linux/drivers/fsi/fsi-master.h

162 lines
5.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* FSI master definitions. These comprise the core <--> master interface,
* to allow the core to interact with the (hardware-specific) masters.
*
* Copyright (C) IBM Corporation 2016
*/
#ifndef DRIVERS_FSI_MASTER_H
#define DRIVERS_FSI_MASTER_H
#include <linux/device.h>
#include <linux/mutex.h>
/*
* Master registers
*
* These are used by hardware masters, such as the one in the FSP2, AST2600 and
* the hub master in POWER processors.
*/
/* Control Registers */
#define FSI_MMODE 0x0 /* R/W: mode */
#define FSI_MDLYR 0x4 /* R/W: delay */
#define FSI_MCRSP 0x8 /* R/W: clock rate */
#define FSI_MENP0 0x10 /* R/W: enable */
#define FSI_MLEVP0 0x18 /* R: plug detect */
#define FSI_MSENP0 0x18 /* S: Set enable */
#define FSI_MCENP0 0x20 /* C: Clear enable */
#define FSI_MAEB 0x70 /* R: Error address */
#define FSI_MVER 0x74 /* R: master version/type */
#define FSI_MSTAP0 0xd0 /* R: Port status */
#define FSI_MRESP0 0xd0 /* W: Port reset */
#define FSI_MESRB0 0x1d0 /* R: Master error status */
#define FSI_MRESB0 0x1d0 /* W: Reset bridge */
#define FSI_MSCSB0 0x1d4 /* R: Master sub command stack */
#define FSI_MATRB0 0x1d8 /* R: Master address trace */
#define FSI_MDTRB0 0x1dc /* R: Master data trace */
#define FSI_MECTRL 0x2e0 /* W: Error control */
/* MMODE: Mode control */
#define FSI_MMODE_EIP 0x80000000 /* Enable interrupt polling */
#define FSI_MMODE_ECRC 0x40000000 /* Enable error recovery */
#define FSI_MMODE_RELA 0x20000000 /* Enable relative address commands */
#define FSI_MMODE_EPC 0x10000000 /* Enable parity checking */
#define FSI_MMODE_P8_TO_LSB 0x00000010 /* Timeout value LSB */
/* MSB=1, LSB=0 is 0.8 ms */
/* MSB=0, LSB=1 is 0.9 ms */
#define FSI_MMODE_CRS0SHFT 18 /* Clk rate selection 0 shift */
#define FSI_MMODE_CRS0MASK 0x3ff /* Clk rate selection 0 mask */
#define FSI_MMODE_CRS1SHFT 8 /* Clk rate selection 1 shift */
#define FSI_MMODE_CRS1MASK 0x3ff /* Clk rate selection 1 mask */
/* MRESB: Reset brindge */
#define FSI_MRESB_RST_GEN 0x80000000 /* General reset */
#define FSI_MRESB_RST_ERR 0x40000000 /* Error Reset */
/* MRESP: Reset port */
#define FSI_MRESP_RST_ALL_MASTER 0x20000000 /* Reset all FSI masters */
#define FSI_MRESP_RST_ALL_LINK 0x10000000 /* Reset all FSI port contr. */
#define FSI_MRESP_RST_MCR 0x08000000 /* Reset FSI master reg. */
#define FSI_MRESP_RST_PYE 0x04000000 /* Reset FSI parity error */
#define FSI_MRESP_RST_ALL 0xfc000000 /* Reset any error */
/* MECTRL: Error control */
#define FSI_MECTRL_EOAE 0x8000 /* Enable machine check when */
/* master 0 in error */
#define FSI_MECTRL_P8_AUTO_TERM 0x4000 /* Auto terminate */
#define FSI_HUB_LINK_OFFSET 0x80000
#define FSI_HUB_LINK_SIZE 0x80000
#define FSI_HUB_MASTER_MAX_LINKS 8
/*
* Protocol definitions
*
* These are used by low level masters that bit-bang out the protocol
*/
/* Various protocol delays */
#define FSI_ECHO_DELAY_CLOCKS 16 /* Number clocks for echo delay */
#define FSI_SEND_DELAY_CLOCKS 16 /* Number clocks for send delay */
#define FSI_PRE_BREAK_CLOCKS 50 /* Number clocks to prep for break */
#define FSI_BREAK_CLOCKS 256 /* Number of clocks to issue break */
#define FSI_POST_BREAK_CLOCKS 16000 /* Number clocks to set up cfam */
#define FSI_INIT_CLOCKS 5000 /* Clock out any old data */
#define FSI_MASTER_DPOLL_CLOCKS 50 /* < 21 will cause slave to hang */
#define FSI_MASTER_EPOLL_CLOCKS 50 /* Number of clocks for E_POLL retry */
/* Various retry maximums */
#define FSI_CRC_ERR_RETRIES 10
#define FSI_MASTER_MAX_BUSY 200
#define FSI_MASTER_MTOE_COUNT 1000
/* Command encodings */
#define FSI_CMD_DPOLL 0x2
#define FSI_CMD_EPOLL 0x3
#define FSI_CMD_TERM 0x3f
#define FSI_CMD_ABS_AR 0x4
#define FSI_CMD_REL_AR 0x5
#define FSI_CMD_SAME_AR 0x3 /* but only a 2-bit opcode... */
/* Slave responses */
#define FSI_RESP_ACK 0 /* Success */
#define FSI_RESP_BUSY 1 /* Slave busy */
#define FSI_RESP_ERRA 2 /* Any (misc) Error */
#define FSI_RESP_ERRC 3 /* Slave reports master CRC error */
/* Misc */
#define FSI_CRC_SIZE 4
/* fsi-master definition and flags */
#define FSI_MASTER_FLAG_SWCLOCK 0x1
/*
* Structures and function prototypes
*
* These are common to all masters
*/
struct fsi_master {
struct device dev;
int idx;
int n_links;
int flags;
struct mutex scan_lock;
int (*read)(struct fsi_master *, int link, uint8_t id,
uint32_t addr, void *val, size_t size);
int (*write)(struct fsi_master *, int link, uint8_t id,
uint32_t addr, const void *val, size_t size);
int (*term)(struct fsi_master *, int link, uint8_t id);
int (*send_break)(struct fsi_master *, int link);
int (*link_enable)(struct fsi_master *, int link,
bool enable);
int (*link_config)(struct fsi_master *, int link,
u8 t_send_delay, u8 t_echo_delay);
};
#define dev_to_fsi_master(d) container_of(d, struct fsi_master, dev)
/**
* fsi_master registration & lifetime: the fsi_master_register() and
* fsi_master_unregister() functions will take ownership of the master, and
* ->dev in particular. The registration path performs a get_device(), which
* takes the first reference on the device. Similarly, the unregistration path
* performs a put_device(), which may well drop the last reference.
*
* This means that master implementations *may* need to hold their own
* reference (via get_device()) on master->dev. In particular, if the device's
* ->release callback frees the fsi_master, then fsi_master_unregister will
* invoke this free if no other reference is held.
*
* The same applies for the error path of fsi_master_register; if the call
* fails, dev->release will have been invoked.
*/
extern int fsi_master_register(struct fsi_master *master);
extern void fsi_master_unregister(struct fsi_master *master);
extern int fsi_master_rescan(struct fsi_master *master);
#endif /* DRIVERS_FSI_MASTER_H */