|
do {
|
|
rc = sbridge_get_onedevice(&pdev, num_mc,
|
|
table, i, multi_bus);
|
|
if (rc < 0) {
|
|
if (i == 0) {
|
|
i = table->n_devs_per_sock;
|
|
break;
|
|
}
|
|
sbridge_put_all_devices();
|
|
return -ENODEV;
|
|
}
|
|
} while (pdev && !allow_dups);
|
|
}
|
|
table++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
|
|
* the format: XXXa. So we can convert from a device to the corresponding
|
|
* channel like this
|
|
*/
|
|
#define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
|
|
|
|
static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
u8 saw_chan_mask = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
|
|
pvt->pci_sad1 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
|
|
pvt->pci_br0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
|
|
pvt->pci_ha = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
|
|
{
|
|
int id = TAD_DEV_TO_CHAN(pdev->device);
|
|
pvt->pci_tad[id] = pdev;
|
|
saw_chan_mask |= 1 << id;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
|
|
pdev->vendor, pdev->device,
|
|
sbridge_dev->bus,
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
|
|
!pvt->pci_ras || !pvt->pci_ta)
|
|
goto enodev;
|
|
|
|
if (saw_chan_mask != 0x0f)
|
|
goto enodev;
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
|
|
error:
|
|
sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
|
|
PCI_VENDOR_ID_INTEL, pdev->device);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
u8 saw_chan_mask = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
|
|
pvt->pci_ha = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
|
|
{
|
|
int id = TAD_DEV_TO_CHAN(pdev->device);
|
|
pvt->pci_tad[id] = pdev;
|
|
saw_chan_mask |= 1 << id;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
|
|
pvt->pci_br0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
|
|
pvt->pci_br1 = pdev;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
|
|
sbridge_dev->bus,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
|
|
!pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
|
|
goto enodev;
|
|
|
|
if (saw_chan_mask != 0x0f && /* -EN/-EX */
|
|
saw_chan_mask != 0x03) /* -EP */
|
|
goto enodev;
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
|
|
error:
|
|
sbridge_printk(KERN_ERR,
|
|
"Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
|
|
pdev->device);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
u8 saw_chan_mask = 0;
|
|
int i;
|
|
|
|
/* there's only one device per system; not tied to any bus */
|
|
if (pvt->info.pci_vtd == NULL)
|
|
/* result will be checked later */
|
|
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
|
|
NULL);
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
|
|
pvt->pci_sad1 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
|
|
pvt->pci_ha = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
|
|
{
|
|
int id = TAD_DEV_TO_CHAN(pdev->device);
|
|
pvt->pci_tad[id] = pdev;
|
|
saw_chan_mask |= 1 << id;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
|
|
case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
|
|
if (!pvt->pci_ddrio)
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
|
|
sbridge_dev->bus,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
|
|
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
|
|
goto enodev;
|
|
|
|
if (saw_chan_mask != 0x0f && /* -EN/-EX */
|
|
saw_chan_mask != 0x03) /* -EP */
|
|
goto enodev;
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
u8 saw_chan_mask = 0;
|
|
int i;
|
|
|
|
/* there's only one device per system; not tied to any bus */
|
|
if (pvt->info.pci_vtd == NULL)
|
|
/* result will be checked later */
|
|
pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
|
|
PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
|
|
NULL);
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
|
|
pvt->pci_sad1 = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
|
|
pvt->pci_ha = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
|
|
pvt->pci_ras = pdev;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
|
|
{
|
|
int id = TAD_DEV_TO_CHAN(pdev->device);
|
|
pvt->pci_tad[id] = pdev;
|
|
saw_chan_mask |= 1 << id;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
|
|
pvt->pci_ddrio = pdev;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
|
|
sbridge_dev->bus,
|
|
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
|
|
pdev);
|
|
}
|
|
|
|
/* Check if everything were registered */
|
|
if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
|
|
!pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
|
|
goto enodev;
|
|
|
|
if (saw_chan_mask != 0x0f && /* -EN/-EX */
|
|
saw_chan_mask != 0x03) /* -EP */
|
|
goto enodev;
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
static int knl_mci_bind_devs(struct mem_ctl_info *mci,
|
|
struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
struct pci_dev *pdev;
|
|
int dev, func;
|
|
|
|
int i;
|
|
int devidx;
|
|
|
|
for (i = 0; i < sbridge_dev->n_devs; i++) {
|
|
pdev = sbridge_dev->pdev[i];
|
|
if (!pdev)
|
|
continue;
|
|
|
|
/* Extract PCI device and function. */
|
|
dev = (pdev->devfn >> 3) & 0x1f;
|
|
func = pdev->devfn & 0x7;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
|
|
if (dev == 8)
|
|
pvt->knl.pci_mc0 = pdev;
|
|
else if (dev == 9)
|
|
pvt->knl.pci_mc1 = pdev;
|
|
else {
|
|
sbridge_printk(KERN_ERR,
|
|
"Memory controller in unexpected place! (dev %d, fn %d)\n",
|
|
dev, func);
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
|
|
pvt->pci_sad0 = pdev;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
|
|
pvt->pci_sad1 = pdev;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
|
|
/* There are one of these per tile, and range from
|
|
* 1.14.0 to 1.18.5.
|
|
*/
|
|
devidx = ((dev-14)*8)+func;
|
|
|
|
if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
|
|
sbridge_printk(KERN_ERR,
|
|
"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
|
|
dev, func);
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
|
|
|
|
pvt->knl.pci_cha[devidx] = pdev;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
|
|
devidx = -1;
|
|
|
|
/*
|
|
* MC0 channels 0-2 are device 9 function 2-4,
|
|
* MC1 channels 3-5 are device 8 function 2-4.
|
|
*/
|
|
|
|
if (dev == 9)
|
|
devidx = func-2;
|
|
else if (dev == 8)
|
|
devidx = 3 + (func-2);
|
|
|
|
if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
|
|
sbridge_printk(KERN_ERR,
|
|
"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
|
|
dev, func);
|
|
continue;
|
|
}
|
|
|
|
WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
|
|
pvt->knl.pci_channel[devidx] = pdev;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
|
|
pvt->knl.pci_mc_info = pdev;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
|
|
pvt->pci_ta = pdev;
|
|
break;
|
|
|
|
default:
|
|
sbridge_printk(KERN_ERR, "Unexpected device %d\n",
|
|
pdev->device);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
|
|
!pvt->pci_sad0 || !pvt->pci_sad1 ||
|
|
!pvt->pci_ta) {
|
|
goto enodev;
|
|
}
|
|
|
|
for (i = 0; i < KNL_MAX_CHANNELS; i++) {
|
|
if (!pvt->knl.pci_channel[i]) {
|
|
sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
|
|
goto enodev;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < KNL_MAX_CHAS; i++) {
|
|
if (!pvt->knl.pci_cha[i]) {
|
|
sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
|
|
goto enodev;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
enodev:
|
|
sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/****************************************************************************
|
|
Error check routines
|
|
****************************************************************************/
|
|
|
|
/*
|
|
* While Sandy Bridge has error count registers, SMI BIOS read values from
|
|
* and resets the counters. So, they are not reliable for the OS to read
|
|
* from them. So, we have no option but to just trust on whatever MCE is
|
|
* telling us about the errors.
|
|
*/
|
|
static void sbridge_mce_output_error(struct mem_ctl_info *mci,
|
|
const struct mce *m)
|
|
{
|
|
struct mem_ctl_info *new_mci;
|
|
struct sbridge_pvt *pvt = mci->pvt_info;
|
|
enum hw_event_mc_err_type tp_event;
|
|
char *optype, msg[256];
|
|
bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
|
|
bool overflow = GET_BITFIELD(m->status, 62, 62);
|
|
bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
|
|
bool recoverable;
|
|
u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
|
|
u32 mscod = GET_BITFIELD(m->status, 16, 31);
|
|
u32 errcode = GET_BITFIELD(m->status, 0, 15);
|
|
u32 channel = GET_BITFIELD(m->status, 0, 3);
|
|
u32 optypenum = GET_BITFIELD(m->status, 4, 6);
|
|
/*
|
|
* Bits 5-0 of MCi_MISC give the least significant bit that is valid.
|
|
* A value 6 is for cache line aligned address, a value 12 is for page
|
|
* aligned address reported by patrol scrubber.
|
|
*/
|
|
u32 lsb = GET_BITFIELD(m->misc, 0, 5);
|
|
long channel_mask, first_channel;
|
|
u8 rank = 0xff, socket, ha;
|
|
int rc, dimm;
|
|
char *area_type = "DRAM";
|
|
|
|
if (pvt->info.type != SANDY_BRIDGE)
|
|
recoverable = true;
|
|
else
|
|
recoverable = GET_BITFIELD(m->status, 56, 56);
|
|
|
|
if (uncorrected_error) {
|
|
core_err_cnt = 1;
|
|
if (ripv) {
|
|
tp_event = HW_EVENT_ERR_UNCORRECTED;
|
|
} else {
|
|
tp_event = HW_EVENT_ERR_FATAL;
|
|
}
|
|
} else {
|
|
tp_event = HW_EVENT_ERR_CORRECTED;
|
|
}
|
|
|
|
/*
|
|
* According with Table 15-9 of the Intel Architecture spec vol 3A,
|
|
* memory errors should fit in this mask:
|
|
* 000f 0000 1mmm cccc (binary)
|
|
* where:
|
|
* f = Correction Report Filtering Bit. If 1, subsequent errors
|
|
* won't be shown
|
|
* mmm = error type
|
|
* cccc = channel
|
|
* If the mask doesn't match, report an error to the parsing logic
|
|
*/
|
|
switch (optypenum) {
|
|
case 0:
|
|
optype = "generic undef request error";
|
|
break;
|
|
case 1:
|
|
optype = "memory read error";
|
|
break;
|
|
case 2:
|
|
optype = "memory write error";
|
|
break;
|
|
case 3:
|
|
optype = "addr/cmd error";
|
|
break;
|
|
case 4:
|
|
optype = "memory scrubbing error";
|
|
break;
|
|
default:
|
|
optype = "reserved";
|
|
break;
|
|
}
|
|
|
|
if (pvt->info.type == KNIGHTS_LANDING) {
|
|
if (channel == 14) {
|
|
edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable)
|
|
? " recoverable" : "",
|
|
mscod, errcode,
|
|
m->bank);
|
|
} else {
|
|
char A = *("A");
|
|
|
|
/*
|
|
* Reported channel is in range 0-2, so we can't map it
|
|
* back to mc. To figure out mc we check machine check
|
|
* bank register that reported this error.
|
|
* bank15 means mc0 and bank16 means mc1.
|
|
*/
|
|
channel = knl_channel_remap(m->bank == 16, channel);
|
|
channel_mask = 1 << channel;
|
|
|
|
snprintf(msg, sizeof(msg),
|
|
"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable)
|
|
? " recoverable" : " ",
|
|
mscod, errcode, channel, A + channel);
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
|
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
|
|
channel, 0, -1,
|
|
optype, msg);
|
|
}
|
|
return;
|
|
} else if (lsb < 12) {
|
|
rc = get_memory_error_data(mci, m->addr, &socket, &ha,
|
|
&channel_mask, &rank,
|
|
&area_type, msg);
|
|
} else {
|
|
rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
|
|
&channel_mask, msg);
|
|
}
|
|
|
|
if (rc < 0)
|
|
goto err_parsing;
|
|
new_mci = get_mci_for_node_id(socket, ha);
|
|
if (!new_mci) {
|
|
strcpy(msg, "Error: socket got corrupted!");
|
|
goto err_parsing;
|
|
}
|
|
mci = new_mci;
|
|
pvt = mci->pvt_info;
|
|
|
|
first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
|
|
|
|
if (rank == 0xff)
|
|
dimm = -1;
|
|
else if (rank < 4)
|
|
dimm = 0;
|
|
else if (rank < 8)
|
|
dimm = 1;
|
|
else
|
|
dimm = 2;
|
|
|
|
/*
|
|
* FIXME: On some memory configurations (mirror, lockstep), the
|
|
* Memory Controller can't point the error to a single DIMM. The
|
|
* EDAC core should be handling the channel mask, in order to point
|
|
* to the group of dimm's where the error may be happening.
|
|
*/
|
|
if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
|
|
channel = first_channel;
|
|
|
|
snprintf(msg, sizeof(msg),
|
|
"%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
|
|
overflow ? " OVERFLOW" : "",
|
|
(uncorrected_error && recoverable) ? " recoverable" : "",
|
|
area_type,
|
|
mscod, errcode,
|
|
socket, ha,
|
|
channel_mask,
|
|
rank);
|
|
|
|
edac_dbg(0, "%s\n", msg);
|
|
|
|
/* FIXME: need support for channel mask */
|
|
|
|
if (channel == CHANNEL_UNSPECIFIED)
|
|
channel = -1;
|
|
|
|
/* Call the helper to output message */
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt,
|
|
m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
|
|
channel, dimm, -1,
|
|
optype, msg);
|
|
return;
|
|
err_parsing:
|
|
edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
|
|
-1, -1, -1,
|
|
msg, "");
|
|
|
|
}
|
|
|
|
/*
|
|
* Check that logging is enabled and that this is the right type
|
|
* of error for us to handle.
|
|
*/
|
|
static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct mce *mce = (struct mce *)data;
|
|
struct mem_ctl_info *mci;
|
|
char *type;
|
|
|
|
if (mce->kflags & MCE_HANDLED_CEC)
|
|
return NOTIFY_DONE;
|
|
|
|
/*
|
|
* Just let mcelog handle it if the error is
|
|
* outside the memory controller. A memory error
|
|
* is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
|
|
* bit 12 has an special meaning.
|
|
*/
|
|
if ((mce->status & 0xefff) >> 7 != 1)
|
|
return NOTIFY_DONE;
|
|
|
|
/* Check ADDRV bit in STATUS */
|
|
if (!GET_BITFIELD(mce->status, 58, 58))
|
|
return NOTIFY_DONE;
|
|
|
|
/* Check MISCV bit in STATUS */
|
|
if (!GET_BITFIELD(mce->status, 59, 59))
|
|
return NOTIFY_DONE;
|
|
|
|
/* Check address type in MISC (physical address only) */
|
|
if (GET_BITFIELD(mce->misc, 6, 8) != 2)
|
|
return NOTIFY_DONE;
|
|
|
|
mci = get_mci_for_node_id(mce->socketid, IMC0);
|
|
if (!mci)
|
|
return NOTIFY_DONE;
|
|
|
|
if (mce->mcgstatus & MCG_STATUS_MCIP)
|
|
type = "Exception";
|
|
else
|
|
type = "Event";
|
|
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
|
|
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
|
|
"Bank %d: %016Lx\n", mce->extcpu, type,
|
|
mce->mcgstatus, mce->bank, mce->status);
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
|
|
|
|
sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
|
|
"%u APIC %x\n", mce->cpuvendor, mce->cpuid,
|
|
mce->time, mce->socketid, mce->apicid);
|
|
|
|
sbridge_mce_output_error(mci, mce);
|
|
|
|
/* Advice mcelog that the error were handled */
|
|
mce->kflags |= MCE_HANDLED_EDAC;
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block sbridge_mce_dec = {
|
|
.notifier_call = sbridge_mce_check_error,
|
|
.priority = MCE_PRIO_EDAC,
|
|
};
|
|
|
|
/****************************************************************************
|
|
EDAC register/unregister logic
|
|
****************************************************************************/
|
|
|
|
static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
|
|
{
|
|
struct mem_ctl_info *mci = sbridge_dev->mci;
|
|
|
|
if (unlikely(!mci || !mci->pvt_info)) {
|
|
edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
|
|
|
|
sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
|
|
return;
|
|
}
|
|
|
|
edac_dbg(0, "MC: mci = %p, dev = %p\n",
|
|
mci, &sbridge_dev->pdev[0]->dev);
|
|
|
|
/* Remove MC sysfs nodes */
|
|
edac_mc_del_mc(mci->pdev);
|
|
|
|
edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
|
|
kfree(mci->ctl_name);
|
|
edac_mc_free(mci);
|
|
sbridge_dev->mci = NULL;
|
|
}
|
|
|
|
static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
|
|
{
|
|
struct mem_ctl_info *mci;
|
|
struct edac_mc_layer layers[2];
|
|
struct sbridge_pvt *pvt;
|
|
struct pci_dev *pdev = sbridge_dev->pdev[0];
|
|
int rc;
|
|
|
|
/* allocate a new MC control structure */
|
|
layers[0].type = EDAC_MC_LAYER_CHANNEL;
|
|
layers[0].size = type == KNIGHTS_LANDING ?
|
|
KNL_MAX_CHANNELS : NUM_CHANNELS;
|
|
layers[0].is_virt_csrow = false;
|
|
layers[1].type = EDAC_MC_LAYER_SLOT;
|
|
layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
|
|
layers[1].is_virt_csrow = true;
|
|
mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
|
|
sizeof(*pvt));
|
|
|
|
if (unlikely(!mci))
|
|
return -ENOMEM;
|
|
|
|
edac_dbg(0, "MC: mci = %p, dev = %p\n",
|
|
mci, &pdev->dev);
|
|
|
|
pvt = mci->pvt_info;
|
|
memset(pvt, 0, sizeof(*pvt));
|
|
|
|
/* Associate sbridge_dev and mci for future usage */
|
|
pvt->sbridge_dev = sbridge_dev;
|
|
sbridge_dev->mci = mci;
|
|
|
|
mci->mtype_cap = type == KNIGHTS_LANDING ?
|
|
MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
|
|
mci->edac_ctl_cap = EDAC_FLAG_NONE;
|
|
mci->edac_cap = EDAC_FLAG_NONE;
|
|
mci->mod_name = EDAC_MOD_STR;
|
|
mci->dev_name = pci_name(pdev);
|
|
mci->ctl_page_to_phys = NULL;
|
|
|
|
pvt->info.type = type;
|
|
switch (type) {
|
|
case IVY_BRIDGE:
|
|
pvt->info.rankcfgr = IB_RANK_CFG_A;
|
|
pvt->info.get_tolm = ibridge_get_tolm;
|
|
pvt->info.get_tohm = ibridge_get_tohm;
|
|
pvt->info.dram_rule = ibridge_dram_rule;
|
|
pvt->info.get_memory_type = get_memory_type;
|
|
pvt->info.get_node_id = get_node_id;
|
|
pvt->info.get_ha = ibridge_get_ha;
|
|
pvt->info.rir_limit = rir_limit;
|
|
pvt->info.sad_limit = sad_limit;
|
|
pvt->info.interleave_mode = interleave_mode;
|
|
pvt->info.dram_attr = dram_attr;
|
|
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
|
|
pvt->info.interleave_list = ibridge_interleave_list;
|
|
pvt->info.interleave_pkg = ibridge_interleave_pkg;
|
|
pvt->info.get_width = ibridge_get_width;
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = ibridge_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
get_source_id(mci);
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
|
|
break;
|
|
case SANDY_BRIDGE:
|
|
pvt->info.rankcfgr = SB_RANK_CFG_A;
|
|
pvt->info.get_tolm = sbridge_get_tolm;
|
|
pvt->info.get_tohm = sbridge_get_tohm;
|
|
pvt->info.dram_rule = sbridge_dram_rule;
|
|
pvt->info.get_memory_type = get_memory_type;
|
|
pvt->info.get_node_id = get_node_id;
|
|
pvt->info.get_ha = sbridge_get_ha;
|
|
pvt->info.rir_limit = rir_limit;
|
|
pvt->info.sad_limit = sad_limit;
|
|
pvt->info.interleave_mode = interleave_mode;
|
|
pvt->info.dram_attr = dram_attr;
|
|
pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
|
|
pvt->info.interleave_list = sbridge_interleave_list;
|
|
pvt->info.interleave_pkg = sbridge_interleave_pkg;
|
|
pvt->info.get_width = sbridge_get_width;
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = sbridge_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
get_source_id(mci);
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
|
|
break;
|
|
case HASWELL:
|
|
/* rankcfgr isn't used */
|
|
pvt->info.get_tolm = haswell_get_tolm;
|
|
pvt->info.get_tohm = haswell_get_tohm;
|
|
pvt->info.dram_rule = ibridge_dram_rule;
|
|
pvt->info.get_memory_type = haswell_get_memory_type;
|
|
pvt->info.get_node_id = haswell_get_node_id;
|
|
pvt->info.get_ha = ibridge_get_ha;
|
|
pvt->info.rir_limit = haswell_rir_limit;
|
|
pvt->info.sad_limit = sad_limit;
|
|
pvt->info.interleave_mode = interleave_mode;
|
|
pvt->info.dram_attr = dram_attr;
|
|
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
|
|
pvt->info.interleave_list = ibridge_interleave_list;
|
|
pvt->info.interleave_pkg = ibridge_interleave_pkg;
|
|
pvt->info.get_width = ibridge_get_width;
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = haswell_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
get_source_id(mci);
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
|
|
break;
|
|
case BROADWELL:
|
|
/* rankcfgr isn't used */
|
|
pvt->info.get_tolm = haswell_get_tolm;
|
|
pvt->info.get_tohm = haswell_get_tohm;
|
|
pvt->info.dram_rule = ibridge_dram_rule;
|
|
pvt->info.get_memory_type = haswell_get_memory_type;
|
|
pvt->info.get_node_id = haswell_get_node_id;
|
|
pvt->info.get_ha = ibridge_get_ha;
|
|
pvt->info.rir_limit = haswell_rir_limit;
|
|
pvt->info.sad_limit = sad_limit;
|
|
pvt->info.interleave_mode = interleave_mode;
|
|
pvt->info.dram_attr = dram_attr;
|
|
pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
|
|
pvt->info.interleave_list = ibridge_interleave_list;
|
|
pvt->info.interleave_pkg = ibridge_interleave_pkg;
|
|
pvt->info.get_width = broadwell_get_width;
|
|
|
|
/* Store pci devices at mci for faster access */
|
|
rc = broadwell_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
get_source_id(mci);
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
|
|
break;
|
|
case KNIGHTS_LANDING:
|
|
/* pvt->info.rankcfgr == ??? */
|
|
pvt->info.get_tolm = knl_get_tolm;
|
|
pvt->info.get_tohm = knl_get_tohm;
|
|
pvt->info.dram_rule = knl_dram_rule;
|
|
pvt->info.get_memory_type = knl_get_memory_type;
|
|
pvt->info.get_node_id = knl_get_node_id;
|
|
pvt->info.get_ha = knl_get_ha;
|
|
pvt->info.rir_limit = NULL;
|
|
pvt->info.sad_limit = knl_sad_limit;
|
|
pvt->info.interleave_mode = knl_interleave_mode;
|
|
pvt->info.dram_attr = dram_attr_knl;
|
|
pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
|
|
pvt->info.interleave_list = knl_interleave_list;
|
|
pvt->info.interleave_pkg = ibridge_interleave_pkg;
|
|
pvt->info.get_width = knl_get_width;
|
|
|
|
rc = knl_mci_bind_devs(mci, sbridge_dev);
|
|
if (unlikely(rc < 0))
|
|
goto fail0;
|
|
get_source_id(mci);
|
|
mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
|
|
pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
|
|
break;
|
|
}
|
|
|
|
if (!mci->ctl_name) {
|
|
rc = -ENOMEM;
|
|
goto fail0;
|
|
}
|
|
|
|
/* Get dimm basic config and the memory layout */
|
|
rc = get_dimm_config(mci);
|
|
if (rc < 0) {
|
|
edac_dbg(0, "MC: failed to get_dimm_config()\n");
|
|
goto fail;
|
|
}
|
|
get_memory_layout(mci);
|
|
|
|
/* record ptr to the generic device */
|
|
mci->pdev = &pdev->dev;
|
|
|
|
/* add this new MC control structure to EDAC's list of MCs */
|
|
if (unlikely(edac_mc_add_mc(mci))) {
|
|
edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
|
|
rc = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
kfree(mci->ctl_name);
|
|
fail0:
|
|
edac_mc_free(mci);
|
|
sbridge_dev->mci = NULL;
|
|
return rc;
|
|
}
|
|
|
|
static const struct x86_cpu_id sbridge_cpuids[] = {
|
|
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &pci_dev_descr_ibridge_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &pci_dev_descr_haswell_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &pci_dev_descr_broadwell_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &pci_dev_descr_broadwell_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &pci_dev_descr_knl_table),
|
|
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &pci_dev_descr_knl_table),
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
|
|
|
|
/*
|
|
* sbridge_probe Get all devices and register memory controllers
|
|
* present.
|
|
* return:
|
|
* 0 for FOUND a device
|
|
* < 0 for error code
|
|
*/
|
|
|
|
static int sbridge_probe(const struct x86_cpu_id *id)
|
|
{
|
|
int rc = -ENODEV;
|
|
u8 mc, num_mc = 0;
|
|
struct sbridge_dev *sbridge_dev;
|
|
struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
|
|
|
|
/* get the pci devices we want to reserve for our use */
|
|
rc = sbridge_get_all_devices(&num_mc, ptable);
|
|
|
|
if (unlikely(rc < 0)) {
|
|
edac_dbg(0, "couldn't get all devices\n");
|
|
goto fail0;
|
|
}
|
|
|
|
mc = 0;
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
|
|
edac_dbg(0, "Registering MC#%d (%d of %d)\n",
|
|
mc, mc + 1, num_mc);
|
|
|
|
sbridge_dev->mc = mc++;
|
|
rc = sbridge_register_mci(sbridge_dev, ptable->type);
|
|
if (unlikely(rc < 0))
|
|
goto fail1;
|
|
}
|
|
|
|
sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
|
|
|
|
return 0;
|
|
|
|
fail1:
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
|
|
sbridge_unregister_mci(sbridge_dev);
|
|
|
|
sbridge_put_all_devices();
|
|
fail0:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* sbridge_remove cleanup
|
|
*
|
|
*/
|
|
static void sbridge_remove(void)
|
|
{
|
|
struct sbridge_dev *sbridge_dev;
|
|
|
|
edac_dbg(0, "\n");
|
|
|
|
list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
|
|
sbridge_unregister_mci(sbridge_dev);
|
|
|
|
/* Release PCI resources */
|
|
sbridge_put_all_devices();
|
|
}
|
|
|
|
/*
|
|
* sbridge_init Module entry function
|
|
* Try to initialize this module for its devices
|
|
*/
|
|
static int __init sbridge_init(void)
|
|
{
|
|
const struct x86_cpu_id *id;
|
|
const char *owner;
|
|
int rc;
|
|
|
|
edac_dbg(2, "\n");
|
|
|
|
owner = edac_get_owner();
|
|
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
|
|
return -EBUSY;
|
|
|
|
id = x86_match_cpu(sbridge_cpuids);
|
|
if (!id)
|
|
return -ENODEV;
|
|
|
|
/* Ensure that the OPSTATE is set correctly for POLL or NMI */
|
|
opstate_init();
|
|
|
|
rc = sbridge_probe(id);
|
|
|
|
if (rc >= 0) {
|
|
mce_register_decode_chain(&sbridge_mce_dec);
|
|
return 0;
|
|
}
|
|
|
|
sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
|
|
rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* sbridge_exit() Module exit function
|
|
* Unregister the driver
|
|
*/
|
|
static void __exit sbridge_exit(void)
|
|
{
|
|
edac_dbg(2, "\n");
|
|
sbridge_remove();
|
|
mce_unregister_decode_chain(&sbridge_mce_dec);
|
|
}
|
|
|
|
module_init(sbridge_init);
|
|
module_exit(sbridge_exit);
|
|
|
|
module_param(edac_op_state, int, 0444);
|
|
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mauro Carvalho Chehab");
|
|
MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
|
|
MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
|
|
SBRIDGE_REVISION);
|