mirror of https://gitee.com/openkylin/linux.git
1349 lines
34 KiB
C
1349 lines
34 KiB
C
/*
|
|
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
|
|
*
|
|
* Authors:
|
|
* Alexander Graf <agraf@suse.de>
|
|
* Kevin Wolf <mail@kevin-wolf.de>
|
|
* Paul Mackerras <paulus@samba.org>
|
|
*
|
|
* Description:
|
|
* Functions relating to running KVM on Book 3S processors where
|
|
* we don't have access to hypervisor mode, and we run the guest
|
|
* in problem state (user mode).
|
|
*
|
|
* This file is derived from arch/powerpc/kvm/44x.c,
|
|
* by Hollis Blanchard <hollisb@us.ibm.com>.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License, version 2, as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <linux/export.h>
|
|
#include <linux/err.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/reg.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
#include <asm/kvm_ppc.h>
|
|
#include <asm/kvm_book3s.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/switch_to.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/hvcall.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include "trace.h"
|
|
|
|
/* #define EXIT_DEBUG */
|
|
/* #define DEBUG_EXT */
|
|
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr);
|
|
|
|
/* Some compatibility defines */
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
#define MSR_USER32 MSR_USER
|
|
#define MSR_USER64 MSR_USER
|
|
#define HW_PAGE_SIZE PAGE_SIZE
|
|
#endif
|
|
|
|
void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
|
|
memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
|
|
sizeof(get_paca()->shadow_vcpu));
|
|
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
vcpu->cpu = smp_processor_id();
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
|
|
#endif
|
|
}
|
|
|
|
void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
|
|
memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
|
|
sizeof(get_paca()->shadow_vcpu));
|
|
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
|
|
svcpu_put(svcpu);
|
|
#endif
|
|
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
vcpu->cpu = -1;
|
|
}
|
|
|
|
int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
|
|
{
|
|
int r = 1; /* Indicate we want to get back into the guest */
|
|
|
|
/* We misuse TLB_FLUSH to indicate that we want to clear
|
|
all shadow cache entries */
|
|
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return r;
|
|
}
|
|
|
|
/************* MMU Notifiers *************/
|
|
|
|
int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
trace_kvm_unmap_hva(hva);
|
|
|
|
/*
|
|
* Flush all shadow tlb entries everywhere. This is slow, but
|
|
* we are 100% sure that we catch the to be unmapped page
|
|
*/
|
|
kvm_flush_remote_tlbs(kvm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
|
|
{
|
|
/* kvm_unmap_hva flushes everything anyways */
|
|
kvm_unmap_hva(kvm, start);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
|
|
{
|
|
/* XXX could be more clever ;) */
|
|
return 0;
|
|
}
|
|
|
|
void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
|
|
{
|
|
/* The page will get remapped properly on its next fault */
|
|
kvm_unmap_hva(kvm, hva);
|
|
}
|
|
|
|
/*****************************************/
|
|
|
|
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong smsr = vcpu->arch.shared->msr;
|
|
|
|
/* Guest MSR values */
|
|
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
|
|
/* Process MSR values */
|
|
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
|
|
/* External providers the guest reserved */
|
|
smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
|
|
/* 64-bit Process MSR values */
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
smsr |= MSR_ISF | MSR_HV;
|
|
#endif
|
|
vcpu->arch.shadow_msr = smsr;
|
|
}
|
|
|
|
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
|
|
{
|
|
ulong old_msr = vcpu->arch.shared->msr;
|
|
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
|
|
#endif
|
|
|
|
msr &= to_book3s(vcpu)->msr_mask;
|
|
vcpu->arch.shared->msr = msr;
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
if (msr & MSR_POW) {
|
|
if (!vcpu->arch.pending_exceptions) {
|
|
kvm_vcpu_block(vcpu);
|
|
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
|
|
vcpu->stat.halt_wakeup++;
|
|
|
|
/* Unset POW bit after we woke up */
|
|
msr &= ~MSR_POW;
|
|
vcpu->arch.shared->msr = msr;
|
|
}
|
|
}
|
|
|
|
if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
|
|
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
|
|
kvmppc_mmu_flush_segments(vcpu);
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
|
|
/* Preload magic page segment when in kernel mode */
|
|
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
|
|
struct kvm_vcpu_arch *a = &vcpu->arch;
|
|
|
|
if (msr & MSR_DR)
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
|
|
else
|
|
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When switching from 32 to 64-bit, we may have a stale 32-bit
|
|
* magic page around, we need to flush it. Typically 32-bit magic
|
|
* page will be instanciated when calling into RTAS. Note: We
|
|
* assume that such transition only happens while in kernel mode,
|
|
* ie, we never transition from user 32-bit to kernel 64-bit with
|
|
* a 32-bit magic page around.
|
|
*/
|
|
if (vcpu->arch.magic_page_pa &&
|
|
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
|
|
/* going from RTAS to normal kernel code */
|
|
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
|
|
~0xFFFUL);
|
|
}
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (vcpu->arch.shared->msr & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
}
|
|
|
|
void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
|
|
{
|
|
u32 host_pvr;
|
|
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
|
|
vcpu->arch.pvr = pvr;
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
|
|
kvmppc_mmu_book3s_64_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0xfff00000;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_64;
|
|
} else
|
|
#endif
|
|
{
|
|
kvmppc_mmu_book3s_32_init(vcpu);
|
|
if (!to_book3s(vcpu)->hior_explicit)
|
|
to_book3s(vcpu)->hior = 0;
|
|
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
|
|
vcpu->arch.cpu_type = KVM_CPU_3S_32;
|
|
}
|
|
|
|
kvmppc_sanity_check(vcpu);
|
|
|
|
/* If we are in hypervisor level on 970, we can tell the CPU to
|
|
* treat DCBZ as 32 bytes store */
|
|
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
|
|
!strcmp(cur_cpu_spec->platform, "ppc970"))
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
|
|
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
|
|
really needs them in a VM on Cell and force disable them. */
|
|
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
|
|
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* 32 bit Book3S always has 32 byte dcbz */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
|
|
#endif
|
|
|
|
/* On some CPUs we can execute paired single operations natively */
|
|
asm ( "mfpvr %0" : "=r"(host_pvr));
|
|
switch (host_pvr) {
|
|
case 0x00080200: /* lonestar 2.0 */
|
|
case 0x00088202: /* lonestar 2.2 */
|
|
case 0x70000100: /* gekko 1.0 */
|
|
case 0x00080100: /* gekko 2.0 */
|
|
case 0x00083203: /* gekko 2.3a */
|
|
case 0x00083213: /* gekko 2.3b */
|
|
case 0x00083204: /* gekko 2.4 */
|
|
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
|
|
case 0x00087200: /* broadway */
|
|
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
|
|
/* Enable HID2.PSE - in case we need it later */
|
|
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
|
|
}
|
|
}
|
|
|
|
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
|
|
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
|
|
* emulate 32 bytes dcbz length.
|
|
*
|
|
* The Book3s_64 inventors also realized this case and implemented a special bit
|
|
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
|
|
*
|
|
* My approach here is to patch the dcbz instruction on executing pages.
|
|
*/
|
|
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
|
|
{
|
|
struct page *hpage;
|
|
u64 hpage_offset;
|
|
u32 *page;
|
|
int i;
|
|
|
|
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
|
|
if (is_error_page(hpage))
|
|
return;
|
|
|
|
hpage_offset = pte->raddr & ~PAGE_MASK;
|
|
hpage_offset &= ~0xFFFULL;
|
|
hpage_offset /= 4;
|
|
|
|
get_page(hpage);
|
|
page = kmap_atomic(hpage);
|
|
|
|
/* patch dcbz into reserved instruction, so we trap */
|
|
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
|
|
if ((page[i] & 0xff0007ff) == INS_DCBZ)
|
|
page[i] &= 0xfffffff7;
|
|
|
|
kunmap_atomic(page);
|
|
put_page(hpage);
|
|
}
|
|
|
|
static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
ulong mp_pa = vcpu->arch.magic_page_pa;
|
|
|
|
if (!(vcpu->arch.shared->msr & MSR_SF))
|
|
mp_pa = (uint32_t)mp_pa;
|
|
|
|
if (unlikely(mp_pa) &&
|
|
unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
|
|
return 1;
|
|
}
|
|
|
|
return kvm_is_visible_gfn(vcpu->kvm, gfn);
|
|
}
|
|
|
|
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
ulong eaddr, int vec)
|
|
{
|
|
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
|
|
int r = RESUME_GUEST;
|
|
int relocated;
|
|
int page_found = 0;
|
|
struct kvmppc_pte pte;
|
|
bool is_mmio = false;
|
|
bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
|
|
bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
|
|
u64 vsid;
|
|
|
|
relocated = data ? dr : ir;
|
|
|
|
/* Resolve real address if translation turned on */
|
|
if (relocated) {
|
|
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
|
|
} else {
|
|
pte.may_execute = true;
|
|
pte.may_read = true;
|
|
pte.may_write = true;
|
|
pte.raddr = eaddr & KVM_PAM;
|
|
pte.eaddr = eaddr;
|
|
pte.vpage = eaddr >> 12;
|
|
}
|
|
|
|
switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
|
|
case 0:
|
|
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
|
|
break;
|
|
case MSR_DR:
|
|
case MSR_IR:
|
|
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
|
|
|
|
if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
|
|
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
|
|
else
|
|
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
|
|
pte.vpage |= vsid;
|
|
|
|
if (vsid == -1)
|
|
page_found = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* If we do the dcbz hack, we have to NX on every execution,
|
|
* so we can patch the executing code. This renders our guest
|
|
* NX-less.
|
|
*/
|
|
pte.may_execute = !data;
|
|
}
|
|
|
|
if (page_found == -ENOENT) {
|
|
/* Page not found in guest PTE entries */
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
vcpu->arch.shared->dsisr = svcpu->fault_dsisr;
|
|
vcpu->arch.shared->msr |=
|
|
(svcpu->shadow_srr1 & 0x00000000f8000000ULL);
|
|
svcpu_put(svcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EPERM) {
|
|
/* Storage protection */
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE;
|
|
vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
|
|
vcpu->arch.shared->msr |=
|
|
svcpu->shadow_srr1 & 0x00000000f8000000ULL;
|
|
svcpu_put(svcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec);
|
|
} else if (page_found == -EINVAL) {
|
|
/* Page not found in guest SLB */
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
|
|
} else if (!is_mmio &&
|
|
kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
|
|
/* The guest's PTE is not mapped yet. Map on the host */
|
|
kvmppc_mmu_map_page(vcpu, &pte);
|
|
if (data)
|
|
vcpu->stat.sp_storage++;
|
|
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
|
|
kvmppc_patch_dcbz(vcpu, &pte);
|
|
} else {
|
|
/* MMIO */
|
|
vcpu->stat.mmio_exits++;
|
|
vcpu->arch.paddr_accessed = pte.raddr;
|
|
vcpu->arch.vaddr_accessed = pte.eaddr;
|
|
r = kvmppc_emulate_mmio(run, vcpu);
|
|
if ( r == RESUME_HOST_NV )
|
|
r = RESUME_HOST;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline int get_fpr_index(int i)
|
|
{
|
|
return i * TS_FPRWIDTH;
|
|
}
|
|
|
|
/* Give up external provider (FPU, Altivec, VSX) */
|
|
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
u64 *vcpu_fpr = vcpu->arch.fpr;
|
|
#ifdef CONFIG_VSX
|
|
u64 *vcpu_vsx = vcpu->arch.vsr;
|
|
#endif
|
|
u64 *thread_fpr = (u64*)t->fpr;
|
|
int i;
|
|
|
|
/*
|
|
* VSX instructions can access FP and vector registers, so if
|
|
* we are giving up VSX, make sure we give up FP and VMX as well.
|
|
*/
|
|
if (msr & MSR_VSX)
|
|
msr |= MSR_FP | MSR_VEC;
|
|
|
|
msr &= vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
if (msr & MSR_FP) {
|
|
/*
|
|
* Note that on CPUs with VSX, giveup_fpu stores
|
|
* both the traditional FP registers and the added VSX
|
|
* registers into thread.fpr[].
|
|
*/
|
|
giveup_fpu(current);
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
|
|
vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
|
|
|
|
vcpu->arch.fpscr = t->fpscr.val;
|
|
|
|
#ifdef CONFIG_VSX
|
|
if (cpu_has_feature(CPU_FTR_VSX))
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
|
|
vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
if (msr & MSR_VEC) {
|
|
giveup_altivec(current);
|
|
memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
|
|
vcpu->arch.vscr = t->vscr;
|
|
}
|
|
#endif
|
|
|
|
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
}
|
|
|
|
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
|
|
{
|
|
ulong srr0 = kvmppc_get_pc(vcpu);
|
|
u32 last_inst = kvmppc_get_last_inst(vcpu);
|
|
int ret;
|
|
|
|
ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
|
|
if (ret == -ENOENT) {
|
|
ulong msr = vcpu->arch.shared->msr;
|
|
|
|
msr = kvmppc_set_field(msr, 33, 33, 1);
|
|
msr = kvmppc_set_field(msr, 34, 36, 0);
|
|
vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
|
|
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
return EMULATE_DONE;
|
|
}
|
|
|
|
static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
|
|
{
|
|
|
|
/* Need to do paired single emulation? */
|
|
if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
|
|
return EMULATE_DONE;
|
|
|
|
/* Read out the instruction */
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
|
|
/* Need to emulate */
|
|
return EMULATE_FAIL;
|
|
|
|
return EMULATE_AGAIN;
|
|
}
|
|
|
|
/* Handle external providers (FPU, Altivec, VSX) */
|
|
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
|
|
ulong msr)
|
|
{
|
|
struct thread_struct *t = ¤t->thread;
|
|
u64 *vcpu_fpr = vcpu->arch.fpr;
|
|
#ifdef CONFIG_VSX
|
|
u64 *vcpu_vsx = vcpu->arch.vsr;
|
|
#endif
|
|
u64 *thread_fpr = (u64*)t->fpr;
|
|
int i;
|
|
|
|
/* When we have paired singles, we emulate in software */
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
|
|
return RESUME_GUEST;
|
|
|
|
if (!(vcpu->arch.shared->msr & msr)) {
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
if (msr == MSR_VSX) {
|
|
/* No VSX? Give an illegal instruction interrupt */
|
|
#ifdef CONFIG_VSX
|
|
if (!cpu_has_feature(CPU_FTR_VSX))
|
|
#endif
|
|
{
|
|
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
/*
|
|
* We have to load up all the FP and VMX registers before
|
|
* we can let the guest use VSX instructions.
|
|
*/
|
|
msr = MSR_FP | MSR_VEC | MSR_VSX;
|
|
}
|
|
|
|
/* See if we already own all the ext(s) needed */
|
|
msr &= ~vcpu->arch.guest_owned_ext;
|
|
if (!msr)
|
|
return RESUME_GUEST;
|
|
|
|
#ifdef DEBUG_EXT
|
|
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
|
|
#endif
|
|
|
|
current->thread.regs->msr |= msr;
|
|
|
|
if (msr & MSR_FP) {
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
|
|
thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
|
|
#ifdef CONFIG_VSX
|
|
for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
|
|
thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
|
|
#endif
|
|
t->fpscr.val = vcpu->arch.fpscr;
|
|
t->fpexc_mode = 0;
|
|
kvmppc_load_up_fpu();
|
|
}
|
|
|
|
if (msr & MSR_VEC) {
|
|
#ifdef CONFIG_ALTIVEC
|
|
memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
|
|
t->vscr = vcpu->arch.vscr;
|
|
t->vrsave = -1;
|
|
kvmppc_load_up_altivec();
|
|
#endif
|
|
}
|
|
|
|
vcpu->arch.guest_owned_ext |= msr;
|
|
kvmppc_recalc_shadow_msr(vcpu);
|
|
|
|
return RESUME_GUEST;
|
|
}
|
|
|
|
int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
|
|
unsigned int exit_nr)
|
|
{
|
|
int r = RESUME_HOST;
|
|
int s;
|
|
|
|
vcpu->stat.sum_exits++;
|
|
|
|
run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
run->ready_for_interrupt_injection = 1;
|
|
|
|
/* We get here with MSR.EE=1 */
|
|
|
|
trace_kvm_exit(exit_nr, vcpu);
|
|
kvm_guest_exit();
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_INST_STORAGE:
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
ulong shadow_srr1 = svcpu->shadow_srr1;
|
|
vcpu->stat.pf_instruc++;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
|
|
r = RESUME_GUEST;
|
|
svcpu_put(svcpu);
|
|
break;
|
|
}
|
|
#endif
|
|
svcpu_put(svcpu);
|
|
|
|
/* only care about PTEG not found errors, but leave NX alone */
|
|
if (shadow_srr1 & 0x40000000) {
|
|
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
|
|
vcpu->stat.sp_instruc++;
|
|
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
|
|
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
|
|
/*
|
|
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
|
|
* so we can't use the NX bit inside the guest. Let's cross our fingers,
|
|
* that no guest that needs the dcbz hack does NX.
|
|
*/
|
|
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_STORAGE:
|
|
{
|
|
ulong dar = kvmppc_get_fault_dar(vcpu);
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
u32 fault_dsisr = svcpu->fault_dsisr;
|
|
vcpu->stat.pf_storage++;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_32
|
|
/* We set segments as unused segments when invalidating them. So
|
|
* treat the respective fault as segment fault. */
|
|
if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) {
|
|
kvmppc_mmu_map_segment(vcpu, dar);
|
|
r = RESUME_GUEST;
|
|
svcpu_put(svcpu);
|
|
break;
|
|
}
|
|
#endif
|
|
svcpu_put(svcpu);
|
|
|
|
/* The only case we need to handle is missing shadow PTEs */
|
|
if (fault_dsisr & DSISR_NOHPTE) {
|
|
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
|
|
} else {
|
|
vcpu->arch.shared->dar = dar;
|
|
vcpu->arch.shared->dsisr = fault_dsisr;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_DATA_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
|
|
vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_DATA_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_INST_SEGMENT:
|
|
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
|
|
kvmppc_book3s_queue_irqprio(vcpu,
|
|
BOOK3S_INTERRUPT_INST_SEGMENT);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
/* We're good on these - the host merely wanted to get our attention */
|
|
case BOOK3S_INTERRUPT_DECREMENTER:
|
|
case BOOK3S_INTERRUPT_HV_DECREMENTER:
|
|
vcpu->stat.dec_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_EXTERNAL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
|
|
case BOOK3S_INTERRUPT_EXTERNAL_HV:
|
|
vcpu->stat.ext_intr_exits++;
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PERFMON:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_PROGRAM:
|
|
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
|
|
{
|
|
enum emulation_result er;
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu;
|
|
ulong flags;
|
|
|
|
program_interrupt:
|
|
svcpu = svcpu_get(vcpu);
|
|
flags = svcpu->shadow_srr1 & 0x1f0000ull;
|
|
svcpu_put(svcpu);
|
|
|
|
if (vcpu->arch.shared->msr & MSR_PR) {
|
|
#ifdef EXIT_DEBUG
|
|
printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
#endif
|
|
if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
|
|
(INS_DCBZ & 0xfffffff7)) {
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vcpu->stat.emulated_inst_exits++;
|
|
er = kvmppc_emulate_instruction(run, vcpu);
|
|
switch (er) {
|
|
case EMULATE_DONE:
|
|
r = RESUME_GUEST_NV;
|
|
break;
|
|
case EMULATE_AGAIN:
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_FAIL:
|
|
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
|
|
__func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
|
|
kvmppc_core_queue_program(vcpu, flags);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case EMULATE_DO_MMIO:
|
|
run->exit_reason = KVM_EXIT_MMIO;
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
case EMULATE_EXIT_USER:
|
|
r = RESUME_HOST_NV;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_SYSCALL:
|
|
if (vcpu->arch.papr_enabled &&
|
|
(kvmppc_get_last_inst(vcpu) == 0x44000022) &&
|
|
!(vcpu->arch.shared->msr & MSR_PR)) {
|
|
/* SC 1 papr hypercalls */
|
|
ulong cmd = kvmppc_get_gpr(vcpu, 3);
|
|
int i;
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_64_PR
|
|
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
|
|
r = RESUME_GUEST;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
run->papr_hcall.nr = cmd;
|
|
for (i = 0; i < 9; ++i) {
|
|
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
|
|
run->papr_hcall.args[i] = gpr;
|
|
}
|
|
run->exit_reason = KVM_EXIT_PAPR_HCALL;
|
|
vcpu->arch.hcall_needed = 1;
|
|
r = RESUME_HOST;
|
|
} else if (vcpu->arch.osi_enabled &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
|
|
/* MOL hypercalls */
|
|
u64 *gprs = run->osi.gprs;
|
|
int i;
|
|
|
|
run->exit_reason = KVM_EXIT_OSI;
|
|
for (i = 0; i < 32; i++)
|
|
gprs[i] = kvmppc_get_gpr(vcpu, i);
|
|
vcpu->arch.osi_needed = 1;
|
|
r = RESUME_HOST_NV;
|
|
} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
|
|
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
|
|
/* KVM PV hypercalls */
|
|
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
|
|
r = RESUME_GUEST;
|
|
} else {
|
|
/* Guest syscalls */
|
|
vcpu->stat.syscall_exits++;
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
}
|
|
break;
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL:
|
|
case BOOK3S_INTERRUPT_ALTIVEC:
|
|
case BOOK3S_INTERRUPT_VSX:
|
|
{
|
|
int ext_msr = 0;
|
|
|
|
switch (exit_nr) {
|
|
case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
|
|
case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
|
|
case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
|
|
}
|
|
|
|
switch (kvmppc_check_ext(vcpu, exit_nr)) {
|
|
case EMULATE_DONE:
|
|
/* everything ok - let's enable the ext */
|
|
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
|
|
break;
|
|
case EMULATE_FAIL:
|
|
/* we need to emulate this instruction */
|
|
goto program_interrupt;
|
|
break;
|
|
default:
|
|
/* nothing to worry about - go again */
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case BOOK3S_INTERRUPT_ALIGNMENT:
|
|
if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
|
|
vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
|
|
kvmppc_get_last_inst(vcpu));
|
|
vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
|
|
kvmppc_get_last_inst(vcpu));
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
}
|
|
r = RESUME_GUEST;
|
|
break;
|
|
case BOOK3S_INTERRUPT_MACHINE_CHECK:
|
|
case BOOK3S_INTERRUPT_TRACE:
|
|
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
|
|
r = RESUME_GUEST;
|
|
break;
|
|
default:
|
|
{
|
|
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
|
|
ulong shadow_srr1 = svcpu->shadow_srr1;
|
|
svcpu_put(svcpu);
|
|
/* Ugh - bork here! What did we get? */
|
|
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
|
|
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
|
|
r = RESUME_HOST;
|
|
BUG();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!(r & RESUME_HOST)) {
|
|
/* To avoid clobbering exit_reason, only check for signals if
|
|
* we aren't already exiting to userspace for some other
|
|
* reason. */
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to
|
|
* inject again, so let's postpone them until we're in the guest
|
|
* and if we really did time things so badly, then we just exit
|
|
* again due to a host external interrupt.
|
|
*/
|
|
local_irq_disable();
|
|
s = kvmppc_prepare_to_enter(vcpu);
|
|
if (s <= 0) {
|
|
local_irq_enable();
|
|
r = s;
|
|
} else {
|
|
kvmppc_lazy_ee_enable();
|
|
}
|
|
}
|
|
|
|
trace_kvm_book3s_reenter(r, vcpu);
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
sregs->pvr = vcpu->arch.pvr;
|
|
|
|
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
|
|
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++)
|
|
sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
|
|
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
|
|
struct kvm_sregs *sregs)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
|
|
int i;
|
|
|
|
kvmppc_set_pvr(vcpu, sregs->pvr);
|
|
|
|
vcpu3s->sdr1 = sregs->u.s.sdr1;
|
|
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
|
|
for (i = 0; i < 64; i++) {
|
|
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
|
|
sregs->u.s.ppc64.slb[i].slbe);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 16; i++) {
|
|
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
|
|
}
|
|
for (i = 0; i < 8; i++) {
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
|
|
(u32)sregs->u.s.ppc32.ibat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
|
|
(u32)sregs->u.s.ppc32.dbat[i]);
|
|
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
|
|
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
|
|
}
|
|
}
|
|
|
|
/* Flush the MMU after messing with the segments */
|
|
kvmppc_mmu_pte_flush(vcpu, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
*val = get_reg_val(id, to_book3s(vcpu)->hior);
|
|
break;
|
|
#ifdef CONFIG_VSX
|
|
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
|
|
long int i = id - KVM_REG_PPC_VSR0;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_VSX)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
val->vsxval[0] = vcpu->arch.fpr[i];
|
|
val->vsxval[1] = vcpu->arch.vsr[i];
|
|
break;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
|
|
{
|
|
int r = 0;
|
|
|
|
switch (id) {
|
|
case KVM_REG_PPC_HIOR:
|
|
to_book3s(vcpu)->hior = set_reg_val(id, *val);
|
|
to_book3s(vcpu)->hior_explicit = true;
|
|
break;
|
|
#ifdef CONFIG_VSX
|
|
case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
|
|
long int i = id - KVM_REG_PPC_VSR0;
|
|
|
|
if (!cpu_has_feature(CPU_FTR_VSX)) {
|
|
r = -ENXIO;
|
|
break;
|
|
}
|
|
vcpu->arch.fpr[i] = val->vsxval[0];
|
|
vcpu->arch.vsr[i] = val->vsxval[1];
|
|
break;
|
|
}
|
|
#endif /* CONFIG_VSX */
|
|
default:
|
|
r = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
int kvmppc_core_check_processor_compat(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s;
|
|
struct kvm_vcpu *vcpu;
|
|
int err = -ENOMEM;
|
|
unsigned long p;
|
|
|
|
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
|
|
if (!vcpu_book3s)
|
|
goto out;
|
|
|
|
vcpu_book3s->shadow_vcpu =
|
|
kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
|
|
if (!vcpu_book3s->shadow_vcpu)
|
|
goto free_vcpu;
|
|
|
|
vcpu = &vcpu_book3s->vcpu;
|
|
err = kvm_vcpu_init(vcpu, kvm, id);
|
|
if (err)
|
|
goto free_shadow_vcpu;
|
|
|
|
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
|
|
/* the real shared page fills the last 4k of our page */
|
|
vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096);
|
|
if (!p)
|
|
goto uninit_vcpu;
|
|
|
|
#ifdef CONFIG_PPC_BOOK3S_64
|
|
/* default to book3s_64 (970fx) */
|
|
vcpu->arch.pvr = 0x3C0301;
|
|
#else
|
|
/* default to book3s_32 (750) */
|
|
vcpu->arch.pvr = 0x84202;
|
|
#endif
|
|
kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
|
|
vcpu->arch.slb_nr = 64;
|
|
|
|
vcpu->arch.shadow_msr = MSR_USER64;
|
|
|
|
err = kvmppc_mmu_init(vcpu);
|
|
if (err < 0)
|
|
goto uninit_vcpu;
|
|
|
|
return vcpu;
|
|
|
|
uninit_vcpu:
|
|
kvm_vcpu_uninit(vcpu);
|
|
free_shadow_vcpu:
|
|
kfree(vcpu_book3s->shadow_vcpu);
|
|
free_vcpu:
|
|
vfree(vcpu_book3s);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
|
|
|
|
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kfree(vcpu_book3s->shadow_vcpu);
|
|
vfree(vcpu_book3s);
|
|
}
|
|
|
|
int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
|
|
{
|
|
int ret;
|
|
double fpr[32][TS_FPRWIDTH];
|
|
unsigned int fpscr;
|
|
int fpexc_mode;
|
|
#ifdef CONFIG_ALTIVEC
|
|
vector128 vr[32];
|
|
vector128 vscr;
|
|
unsigned long uninitialized_var(vrsave);
|
|
int used_vr;
|
|
#endif
|
|
#ifdef CONFIG_VSX
|
|
int used_vsr;
|
|
#endif
|
|
ulong ext_msr;
|
|
|
|
/* Check if we can run the vcpu at all */
|
|
if (!vcpu->arch.sane) {
|
|
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Interrupts could be timers for the guest which we have to inject
|
|
* again, so let's postpone them until we're in the guest and if we
|
|
* really did time things so badly, then we just exit again due to
|
|
* a host external interrupt.
|
|
*/
|
|
local_irq_disable();
|
|
ret = kvmppc_prepare_to_enter(vcpu);
|
|
if (ret <= 0) {
|
|
local_irq_enable();
|
|
goto out;
|
|
}
|
|
|
|
/* Save FPU state in stack */
|
|
if (current->thread.regs->msr & MSR_FP)
|
|
giveup_fpu(current);
|
|
memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
|
|
fpscr = current->thread.fpscr.val;
|
|
fpexc_mode = current->thread.fpexc_mode;
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Save Altivec state in stack */
|
|
used_vr = current->thread.used_vr;
|
|
if (used_vr) {
|
|
if (current->thread.regs->msr & MSR_VEC)
|
|
giveup_altivec(current);
|
|
memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
|
|
vscr = current->thread.vscr;
|
|
vrsave = current->thread.vrsave;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
/* Save VSX state in stack */
|
|
used_vsr = current->thread.used_vsr;
|
|
if (used_vsr && (current->thread.regs->msr & MSR_VSX))
|
|
__giveup_vsx(current);
|
|
#endif
|
|
|
|
/* Remember the MSR with disabled extensions */
|
|
ext_msr = current->thread.regs->msr;
|
|
|
|
/* Preload FPU if it's enabled */
|
|
if (vcpu->arch.shared->msr & MSR_FP)
|
|
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
|
|
|
|
kvmppc_lazy_ee_enable();
|
|
|
|
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
|
|
|
|
/* No need for kvm_guest_exit. It's done in handle_exit.
|
|
We also get here with interrupts enabled. */
|
|
|
|
/* Make sure we save the guest FPU/Altivec/VSX state */
|
|
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
|
|
|
|
current->thread.regs->msr = ext_msr;
|
|
|
|
/* Restore FPU/VSX state from stack */
|
|
memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
|
|
current->thread.fpscr.val = fpscr;
|
|
current->thread.fpexc_mode = fpexc_mode;
|
|
|
|
#ifdef CONFIG_ALTIVEC
|
|
/* Restore Altivec state from stack */
|
|
if (used_vr && current->thread.used_vr) {
|
|
memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
|
|
current->thread.vscr = vscr;
|
|
current->thread.vrsave = vrsave;
|
|
}
|
|
current->thread.used_vr = used_vr;
|
|
#endif
|
|
|
|
#ifdef CONFIG_VSX
|
|
current->thread.used_vsr = used_vsr;
|
|
#endif
|
|
|
|
out:
|
|
vcpu->mode = OUTSIDE_GUEST_MODE;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get (and clear) the dirty memory log for a memory slot.
|
|
*/
|
|
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
|
|
struct kvm_dirty_log *log)
|
|
{
|
|
struct kvm_memory_slot *memslot;
|
|
struct kvm_vcpu *vcpu;
|
|
ulong ga, ga_end;
|
|
int is_dirty = 0;
|
|
int r;
|
|
unsigned long n;
|
|
|
|
mutex_lock(&kvm->slots_lock);
|
|
|
|
r = kvm_get_dirty_log(kvm, log, &is_dirty);
|
|
if (r)
|
|
goto out;
|
|
|
|
/* If nothing is dirty, don't bother messing with page tables. */
|
|
if (is_dirty) {
|
|
memslot = id_to_memslot(kvm->memslots, log->slot);
|
|
|
|
ga = memslot->base_gfn << PAGE_SHIFT;
|
|
ga_end = ga + (memslot->npages << PAGE_SHIFT);
|
|
|
|
kvm_for_each_vcpu(n, vcpu, kvm)
|
|
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
|
|
|
|
n = kvm_dirty_bitmap_bytes(memslot);
|
|
memset(memslot->dirty_bitmap, 0, n);
|
|
}
|
|
|
|
r = 0;
|
|
out:
|
|
mutex_unlock(&kvm->slots_lock);
|
|
return r;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC64
|
|
int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
|
|
{
|
|
/* No flags */
|
|
info->flags = 0;
|
|
|
|
/* SLB is always 64 entries */
|
|
info->slb_size = 64;
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[0].page_shift = 12;
|
|
info->sps[0].slb_enc = 0;
|
|
info->sps[0].enc[0].page_shift = 12;
|
|
info->sps[0].enc[0].pte_enc = 0;
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[1].page_shift = 24;
|
|
info->sps[1].slb_enc = SLB_VSID_L;
|
|
info->sps[1].enc[0].page_shift = 24;
|
|
info->sps[1].enc[0].pte_enc = 0;
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PPC64 */
|
|
|
|
void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
|
|
struct kvm_memory_slot *dont)
|
|
{
|
|
}
|
|
|
|
int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
|
|
unsigned long npages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_core_prepare_memory_region(struct kvm *kvm,
|
|
struct kvm_memory_slot *memslot,
|
|
struct kvm_userspace_memory_region *mem)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_commit_memory_region(struct kvm *kvm,
|
|
struct kvm_userspace_memory_region *mem,
|
|
const struct kvm_memory_slot *old)
|
|
{
|
|
}
|
|
|
|
void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
|
|
{
|
|
}
|
|
|
|
static unsigned int kvm_global_user_count = 0;
|
|
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
|
|
|
|
int kvmppc_core_init_vm(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
|
|
INIT_LIST_HEAD(&kvm->arch.rtas_tokens);
|
|
#endif
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
if (++kvm_global_user_count == 1)
|
|
pSeries_disable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_core_destroy_vm(struct kvm *kvm)
|
|
{
|
|
#ifdef CONFIG_PPC64
|
|
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
|
|
#endif
|
|
|
|
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
|
|
spin_lock(&kvm_global_user_count_lock);
|
|
BUG_ON(kvm_global_user_count == 0);
|
|
if (--kvm_global_user_count == 0)
|
|
pSeries_enable_reloc_on_exc();
|
|
spin_unlock(&kvm_global_user_count_lock);
|
|
}
|
|
}
|
|
|
|
static int kvmppc_book3s_init(void)
|
|
{
|
|
int r;
|
|
|
|
r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
|
|
THIS_MODULE);
|
|
|
|
if (r)
|
|
return r;
|
|
|
|
r = kvmppc_mmu_hpte_sysinit();
|
|
|
|
return r;
|
|
}
|
|
|
|
static void kvmppc_book3s_exit(void)
|
|
{
|
|
kvmppc_mmu_hpte_sysexit();
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(kvmppc_book3s_init);
|
|
module_exit(kvmppc_book3s_exit);
|