linux/drivers/s390/crypto/vfio_ap_ops.c

1305 lines
34 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Adjunct processor matrix VFIO device driver callbacks.
*
* Copyright IBM Corp. 2018
*
* Author(s): Tony Krowiak <akrowiak@linux.ibm.com>
* Halil Pasic <pasic@linux.ibm.com>
* Pierre Morel <pmorel@linux.ibm.com>
*/
#include <linux/string.h>
#include <linux/vfio.h>
#include <linux/device.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
#include <asm/kvm.h>
#include <asm/zcrypt.h>
#include "vfio_ap_private.h"
#define VFIO_AP_MDEV_TYPE_HWVIRT "passthrough"
#define VFIO_AP_MDEV_NAME_HWVIRT "VFIO AP Passthrough Device"
static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev);
static int match_apqn(struct device *dev, const void *data)
{
struct vfio_ap_queue *q = dev_get_drvdata(dev);
return (q->apqn == *(int *)(data)) ? 1 : 0;
}
/**
* vfio_ap_get_queue: Retrieve a queue with a specific APQN from a list
* @matrix_mdev: the associated mediated matrix
* @apqn: The queue APQN
*
* Retrieve a queue with a specific APQN from the list of the
* devices of the vfio_ap_drv.
* Verify that the APID and the APQI are set in the matrix.
*
* Returns the pointer to the associated vfio_ap_queue
*/
static struct vfio_ap_queue *vfio_ap_get_queue(
struct ap_matrix_mdev *matrix_mdev,
int apqn)
{
struct vfio_ap_queue *q;
struct device *dev;
if (!test_bit_inv(AP_QID_CARD(apqn), matrix_mdev->matrix.apm))
return NULL;
if (!test_bit_inv(AP_QID_QUEUE(apqn), matrix_mdev->matrix.aqm))
return NULL;
dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
&apqn, match_apqn);
if (!dev)
return NULL;
q = dev_get_drvdata(dev);
q->matrix_mdev = matrix_mdev;
put_device(dev);
return q;
}
/**
* vfio_ap_wait_for_irqclear
* @apqn: The AP Queue number
*
* Checks the IRQ bit for the status of this APQN using ap_tapq.
* Returns if the ap_tapq function succeeded and the bit is clear.
* Returns if ap_tapq function failed with invalid, deconfigured or
* checkstopped AP.
* Otherwise retries up to 5 times after waiting 20ms.
*
*/
static void vfio_ap_wait_for_irqclear(int apqn)
{
struct ap_queue_status status;
int retry = 5;
do {
status = ap_tapq(apqn, NULL);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
case AP_RESPONSE_RESET_IN_PROGRESS:
if (!status.irq_enabled)
return;
fallthrough;
case AP_RESPONSE_BUSY:
msleep(20);
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
default:
WARN_ONCE(1, "%s: tapq rc %02x: %04x\n", __func__,
status.response_code, apqn);
return;
}
} while (--retry);
WARN_ONCE(1, "%s: tapq rc %02x: %04x could not clear IR bit\n",
__func__, status.response_code, apqn);
}
/**
* vfio_ap_free_aqic_resources
* @q: The vfio_ap_queue
*
* Unregisters the ISC in the GIB when the saved ISC not invalid.
* Unpin the guest's page holding the NIB when it exist.
* Reset the saved_pfn and saved_isc to invalid values.
*
*/
static void vfio_ap_free_aqic_resources(struct vfio_ap_queue *q)
{
if (q->saved_isc != VFIO_AP_ISC_INVALID && q->matrix_mdev)
kvm_s390_gisc_unregister(q->matrix_mdev->kvm, q->saved_isc);
if (q->saved_pfn && q->matrix_mdev)
vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev),
&q->saved_pfn, 1);
q->saved_pfn = 0;
q->saved_isc = VFIO_AP_ISC_INVALID;
}
/**
* vfio_ap_irq_disable
* @q: The vfio_ap_queue
*
* Uses ap_aqic to disable the interruption and in case of success, reset
* in progress or IRQ disable command already proceeded: calls
* vfio_ap_wait_for_irqclear() to check for the IRQ bit to be clear
* and calls vfio_ap_free_aqic_resources() to free the resources associated
* with the AP interrupt handling.
*
* In the case the AP is busy, or a reset is in progress,
* retries after 20ms, up to 5 times.
*
* Returns if ap_aqic function failed with invalid, deconfigured or
* checkstopped AP.
*/
struct ap_queue_status vfio_ap_irq_disable(struct vfio_ap_queue *q)
{
struct ap_qirq_ctrl aqic_gisa = {};
struct ap_queue_status status;
int retries = 5;
do {
status = ap_aqic(q->apqn, aqic_gisa, NULL);
switch (status.response_code) {
case AP_RESPONSE_OTHERWISE_CHANGED:
case AP_RESPONSE_NORMAL:
vfio_ap_wait_for_irqclear(q->apqn);
goto end_free;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
msleep(20);
break;
case AP_RESPONSE_Q_NOT_AVAIL:
case AP_RESPONSE_DECONFIGURED:
case AP_RESPONSE_CHECKSTOPPED:
case AP_RESPONSE_INVALID_ADDRESS:
default:
/* All cases in default means AP not operational */
WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
status.response_code);
goto end_free;
}
} while (retries--);
WARN_ONCE(1, "%s: ap_aqic status %d\n", __func__,
status.response_code);
end_free:
vfio_ap_free_aqic_resources(q);
q->matrix_mdev = NULL;
return status;
}
/**
* vfio_ap_setirq: Enable Interruption for a APQN
*
* @dev: the device associated with the ap_queue
* @q: the vfio_ap_queue holding AQIC parameters
*
* Pin the NIB saved in *q
* Register the guest ISC to GIB interface and retrieve the
* host ISC to issue the host side PQAP/AQIC
*
* Response.status may be set to AP_RESPONSE_INVALID_ADDRESS in case the
* vfio_pin_pages failed.
*
* Otherwise return the ap_queue_status returned by the ap_aqic(),
* all retry handling will be done by the guest.
*/
static struct ap_queue_status vfio_ap_irq_enable(struct vfio_ap_queue *q,
int isc,
unsigned long nib)
{
struct ap_qirq_ctrl aqic_gisa = {};
struct ap_queue_status status = {};
struct kvm_s390_gisa *gisa;
struct kvm *kvm;
unsigned long h_nib, g_pfn, h_pfn;
int ret;
g_pfn = nib >> PAGE_SHIFT;
ret = vfio_pin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1,
IOMMU_READ | IOMMU_WRITE, &h_pfn);
switch (ret) {
case 1:
break;
default:
status.response_code = AP_RESPONSE_INVALID_ADDRESS;
return status;
}
kvm = q->matrix_mdev->kvm;
gisa = kvm->arch.gisa_int.origin;
h_nib = (h_pfn << PAGE_SHIFT) | (nib & ~PAGE_MASK);
aqic_gisa.gisc = isc;
aqic_gisa.isc = kvm_s390_gisc_register(kvm, isc);
aqic_gisa.ir = 1;
aqic_gisa.gisa = (uint64_t)gisa >> 4;
status = ap_aqic(q->apqn, aqic_gisa, (void *)h_nib);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
/* See if we did clear older IRQ configuration */
vfio_ap_free_aqic_resources(q);
q->saved_pfn = g_pfn;
q->saved_isc = isc;
break;
case AP_RESPONSE_OTHERWISE_CHANGED:
/* We could not modify IRQ setings: clear new configuration */
vfio_unpin_pages(mdev_dev(q->matrix_mdev->mdev), &g_pfn, 1);
kvm_s390_gisc_unregister(kvm, isc);
break;
default:
pr_warn("%s: apqn %04x: response: %02x\n", __func__, q->apqn,
status.response_code);
vfio_ap_irq_disable(q);
break;
}
return status;
}
/**
* handle_pqap: PQAP instruction callback
*
* @vcpu: The vcpu on which we received the PQAP instruction
*
* Get the general register contents to initialize internal variables.
* REG[0]: APQN
* REG[1]: IR and ISC
* REG[2]: NIB
*
* Response.status may be set to following Response Code:
* - AP_RESPONSE_Q_NOT_AVAIL: if the queue is not available
* - AP_RESPONSE_DECONFIGURED: if the queue is not configured
* - AP_RESPONSE_NORMAL (0) : in case of successs
* Check vfio_ap_setirq() and vfio_ap_clrirq() for other possible RC.
* We take the matrix_dev lock to ensure serialization on queues and
* mediated device access.
*
* Return 0 if we could handle the request inside KVM.
* otherwise, returns -EOPNOTSUPP to let QEMU handle the fault.
*/
static int handle_pqap(struct kvm_vcpu *vcpu)
{
uint64_t status;
uint16_t apqn;
struct vfio_ap_queue *q;
struct ap_queue_status qstatus = {
.response_code = AP_RESPONSE_Q_NOT_AVAIL, };
struct ap_matrix_mdev *matrix_mdev;
/* If we do not use the AIV facility just go to userland */
if (!(vcpu->arch.sie_block->eca & ECA_AIV))
return -EOPNOTSUPP;
apqn = vcpu->run->s.regs.gprs[0] & 0xffff;
mutex_lock(&matrix_dev->lock);
if (!vcpu->kvm->arch.crypto.pqap_hook)
goto out_unlock;
matrix_mdev = container_of(vcpu->kvm->arch.crypto.pqap_hook,
struct ap_matrix_mdev, pqap_hook);
q = vfio_ap_get_queue(matrix_mdev, apqn);
if (!q)
goto out_unlock;
status = vcpu->run->s.regs.gprs[1];
/* If IR bit(16) is set we enable the interrupt */
if ((status >> (63 - 16)) & 0x01)
qstatus = vfio_ap_irq_enable(q, status & 0x07,
vcpu->run->s.regs.gprs[2]);
else
qstatus = vfio_ap_irq_disable(q);
out_unlock:
memcpy(&vcpu->run->s.regs.gprs[1], &qstatus, sizeof(qstatus));
vcpu->run->s.regs.gprs[1] >>= 32;
mutex_unlock(&matrix_dev->lock);
return 0;
}
static void vfio_ap_matrix_init(struct ap_config_info *info,
struct ap_matrix *matrix)
{
matrix->apm_max = info->apxa ? info->Na : 63;
matrix->aqm_max = info->apxa ? info->Nd : 15;
matrix->adm_max = info->apxa ? info->Nd : 15;
}
static int vfio_ap_mdev_create(struct kobject *kobj, struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev;
if ((atomic_dec_if_positive(&matrix_dev->available_instances) < 0))
return -EPERM;
matrix_mdev = kzalloc(sizeof(*matrix_mdev), GFP_KERNEL);
if (!matrix_mdev) {
atomic_inc(&matrix_dev->available_instances);
return -ENOMEM;
}
matrix_mdev->mdev = mdev;
vfio_ap_matrix_init(&matrix_dev->info, &matrix_mdev->matrix);
mdev_set_drvdata(mdev, matrix_mdev);
matrix_mdev->pqap_hook.hook = handle_pqap;
matrix_mdev->pqap_hook.owner = THIS_MODULE;
mutex_lock(&matrix_dev->lock);
list_add(&matrix_mdev->node, &matrix_dev->mdev_list);
mutex_unlock(&matrix_dev->lock);
return 0;
}
static int vfio_ap_mdev_remove(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
if (matrix_mdev->kvm)
return -EBUSY;
mutex_lock(&matrix_dev->lock);
vfio_ap_mdev_reset_queues(mdev);
list_del(&matrix_mdev->node);
mutex_unlock(&matrix_dev->lock);
kfree(matrix_mdev);
mdev_set_drvdata(mdev, NULL);
atomic_inc(&matrix_dev->available_instances);
return 0;
}
static ssize_t name_show(struct kobject *kobj, struct device *dev, char *buf)
{
return sprintf(buf, "%s\n", VFIO_AP_MDEV_NAME_HWVIRT);
}
static MDEV_TYPE_ATTR_RO(name);
static ssize_t available_instances_show(struct kobject *kobj,
struct device *dev, char *buf)
{
return sprintf(buf, "%d\n",
atomic_read(&matrix_dev->available_instances));
}
static MDEV_TYPE_ATTR_RO(available_instances);
static ssize_t device_api_show(struct kobject *kobj, struct device *dev,
char *buf)
{
return sprintf(buf, "%s\n", VFIO_DEVICE_API_AP_STRING);
}
static MDEV_TYPE_ATTR_RO(device_api);
static struct attribute *vfio_ap_mdev_type_attrs[] = {
&mdev_type_attr_name.attr,
&mdev_type_attr_device_api.attr,
&mdev_type_attr_available_instances.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_hwvirt_type_group = {
.name = VFIO_AP_MDEV_TYPE_HWVIRT,
.attrs = vfio_ap_mdev_type_attrs,
};
static struct attribute_group *vfio_ap_mdev_type_groups[] = {
&vfio_ap_mdev_hwvirt_type_group,
NULL,
};
struct vfio_ap_queue_reserved {
unsigned long *apid;
unsigned long *apqi;
bool reserved;
};
/**
* vfio_ap_has_queue
*
* @dev: an AP queue device
* @data: a struct vfio_ap_queue_reserved reference
*
* Flags whether the AP queue device (@dev) has a queue ID containing the APQN,
* apid or apqi specified in @data:
*
* - If @data contains both an apid and apqi value, then @data will be flagged
* as reserved if the APID and APQI fields for the AP queue device matches
*
* - If @data contains only an apid value, @data will be flagged as
* reserved if the APID field in the AP queue device matches
*
* - If @data contains only an apqi value, @data will be flagged as
* reserved if the APQI field in the AP queue device matches
*
* Returns 0 to indicate the input to function succeeded. Returns -EINVAL if
* @data does not contain either an apid or apqi.
*/
static int vfio_ap_has_queue(struct device *dev, void *data)
{
struct vfio_ap_queue_reserved *qres = data;
struct ap_queue *ap_queue = to_ap_queue(dev);
ap_qid_t qid;
unsigned long id;
if (qres->apid && qres->apqi) {
qid = AP_MKQID(*qres->apid, *qres->apqi);
if (qid == ap_queue->qid)
qres->reserved = true;
} else if (qres->apid && !qres->apqi) {
id = AP_QID_CARD(ap_queue->qid);
if (id == *qres->apid)
qres->reserved = true;
} else if (!qres->apid && qres->apqi) {
id = AP_QID_QUEUE(ap_queue->qid);
if (id == *qres->apqi)
qres->reserved = true;
} else {
return -EINVAL;
}
return 0;
}
/**
* vfio_ap_verify_queue_reserved
*
* @matrix_dev: a mediated matrix device
* @apid: an AP adapter ID
* @apqi: an AP queue index
*
* Verifies that the AP queue with @apid/@apqi is reserved by the VFIO AP device
* driver according to the following rules:
*
* - If both @apid and @apqi are not NULL, then there must be an AP queue
* device bound to the vfio_ap driver with the APQN identified by @apid and
* @apqi
*
* - If only @apid is not NULL, then there must be an AP queue device bound
* to the vfio_ap driver with an APQN containing @apid
*
* - If only @apqi is not NULL, then there must be an AP queue device bound
* to the vfio_ap driver with an APQN containing @apqi
*
* Returns 0 if the AP queue is reserved; otherwise, returns -EADDRNOTAVAIL.
*/
static int vfio_ap_verify_queue_reserved(unsigned long *apid,
unsigned long *apqi)
{
int ret;
struct vfio_ap_queue_reserved qres;
qres.apid = apid;
qres.apqi = apqi;
qres.reserved = false;
ret = driver_for_each_device(&matrix_dev->vfio_ap_drv->driver, NULL,
&qres, vfio_ap_has_queue);
if (ret)
return ret;
if (qres.reserved)
return 0;
return -EADDRNOTAVAIL;
}
static int
vfio_ap_mdev_verify_queues_reserved_for_apid(struct ap_matrix_mdev *matrix_mdev,
unsigned long apid)
{
int ret;
unsigned long apqi;
unsigned long nbits = matrix_mdev->matrix.aqm_max + 1;
if (find_first_bit_inv(matrix_mdev->matrix.aqm, nbits) >= nbits)
return vfio_ap_verify_queue_reserved(&apid, NULL);
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, nbits) {
ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
if (ret)
return ret;
}
return 0;
}
/**
* vfio_ap_mdev_verify_no_sharing
*
* Verifies that the APQNs derived from the cross product of the AP adapter IDs
* and AP queue indexes comprising the AP matrix are not configured for another
* mediated device. AP queue sharing is not allowed.
*
* @matrix_mdev: the mediated matrix device
*
* Returns 0 if the APQNs are not shared, otherwise; returns -EADDRINUSE.
*/
static int vfio_ap_mdev_verify_no_sharing(struct ap_matrix_mdev *matrix_mdev)
{
struct ap_matrix_mdev *lstdev;
DECLARE_BITMAP(apm, AP_DEVICES);
DECLARE_BITMAP(aqm, AP_DOMAINS);
list_for_each_entry(lstdev, &matrix_dev->mdev_list, node) {
if (matrix_mdev == lstdev)
continue;
memset(apm, 0, sizeof(apm));
memset(aqm, 0, sizeof(aqm));
/*
* We work on full longs, as we can only exclude the leftover
* bits in non-inverse order. The leftover is all zeros.
*/
if (!bitmap_and(apm, matrix_mdev->matrix.apm,
lstdev->matrix.apm, AP_DEVICES))
continue;
if (!bitmap_and(aqm, matrix_mdev->matrix.aqm,
lstdev->matrix.aqm, AP_DOMAINS))
continue;
return -EADDRINUSE;
}
return 0;
}
/**
* assign_adapter_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_adapter attribute
* @buf: a buffer containing the AP adapter number (APID) to
* be assigned
* @count: the number of bytes in @buf
*
* Parses the APID from @buf and sets the corresponding bit in the mediated
* matrix device's APM.
*
* Returns the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
*
* 1. -EINVAL
* The APID is not a valid number
*
* 2. -ENODEV
* The APID exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is not bound to the vfio_ap device
* driver; or, if no APQIs have yet been assigned, the APID is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APID being assigned
* and the APQIs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow assignment of adapter */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apid);
if (ret)
return ret;
if (apid > matrix_mdev->matrix.apm_max)
return -ENODEV;
/*
* Set the bit in the AP mask (APM) corresponding to the AP adapter
* number (APID). The bits in the mask, from most significant to least
* significant bit, correspond to APIDs 0-255.
*/
mutex_lock(&matrix_dev->lock);
ret = vfio_ap_mdev_verify_queues_reserved_for_apid(matrix_mdev, apid);
if (ret)
goto done;
set_bit_inv(apid, matrix_mdev->matrix.apm);
ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
if (ret)
goto share_err;
ret = count;
goto done;
share_err:
clear_bit_inv(apid, matrix_mdev->matrix.apm);
done:
mutex_unlock(&matrix_dev->lock);
return ret;
}
static DEVICE_ATTR_WO(assign_adapter);
/**
* unassign_adapter_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_adapter attribute
* @buf: a buffer containing the adapter number (APID) to be unassigned
* @count: the number of bytes in @buf
*
* Parses the APID from @buf and clears the corresponding bit in the mediated
* matrix device's APM.
*
* Returns the number of bytes processed if the APID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APID is not a number
* -ENODEV if the APID it exceeds the maximum value configured for the
* system
*/
static ssize_t unassign_adapter_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow un-assignment of adapter */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apid);
if (ret)
return ret;
if (apid > matrix_mdev->matrix.apm_max)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv((unsigned long)apid, matrix_mdev->matrix.apm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_adapter);
static int
vfio_ap_mdev_verify_queues_reserved_for_apqi(struct ap_matrix_mdev *matrix_mdev,
unsigned long apqi)
{
int ret;
unsigned long apid;
unsigned long nbits = matrix_mdev->matrix.apm_max + 1;
if (find_first_bit_inv(matrix_mdev->matrix.apm, nbits) >= nbits)
return vfio_ap_verify_queue_reserved(NULL, &apqi);
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, nbits) {
ret = vfio_ap_verify_queue_reserved(&apid, &apqi);
if (ret)
return ret;
}
return 0;
}
/**
* assign_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be assigned
* @count: the number of bytes in @buf
*
* Parses the APQI from @buf and sets the corresponding bit in the mediated
* matrix device's AQM.
*
* Returns the number of bytes processed if the APQI is valid; otherwise returns
* one of the following errors:
*
* 1. -EINVAL
* The APQI is not a valid number
*
* 2. -ENODEV
* The APQI exceeds the maximum value configured for the system
*
* 3. -EADDRNOTAVAIL
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is not bound to the vfio_ap device
* driver; or, if no APIDs have yet been assigned, the APQI is not
* contained in an APQN bound to the vfio_ap device driver.
*
* 4. -EADDRINUSE
* An APQN derived from the cross product of the APQI being assigned
* and the APIDs previously assigned is being used by another mediated
* matrix device
*/
static ssize_t assign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_apqi = matrix_mdev->matrix.aqm_max;
/* If the guest is running, disallow assignment of domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apqi);
if (ret)
return ret;
if (apqi > max_apqi)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
ret = vfio_ap_mdev_verify_queues_reserved_for_apqi(matrix_mdev, apqi);
if (ret)
goto done;
set_bit_inv(apqi, matrix_mdev->matrix.aqm);
ret = vfio_ap_mdev_verify_no_sharing(matrix_mdev);
if (ret)
goto share_err;
ret = count;
goto done;
share_err:
clear_bit_inv(apqi, matrix_mdev->matrix.aqm);
done:
mutex_unlock(&matrix_dev->lock);
return ret;
}
static DEVICE_ATTR_WO(assign_domain);
/**
* unassign_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_domain attribute
* @buf: a buffer containing the AP queue index (APQI) of the domain to
* be unassigned
* @count: the number of bytes in @buf
*
* Parses the APQI from @buf and clears the corresponding bit in the
* mediated matrix device's AQM.
*
* Returns the number of bytes processed if the APQI is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the APQI is not a number
* -ENODEV if the APQI exceeds the maximum value configured for the system
*/
static ssize_t unassign_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long apqi;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow un-assignment of domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &apqi);
if (ret)
return ret;
if (apqi > matrix_mdev->matrix.aqm_max)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv((unsigned long)apqi, matrix_mdev->matrix.aqm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_domain);
/**
* assign_control_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's assign_control_domain attribute
* @buf: a buffer containing the domain ID to be assigned
* @count: the number of bytes in @buf
*
* Parses the domain ID from @buf and sets the corresponding bit in the mediated
* matrix device's ADM.
*
* Returns the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t assign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long id;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
/* If the guest is running, disallow assignment of control domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &id);
if (ret)
return ret;
if (id > matrix_mdev->matrix.adm_max)
return -ENODEV;
/* Set the bit in the ADM (bitmask) corresponding to the AP control
* domain number (id). The bits in the mask, from most significant to
* least significant, correspond to IDs 0 up to the one less than the
* number of control domains that can be assigned.
*/
mutex_lock(&matrix_dev->lock);
set_bit_inv(id, matrix_mdev->matrix.adm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(assign_control_domain);
/**
* unassign_control_domain_store
*
* @dev: the matrix device
* @attr: the mediated matrix device's unassign_control_domain attribute
* @buf: a buffer containing the domain ID to be unassigned
* @count: the number of bytes in @buf
*
* Parses the domain ID from @buf and clears the corresponding bit in the
* mediated matrix device's ADM.
*
* Returns the number of bytes processed if the domain ID is valid; otherwise,
* returns one of the following errors:
* -EINVAL if the ID is not a number
* -ENODEV if the ID exceeds the maximum value configured for the system
*/
static ssize_t unassign_control_domain_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned long domid;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
/* If the guest is running, disallow un-assignment of control domain */
if (matrix_mdev->kvm)
return -EBUSY;
ret = kstrtoul(buf, 0, &domid);
if (ret)
return ret;
if (domid > max_domid)
return -ENODEV;
mutex_lock(&matrix_dev->lock);
clear_bit_inv(domid, matrix_mdev->matrix.adm);
mutex_unlock(&matrix_dev->lock);
return count;
}
static DEVICE_ATTR_WO(unassign_control_domain);
static ssize_t control_domains_show(struct device *dev,
struct device_attribute *dev_attr,
char *buf)
{
unsigned long id;
int nchars = 0;
int n;
char *bufpos = buf;
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long max_domid = matrix_mdev->matrix.adm_max;
mutex_lock(&matrix_dev->lock);
for_each_set_bit_inv(id, matrix_mdev->matrix.adm, max_domid + 1) {
n = sprintf(bufpos, "%04lx\n", id);
bufpos += n;
nchars += n;
}
mutex_unlock(&matrix_dev->lock);
return nchars;
}
static DEVICE_ATTR_RO(control_domains);
static ssize_t matrix_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct mdev_device *mdev = mdev_from_dev(dev);
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
char *bufpos = buf;
unsigned long apid;
unsigned long apqi;
unsigned long apid1;
unsigned long apqi1;
unsigned long napm_bits = matrix_mdev->matrix.apm_max + 1;
unsigned long naqm_bits = matrix_mdev->matrix.aqm_max + 1;
int nchars = 0;
int n;
apid1 = find_first_bit_inv(matrix_mdev->matrix.apm, napm_bits);
apqi1 = find_first_bit_inv(matrix_mdev->matrix.aqm, naqm_bits);
mutex_lock(&matrix_dev->lock);
if ((apid1 < napm_bits) && (apqi1 < naqm_bits)) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
naqm_bits) {
n = sprintf(bufpos, "%02lx.%04lx\n", apid,
apqi);
bufpos += n;
nchars += n;
}
}
} else if (apid1 < napm_bits) {
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm, napm_bits) {
n = sprintf(bufpos, "%02lx.\n", apid);
bufpos += n;
nchars += n;
}
} else if (apqi1 < naqm_bits) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm, naqm_bits) {
n = sprintf(bufpos, ".%04lx\n", apqi);
bufpos += n;
nchars += n;
}
}
mutex_unlock(&matrix_dev->lock);
return nchars;
}
static DEVICE_ATTR_RO(matrix);
static struct attribute *vfio_ap_mdev_attrs[] = {
&dev_attr_assign_adapter.attr,
&dev_attr_unassign_adapter.attr,
&dev_attr_assign_domain.attr,
&dev_attr_unassign_domain.attr,
&dev_attr_assign_control_domain.attr,
&dev_attr_unassign_control_domain.attr,
&dev_attr_control_domains.attr,
&dev_attr_matrix.attr,
NULL,
};
static struct attribute_group vfio_ap_mdev_attr_group = {
.attrs = vfio_ap_mdev_attrs
};
static const struct attribute_group *vfio_ap_mdev_attr_groups[] = {
&vfio_ap_mdev_attr_group,
NULL
};
/**
* vfio_ap_mdev_set_kvm
*
* @matrix_mdev: a mediated matrix device
* @kvm: reference to KVM instance
*
* Verifies no other mediated matrix device has @kvm and sets a reference to
* it in @matrix_mdev->kvm.
*
* Return 0 if no other mediated matrix device has a reference to @kvm;
* otherwise, returns an -EPERM.
*/
static int vfio_ap_mdev_set_kvm(struct ap_matrix_mdev *matrix_mdev,
struct kvm *kvm)
{
struct ap_matrix_mdev *m;
mutex_lock(&matrix_dev->lock);
list_for_each_entry(m, &matrix_dev->mdev_list, node) {
if ((m != matrix_mdev) && (m->kvm == kvm)) {
mutex_unlock(&matrix_dev->lock);
return -EPERM;
}
}
matrix_mdev->kvm = kvm;
kvm_get_kvm(kvm);
kvm->arch.crypto.pqap_hook = &matrix_mdev->pqap_hook;
mutex_unlock(&matrix_dev->lock);
return 0;
}
/*
* vfio_ap_mdev_iommu_notifier: IOMMU notifier callback
*
* @nb: The notifier block
* @action: Action to be taken
* @data: data associated with the request
*
* For an UNMAP request, unpin the guest IOVA (the NIB guest address we
* pinned before). Other requests are ignored.
*
*/
static int vfio_ap_mdev_iommu_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct ap_matrix_mdev *matrix_mdev;
matrix_mdev = container_of(nb, struct ap_matrix_mdev, iommu_notifier);
if (action == VFIO_IOMMU_NOTIFY_DMA_UNMAP) {
struct vfio_iommu_type1_dma_unmap *unmap = data;
unsigned long g_pfn = unmap->iova >> PAGE_SHIFT;
vfio_unpin_pages(mdev_dev(matrix_mdev->mdev), &g_pfn, 1);
return NOTIFY_OK;
}
return NOTIFY_DONE;
}
static int vfio_ap_mdev_group_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
int ret;
struct ap_matrix_mdev *matrix_mdev;
if (action != VFIO_GROUP_NOTIFY_SET_KVM)
return NOTIFY_OK;
matrix_mdev = container_of(nb, struct ap_matrix_mdev, group_notifier);
if (!data) {
matrix_mdev->kvm = NULL;
return NOTIFY_OK;
}
ret = vfio_ap_mdev_set_kvm(matrix_mdev, data);
if (ret)
return NOTIFY_DONE;
/* If there is no CRYCB pointer, then we can't copy the masks */
if (!matrix_mdev->kvm->arch.crypto.crycbd)
return NOTIFY_DONE;
kvm_arch_crypto_set_masks(matrix_mdev->kvm, matrix_mdev->matrix.apm,
matrix_mdev->matrix.aqm,
matrix_mdev->matrix.adm);
return NOTIFY_OK;
}
static void vfio_ap_irq_disable_apqn(int apqn)
{
struct device *dev;
struct vfio_ap_queue *q;
dev = driver_find_device(&matrix_dev->vfio_ap_drv->driver, NULL,
&apqn, match_apqn);
if (dev) {
q = dev_get_drvdata(dev);
vfio_ap_irq_disable(q);
put_device(dev);
}
}
int vfio_ap_mdev_reset_queue(unsigned int apid, unsigned int apqi,
unsigned int retry)
{
struct ap_queue_status status;
int retry2 = 2;
int apqn = AP_MKQID(apid, apqi);
do {
status = ap_zapq(apqn);
switch (status.response_code) {
case AP_RESPONSE_NORMAL:
while (!status.queue_empty && retry2--) {
msleep(20);
status = ap_tapq(apqn, NULL);
}
WARN_ON_ONCE(retry2 <= 0);
return 0;
case AP_RESPONSE_RESET_IN_PROGRESS:
case AP_RESPONSE_BUSY:
msleep(20);
break;
default:
/* things are really broken, give up */
return -EIO;
}
} while (retry--);
return -EBUSY;
}
static int vfio_ap_mdev_reset_queues(struct mdev_device *mdev)
{
int ret;
int rc = 0;
unsigned long apid, apqi;
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
for_each_set_bit_inv(apid, matrix_mdev->matrix.apm,
matrix_mdev->matrix.apm_max + 1) {
for_each_set_bit_inv(apqi, matrix_mdev->matrix.aqm,
matrix_mdev->matrix.aqm_max + 1) {
ret = vfio_ap_mdev_reset_queue(apid, apqi, 1);
/*
* Regardless whether a queue turns out to be busy, or
* is not operational, we need to continue resetting
* the remaining queues.
*/
if (ret)
rc = ret;
vfio_ap_irq_disable_apqn(AP_MKQID(apid, apqi));
}
}
return rc;
}
static int vfio_ap_mdev_open(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
unsigned long events;
int ret;
if (!try_module_get(THIS_MODULE))
return -ENODEV;
matrix_mdev->group_notifier.notifier_call = vfio_ap_mdev_group_notifier;
events = VFIO_GROUP_NOTIFY_SET_KVM;
ret = vfio_register_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
&events, &matrix_mdev->group_notifier);
if (ret) {
module_put(THIS_MODULE);
return ret;
}
matrix_mdev->iommu_notifier.notifier_call = vfio_ap_mdev_iommu_notifier;
events = VFIO_IOMMU_NOTIFY_DMA_UNMAP;
ret = vfio_register_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
&events, &matrix_mdev->iommu_notifier);
if (!ret)
return ret;
vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
&matrix_mdev->group_notifier);
module_put(THIS_MODULE);
return ret;
}
static void vfio_ap_mdev_release(struct mdev_device *mdev)
{
struct ap_matrix_mdev *matrix_mdev = mdev_get_drvdata(mdev);
mutex_lock(&matrix_dev->lock);
if (matrix_mdev->kvm) {
kvm_arch_crypto_clear_masks(matrix_mdev->kvm);
matrix_mdev->kvm->arch.crypto.pqap_hook = NULL;
vfio_ap_mdev_reset_queues(mdev);
kvm_put_kvm(matrix_mdev->kvm);
matrix_mdev->kvm = NULL;
}
mutex_unlock(&matrix_dev->lock);
vfio_unregister_notifier(mdev_dev(mdev), VFIO_IOMMU_NOTIFY,
&matrix_mdev->iommu_notifier);
vfio_unregister_notifier(mdev_dev(mdev), VFIO_GROUP_NOTIFY,
&matrix_mdev->group_notifier);
module_put(THIS_MODULE);
}
static int vfio_ap_mdev_get_device_info(unsigned long arg)
{
unsigned long minsz;
struct vfio_device_info info;
minsz = offsetofend(struct vfio_device_info, num_irqs);
if (copy_from_user(&info, (void __user *)arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
info.flags = VFIO_DEVICE_FLAGS_AP | VFIO_DEVICE_FLAGS_RESET;
info.num_regions = 0;
info.num_irqs = 0;
return copy_to_user((void __user *)arg, &info, minsz);
}
static ssize_t vfio_ap_mdev_ioctl(struct mdev_device *mdev,
unsigned int cmd, unsigned long arg)
{
int ret;
mutex_lock(&matrix_dev->lock);
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
ret = vfio_ap_mdev_get_device_info(arg);
break;
case VFIO_DEVICE_RESET:
ret = vfio_ap_mdev_reset_queues(mdev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&matrix_dev->lock);
return ret;
}
static const struct mdev_parent_ops vfio_ap_matrix_ops = {
.owner = THIS_MODULE,
.supported_type_groups = vfio_ap_mdev_type_groups,
.mdev_attr_groups = vfio_ap_mdev_attr_groups,
.create = vfio_ap_mdev_create,
.remove = vfio_ap_mdev_remove,
.open = vfio_ap_mdev_open,
.release = vfio_ap_mdev_release,
.ioctl = vfio_ap_mdev_ioctl,
};
int vfio_ap_mdev_register(void)
{
atomic_set(&matrix_dev->available_instances, MAX_ZDEV_ENTRIES_EXT);
return mdev_register_device(&matrix_dev->device, &vfio_ap_matrix_ops);
}
void vfio_ap_mdev_unregister(void)
{
mdev_unregister_device(&matrix_dev->device);
}