linux/drivers/hwmon/lm63.c

1177 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm63.c - driver for the National Semiconductor LM63 temperature sensor
* with integrated fan control
* Copyright (C) 2004-2008 Jean Delvare <jdelvare@suse.de>
* Based on the lm90 driver.
*
* The LM63 is a sensor chip made by National Semiconductor. It measures
* two temperatures (its own and one external one) and the speed of one
* fan, those speed it can additionally control. Complete datasheet can be
* obtained from National's website at:
* http://www.national.com/pf/LM/LM63.html
*
* The LM63 is basically an LM86 with fan speed monitoring and control
* capabilities added. It misses some of the LM86 features though:
* - No low limit for local temperature.
* - No critical limit for local temperature.
* - Critical limit for remote temperature can be changed only once. We
* will consider that the critical limit is read-only.
*
* The datasheet isn't very clear about what the tachometer reading is.
* I had a explanation from National Semiconductor though. The two lower
* bits of the read value have to be masked out. The value is still 16 bit
* in width.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/i2c.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/sysfs.h>
#include <linux/types.h>
/*
* Addresses to scan
* Address is fully defined internally and cannot be changed except for
* LM64 which has one pin dedicated to address selection.
* LM63 and LM96163 have address 0x4c.
* LM64 can have address 0x18 or 0x4e.
*/
static const unsigned short normal_i2c[] = { 0x18, 0x4c, 0x4e, I2C_CLIENT_END };
/*
* The LM63 registers
*/
#define LM63_REG_CONFIG1 0x03
#define LM63_REG_CONVRATE 0x04
#define LM63_REG_CONFIG2 0xBF
#define LM63_REG_CONFIG_FAN 0x4A
#define LM63_REG_TACH_COUNT_MSB 0x47
#define LM63_REG_TACH_COUNT_LSB 0x46
#define LM63_REG_TACH_LIMIT_MSB 0x49
#define LM63_REG_TACH_LIMIT_LSB 0x48
#define LM63_REG_PWM_VALUE 0x4C
#define LM63_REG_PWM_FREQ 0x4D
#define LM63_REG_LUT_TEMP_HYST 0x4F
#define LM63_REG_LUT_TEMP(nr) (0x50 + 2 * (nr))
#define LM63_REG_LUT_PWM(nr) (0x51 + 2 * (nr))
#define LM63_REG_LOCAL_TEMP 0x00
#define LM63_REG_LOCAL_HIGH 0x05
#define LM63_REG_REMOTE_TEMP_MSB 0x01
#define LM63_REG_REMOTE_TEMP_LSB 0x10
#define LM63_REG_REMOTE_OFFSET_MSB 0x11
#define LM63_REG_REMOTE_OFFSET_LSB 0x12
#define LM63_REG_REMOTE_HIGH_MSB 0x07
#define LM63_REG_REMOTE_HIGH_LSB 0x13
#define LM63_REG_REMOTE_LOW_MSB 0x08
#define LM63_REG_REMOTE_LOW_LSB 0x14
#define LM63_REG_REMOTE_TCRIT 0x19
#define LM63_REG_REMOTE_TCRIT_HYST 0x21
#define LM63_REG_ALERT_STATUS 0x02
#define LM63_REG_ALERT_MASK 0x16
#define LM63_REG_MAN_ID 0xFE
#define LM63_REG_CHIP_ID 0xFF
#define LM96163_REG_TRUTHERM 0x30
#define LM96163_REG_REMOTE_TEMP_U_MSB 0x31
#define LM96163_REG_REMOTE_TEMP_U_LSB 0x32
#define LM96163_REG_CONFIG_ENHANCED 0x45
#define LM63_MAX_CONVRATE 9
#define LM63_MAX_CONVRATE_HZ 32
#define LM96163_MAX_CONVRATE_HZ 26
/*
* Conversions and various macros
* For tachometer counts, the LM63 uses 16-bit values.
* For local temperature and high limit, remote critical limit and hysteresis
* value, it uses signed 8-bit values with LSB = 1 degree Celsius.
* For remote temperature, low and high limits, it uses signed 11-bit values
* with LSB = 0.125 degree Celsius, left-justified in 16-bit registers.
* For LM64 the actual remote diode temperature is 16 degree Celsius higher
* than the register reading. Remote temperature setpoints have to be
* adapted accordingly.
*/
#define FAN_FROM_REG(reg) ((reg) == 0xFFFC || (reg) == 0 ? 0 : \
5400000 / (reg))
#define FAN_TO_REG(val) ((val) <= 82 ? 0xFFFC : \
(5400000 / (val)) & 0xFFFC)
#define TEMP8_FROM_REG(reg) ((reg) * 1000)
#define TEMP8_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
127000), 1000)
#define TEMP8U_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, \
255000), 1000)
#define TEMP11_FROM_REG(reg) ((reg) / 32 * 125)
#define TEMP11_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
127875), 125) * 32)
#define TEMP11U_TO_REG(val) (DIV_ROUND_CLOSEST(clamp_val((val), 0, \
255875), 125) * 32)
#define HYST_TO_REG(val) DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
1000)
#define UPDATE_INTERVAL(max, rate) \
((1000 << (LM63_MAX_CONVRATE - (rate))) / (max))
enum chips { lm63, lm64, lm96163 };
/*
* Client data (each client gets its own)
*/
struct lm63_data {
struct i2c_client *client;
struct mutex update_lock;
const struct attribute_group *groups[5];
char valid; /* zero until following fields are valid */
char lut_valid; /* zero until lut fields are valid */
unsigned long last_updated; /* in jiffies */
unsigned long lut_last_updated; /* in jiffies */
enum chips kind;
int temp2_offset;
int update_interval; /* in milliseconds */
int max_convrate_hz;
int lut_size; /* 8 or 12 */
/* registers values */
u8 config, config_fan;
u16 fan[2]; /* 0: input
1: low limit */
u8 pwm1_freq;
u8 pwm1[13]; /* 0: current output
1-12: lookup table */
s8 temp8[15]; /* 0: local input
1: local high limit
2: remote critical limit
3-14: lookup table */
s16 temp11[4]; /* 0: remote input
1: remote low limit
2: remote high limit
3: remote offset */
u16 temp11u; /* remote input (unsigned) */
u8 temp2_crit_hyst;
u8 lut_temp_hyst;
u8 alarms;
bool pwm_highres;
bool lut_temp_highres;
bool remote_unsigned; /* true if unsigned remote upper limits */
bool trutherm;
};
static inline int temp8_from_reg(struct lm63_data *data, int nr)
{
if (data->remote_unsigned)
return TEMP8_FROM_REG((u8)data->temp8[nr]);
return TEMP8_FROM_REG(data->temp8[nr]);
}
static inline int lut_temp_from_reg(struct lm63_data *data, int nr)
{
return data->temp8[nr] * (data->lut_temp_highres ? 500 : 1000);
}
static inline int lut_temp_to_reg(struct lm63_data *data, long val)
{
val -= data->temp2_offset;
if (data->lut_temp_highres)
return DIV_ROUND_CLOSEST(clamp_val(val, 0, 127500), 500);
else
return DIV_ROUND_CLOSEST(clamp_val(val, 0, 127000), 1000);
}
/*
* Update the lookup table register cache.
* client->update_lock must be held when calling this function.
*/
static void lm63_update_lut(struct lm63_data *data)
{
struct i2c_client *client = data->client;
int i;
if (time_after(jiffies, data->lut_last_updated + 5 * HZ) ||
!data->lut_valid) {
for (i = 0; i < data->lut_size; i++) {
data->pwm1[1 + i] = i2c_smbus_read_byte_data(client,
LM63_REG_LUT_PWM(i));
data->temp8[3 + i] = i2c_smbus_read_byte_data(client,
LM63_REG_LUT_TEMP(i));
}
data->lut_temp_hyst = i2c_smbus_read_byte_data(client,
LM63_REG_LUT_TEMP_HYST);
data->lut_last_updated = jiffies;
data->lut_valid = 1;
}
}
static struct lm63_data *lm63_update_device(struct device *dev)
{
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long next_update;
mutex_lock(&data->update_lock);
next_update = data->last_updated +
msecs_to_jiffies(data->update_interval);
if (time_after(jiffies, next_update) || !data->valid) {
if (data->config & 0x04) { /* tachometer enabled */
/* order matters for fan1_input */
data->fan[0] = i2c_smbus_read_byte_data(client,
LM63_REG_TACH_COUNT_LSB) & 0xFC;
data->fan[0] |= i2c_smbus_read_byte_data(client,
LM63_REG_TACH_COUNT_MSB) << 8;
data->fan[1] = (i2c_smbus_read_byte_data(client,
LM63_REG_TACH_LIMIT_LSB) & 0xFC)
| (i2c_smbus_read_byte_data(client,
LM63_REG_TACH_LIMIT_MSB) << 8);
}
data->pwm1_freq = i2c_smbus_read_byte_data(client,
LM63_REG_PWM_FREQ);
if (data->pwm1_freq == 0)
data->pwm1_freq = 1;
data->pwm1[0] = i2c_smbus_read_byte_data(client,
LM63_REG_PWM_VALUE);
data->temp8[0] = i2c_smbus_read_byte_data(client,
LM63_REG_LOCAL_TEMP);
data->temp8[1] = i2c_smbus_read_byte_data(client,
LM63_REG_LOCAL_HIGH);
/* order matters for temp2_input */
data->temp11[0] = i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_TEMP_MSB) << 8;
data->temp11[0] |= i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_TEMP_LSB);
data->temp11[1] = (i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_LOW_MSB) << 8)
| i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_LOW_LSB);
data->temp11[2] = (i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_HIGH_MSB) << 8)
| i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_HIGH_LSB);
data->temp11[3] = (i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_OFFSET_MSB) << 8)
| i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_OFFSET_LSB);
if (data->kind == lm96163)
data->temp11u = (i2c_smbus_read_byte_data(client,
LM96163_REG_REMOTE_TEMP_U_MSB) << 8)
| i2c_smbus_read_byte_data(client,
LM96163_REG_REMOTE_TEMP_U_LSB);
data->temp8[2] = i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_TCRIT);
data->temp2_crit_hyst = i2c_smbus_read_byte_data(client,
LM63_REG_REMOTE_TCRIT_HYST);
data->alarms = i2c_smbus_read_byte_data(client,
LM63_REG_ALERT_STATUS) & 0x7F;
data->last_updated = jiffies;
data->valid = 1;
}
lm63_update_lut(data);
mutex_unlock(&data->update_lock);
return data;
}
/*
* Trip points in the lookup table should be in ascending order for both
* temperatures and PWM output values.
*/
static int lm63_lut_looks_bad(struct device *dev, struct lm63_data *data)
{
int i;
mutex_lock(&data->update_lock);
lm63_update_lut(data);
for (i = 1; i < data->lut_size; i++) {
if (data->pwm1[1 + i - 1] > data->pwm1[1 + i]
|| data->temp8[3 + i - 1] > data->temp8[3 + i]) {
dev_warn(dev,
"Lookup table doesn't look sane (check entries %d and %d)\n",
i, i + 1);
break;
}
}
mutex_unlock(&data->update_lock);
return i == data->lut_size ? 0 : 1;
}
/*
* Sysfs callback functions and files
*/
static ssize_t show_fan(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[attr->index]));
}
static ssize_t set_fan(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
data->fan[1] = FAN_TO_REG(val);
i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_LSB,
data->fan[1] & 0xFF);
i2c_smbus_write_byte_data(client, LM63_REG_TACH_LIMIT_MSB,
data->fan[1] >> 8);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_pwm1(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
int nr = attr->index;
int pwm;
if (data->pwm_highres)
pwm = data->pwm1[nr];
else
pwm = data->pwm1[nr] >= 2 * data->pwm1_freq ?
255 : (data->pwm1[nr] * 255 + data->pwm1_freq) /
(2 * data->pwm1_freq);
return sprintf(buf, "%d\n", pwm);
}
static ssize_t set_pwm1(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->index;
unsigned long val;
int err;
u8 reg;
if (!(data->config_fan & 0x20)) /* register is read-only */
return -EPERM;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
reg = nr ? LM63_REG_LUT_PWM(nr - 1) : LM63_REG_PWM_VALUE;
val = clamp_val(val, 0, 255);
mutex_lock(&data->update_lock);
data->pwm1[nr] = data->pwm_highres ? val :
(val * data->pwm1_freq * 2 + 127) / 255;
i2c_smbus_write_byte_data(client, reg, data->pwm1[nr]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t pwm1_enable_show(struct device *dev,
struct device_attribute *dummy, char *buf)
{
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", data->config_fan & 0x20 ? 1 : 2);
}
static ssize_t pwm1_enable_store(struct device *dev,
struct device_attribute *dummy,
const char *buf, size_t count)
{
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val < 1 || val > 2)
return -EINVAL;
/*
* Only let the user switch to automatic mode if the lookup table
* looks sane.
*/
if (val == 2 && lm63_lut_looks_bad(dev, data))
return -EPERM;
mutex_lock(&data->update_lock);
data->config_fan = i2c_smbus_read_byte_data(client,
LM63_REG_CONFIG_FAN);
if (val == 1)
data->config_fan |= 0x20;
else
data->config_fan &= ~0x20;
i2c_smbus_write_byte_data(client, LM63_REG_CONFIG_FAN,
data->config_fan);
mutex_unlock(&data->update_lock);
return count;
}
/*
* There are 8bit registers for both local(temp1) and remote(temp2) sensor.
* For remote sensor registers temp2_offset has to be considered,
* for local sensor it must not.
* So we need separate 8bit accessors for local and remote sensor.
*/
static ssize_t show_local_temp8(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", TEMP8_FROM_REG(data->temp8[attr->index]));
}
static ssize_t show_remote_temp8(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", temp8_from_reg(data, attr->index)
+ data->temp2_offset);
}
static ssize_t show_lut_temp(struct device *dev,
struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index)
+ data->temp2_offset);
}
static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int nr = attr->index;
long val;
int err;
int temp;
u8 reg;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
switch (nr) {
case 2:
reg = LM63_REG_REMOTE_TCRIT;
if (data->remote_unsigned)
temp = TEMP8U_TO_REG(val - data->temp2_offset);
else
temp = TEMP8_TO_REG(val - data->temp2_offset);
break;
case 1:
reg = LM63_REG_LOCAL_HIGH;
temp = TEMP8_TO_REG(val);
break;
default: /* lookup table */
reg = LM63_REG_LUT_TEMP(nr - 3);
temp = lut_temp_to_reg(data, val);
}
data->temp8[nr] = temp;
i2c_smbus_write_byte_data(client, reg, temp);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
int nr = attr->index;
int temp;
if (!nr) {
/*
* Use unsigned temperature unless its value is zero.
* If it is zero, use signed temperature.
*/
if (data->temp11u)
temp = TEMP11_FROM_REG(data->temp11u);
else
temp = TEMP11_FROM_REG(data->temp11[nr]);
} else {
if (data->remote_unsigned && nr == 2)
temp = TEMP11_FROM_REG((u16)data->temp11[nr]);
else
temp = TEMP11_FROM_REG(data->temp11[nr]);
}
return sprintf(buf, "%d\n", temp + data->temp2_offset);
}
static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
static const u8 reg[6] = {
LM63_REG_REMOTE_LOW_MSB,
LM63_REG_REMOTE_LOW_LSB,
LM63_REG_REMOTE_HIGH_MSB,
LM63_REG_REMOTE_HIGH_LSB,
LM63_REG_REMOTE_OFFSET_MSB,
LM63_REG_REMOTE_OFFSET_LSB,
};
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
int nr = attr->index;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
if (data->remote_unsigned && nr == 2)
data->temp11[nr] = TEMP11U_TO_REG(val - data->temp2_offset);
else
data->temp11[nr] = TEMP11_TO_REG(val - data->temp2_offset);
i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2],
data->temp11[nr] >> 8);
i2c_smbus_write_byte_data(client, reg[(nr - 1) * 2 + 1],
data->temp11[nr] & 0xff);
mutex_unlock(&data->update_lock);
return count;
}
/*
* Hysteresis register holds a relative value, while we want to present
* an absolute to user-space
*/
static ssize_t temp2_crit_hyst_show(struct device *dev,
struct device_attribute *dummy, char *buf)
{
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", temp8_from_reg(data, 2)
+ data->temp2_offset
- TEMP8_FROM_REG(data->temp2_crit_hyst));
}
static ssize_t show_lut_temp_hyst(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%d\n", lut_temp_from_reg(data, attr->index)
+ data->temp2_offset
- TEMP8_FROM_REG(data->lut_temp_hyst));
}
/*
* And now the other way around, user-space provides an absolute
* hysteresis value and we have to store a relative one
*/
static ssize_t temp2_crit_hyst_store(struct device *dev,
struct device_attribute *dummy,
const char *buf, size_t count)
{
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
long val;
int err;
long hyst;
err = kstrtol(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
hyst = temp8_from_reg(data, 2) + data->temp2_offset - val;
i2c_smbus_write_byte_data(client, LM63_REG_REMOTE_TCRIT_HYST,
HYST_TO_REG(hyst));
mutex_unlock(&data->update_lock);
return count;
}
/*
* Set conversion rate.
* client->update_lock must be held when calling this function.
*/
static void lm63_set_convrate(struct lm63_data *data, unsigned int interval)
{
struct i2c_client *client = data->client;
unsigned int update_interval;
int i;
/* Shift calculations to avoid rounding errors */
interval <<= 6;
/* find the nearest update rate */
update_interval = (1 << (LM63_MAX_CONVRATE + 6)) * 1000
/ data->max_convrate_hz;
for (i = 0; i < LM63_MAX_CONVRATE; i++, update_interval >>= 1)
if (interval >= update_interval * 3 / 4)
break;
i2c_smbus_write_byte_data(client, LM63_REG_CONVRATE, i);
data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz, i);
}
static ssize_t update_interval_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm63_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", data->update_interval);
}
static ssize_t update_interval_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm63_data *data = dev_get_drvdata(dev);
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
mutex_lock(&data->update_lock);
lm63_set_convrate(data, clamp_val(val, 0, 100000));
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t temp2_type_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm63_data *data = dev_get_drvdata(dev);
return sprintf(buf, data->trutherm ? "1\n" : "2\n");
}
static ssize_t temp2_type_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm63_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long val;
int ret;
u8 reg;
ret = kstrtoul(buf, 10, &val);
if (ret < 0)
return ret;
if (val != 1 && val != 2)
return -EINVAL;
mutex_lock(&data->update_lock);
data->trutherm = val == 1;
reg = i2c_smbus_read_byte_data(client, LM96163_REG_TRUTHERM) & ~0x02;
i2c_smbus_write_byte_data(client, LM96163_REG_TRUTHERM,
reg | (data->trutherm ? 0x02 : 0x00));
data->valid = 0;
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t alarms_show(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct lm63_data *data = lm63_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static ssize_t show_alarm(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct lm63_data *data = lm63_update_device(dev);
int bitnr = attr->index;
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0);
static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan,
set_fan, 1);
static SENSOR_DEVICE_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm1, set_pwm1, 0);
static DEVICE_ATTR_RW(pwm1_enable);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 1);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point1_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 2);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point2_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 3);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point3_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 4);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point4_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 5);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point5_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 6);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point6_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 7);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point7_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 8);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point8_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 9);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point9_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 10);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point10_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 11);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 13);
static SENSOR_DEVICE_ATTR(pwm1_auto_point11_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 13);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_pwm, S_IWUSR | S_IRUGO,
show_pwm1, set_pwm1, 12);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_temp, S_IWUSR | S_IRUGO,
show_lut_temp, set_temp8, 14);
static SENSOR_DEVICE_ATTR(pwm1_auto_point12_temp_hyst, S_IRUGO,
show_lut_temp_hyst, NULL, 14);
static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, show_local_temp8, NULL, 0);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_local_temp8,
set_temp8, 1);
static SENSOR_DEVICE_ATTR(temp2_input, S_IRUGO, show_temp11, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 1);
static SENSOR_DEVICE_ATTR(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 2);
static SENSOR_DEVICE_ATTR(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
set_temp11, 3);
static SENSOR_DEVICE_ATTR(temp2_crit, S_IRUGO, show_remote_temp8,
set_temp8, 2);
static DEVICE_ATTR_RW(temp2_crit_hyst);
static DEVICE_ATTR_RW(temp2_type);
/* Individual alarm files */
static SENSOR_DEVICE_ATTR(fan1_min_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
/* Raw alarm file for compatibility */
static DEVICE_ATTR_RO(alarms);
static DEVICE_ATTR_RW(update_interval);
static struct attribute *lm63_attributes[] = {
&sensor_dev_attr_pwm1.dev_attr.attr,
&dev_attr_pwm1_enable.attr,
&sensor_dev_attr_pwm1_auto_point1_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point1_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point2_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point3_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point4_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point5_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point6_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point6_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point6_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point7_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point7_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point7_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point8_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point8_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point8_temp_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_input.dev_attr.attr,
&sensor_dev_attr_temp2_input.dev_attr.attr,
&sensor_dev_attr_temp2_min.dev_attr.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp2_max.dev_attr.attr,
&sensor_dev_attr_temp2_offset.dev_attr.attr,
&sensor_dev_attr_temp2_crit.dev_attr.attr,
&dev_attr_temp2_crit_hyst.attr,
&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_fault.dev_attr.attr,
&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_update_interval.attr,
NULL
};
static struct attribute *lm63_attributes_temp2_type[] = {
&dev_attr_temp2_type.attr,
NULL
};
static const struct attribute_group lm63_group_temp2_type = {
.attrs = lm63_attributes_temp2_type,
};
static struct attribute *lm63_attributes_extra_lut[] = {
&sensor_dev_attr_pwm1_auto_point9_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point9_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point9_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point10_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point10_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point10_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point11_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point11_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point11_temp_hyst.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point12_pwm.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point12_temp.dev_attr.attr,
&sensor_dev_attr_pwm1_auto_point12_temp_hyst.dev_attr.attr,
NULL
};
static const struct attribute_group lm63_group_extra_lut = {
.attrs = lm63_attributes_extra_lut,
};
/*
* On LM63, temp2_crit can be set only once, which should be job
* of the bootloader.
* On LM64, temp2_crit can always be set.
* On LM96163, temp2_crit can be set if bit 1 of the configuration
* register is true.
*/
static umode_t lm63_attribute_mode(struct kobject *kobj,
struct attribute *attr, int index)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct lm63_data *data = dev_get_drvdata(dev);
if (attr == &sensor_dev_attr_temp2_crit.dev_attr.attr
&& (data->kind == lm64 ||
(data->kind == lm96163 && (data->config & 0x02))))
return attr->mode | S_IWUSR;
return attr->mode;
}
static const struct attribute_group lm63_group = {
.is_visible = lm63_attribute_mode,
.attrs = lm63_attributes,
};
static struct attribute *lm63_attributes_fan1[] = {
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_min_alarm.dev_attr.attr,
NULL
};
static const struct attribute_group lm63_group_fan1 = {
.attrs = lm63_attributes_fan1,
};
/*
* Real code
*/
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm63_detect(struct i2c_client *client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
u8 man_id, chip_id, reg_config1, reg_config2;
u8 reg_alert_status, reg_alert_mask;
int address = client->addr;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
man_id = i2c_smbus_read_byte_data(client, LM63_REG_MAN_ID);
chip_id = i2c_smbus_read_byte_data(client, LM63_REG_CHIP_ID);
reg_config1 = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG1);
reg_config2 = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG2);
reg_alert_status = i2c_smbus_read_byte_data(client,
LM63_REG_ALERT_STATUS);
reg_alert_mask = i2c_smbus_read_byte_data(client, LM63_REG_ALERT_MASK);
if (man_id != 0x01 /* National Semiconductor */
|| (reg_config1 & 0x18) != 0x00
|| (reg_config2 & 0xF8) != 0x00
|| (reg_alert_status & 0x20) != 0x00
|| (reg_alert_mask & 0xA4) != 0xA4) {
dev_dbg(&adapter->dev,
"Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n",
man_id, chip_id);
return -ENODEV;
}
if (chip_id == 0x41 && address == 0x4c)
strlcpy(info->type, "lm63", I2C_NAME_SIZE);
else if (chip_id == 0x51 && (address == 0x18 || address == 0x4e))
strlcpy(info->type, "lm64", I2C_NAME_SIZE);
else if (chip_id == 0x49 && address == 0x4c)
strlcpy(info->type, "lm96163", I2C_NAME_SIZE);
else
return -ENODEV;
return 0;
}
/*
* Ideally we shouldn't have to initialize anything, since the BIOS
* should have taken care of everything
*/
static void lm63_init_client(struct lm63_data *data)
{
struct i2c_client *client = data->client;
struct device *dev = &client->dev;
u8 convrate;
data->config = i2c_smbus_read_byte_data(client, LM63_REG_CONFIG1);
data->config_fan = i2c_smbus_read_byte_data(client,
LM63_REG_CONFIG_FAN);
/* Start converting if needed */
if (data->config & 0x40) { /* standby */
dev_dbg(dev, "Switching to operational mode\n");
data->config &= 0xA7;
i2c_smbus_write_byte_data(client, LM63_REG_CONFIG1,
data->config);
}
/* Tachometer is always enabled on LM64 */
if (data->kind == lm64)
data->config |= 0x04;
/* We may need pwm1_freq before ever updating the client data */
data->pwm1_freq = i2c_smbus_read_byte_data(client, LM63_REG_PWM_FREQ);
if (data->pwm1_freq == 0)
data->pwm1_freq = 1;
switch (data->kind) {
case lm63:
case lm64:
data->max_convrate_hz = LM63_MAX_CONVRATE_HZ;
data->lut_size = 8;
break;
case lm96163:
data->max_convrate_hz = LM96163_MAX_CONVRATE_HZ;
data->lut_size = 12;
data->trutherm
= i2c_smbus_read_byte_data(client,
LM96163_REG_TRUTHERM) & 0x02;
break;
}
convrate = i2c_smbus_read_byte_data(client, LM63_REG_CONVRATE);
if (unlikely(convrate > LM63_MAX_CONVRATE))
convrate = LM63_MAX_CONVRATE;
data->update_interval = UPDATE_INTERVAL(data->max_convrate_hz,
convrate);
/*
* For LM96163, check if high resolution PWM
* and unsigned temperature format is enabled.
*/
if (data->kind == lm96163) {
u8 config_enhanced
= i2c_smbus_read_byte_data(client,
LM96163_REG_CONFIG_ENHANCED);
if (config_enhanced & 0x20)
data->lut_temp_highres = true;
if ((config_enhanced & 0x10)
&& !(data->config_fan & 0x08) && data->pwm1_freq == 8)
data->pwm_highres = true;
if (config_enhanced & 0x08)
data->remote_unsigned = true;
}
/* Show some debug info about the LM63 configuration */
if (data->kind == lm63)
dev_dbg(dev, "Alert/tach pin configured for %s\n",
(data->config & 0x04) ? "tachometer input" :
"alert output");
dev_dbg(dev, "PWM clock %s kHz, output frequency %u Hz\n",
(data->config_fan & 0x08) ? "1.4" : "360",
((data->config_fan & 0x08) ? 700 : 180000) / data->pwm1_freq);
dev_dbg(dev, "PWM output active %s, %s mode\n",
(data->config_fan & 0x10) ? "low" : "high",
(data->config_fan & 0x20) ? "manual" : "auto");
}
static int lm63_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device *hwmon_dev;
struct lm63_data *data;
int groups = 0;
data = devm_kzalloc(dev, sizeof(struct lm63_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
mutex_init(&data->update_lock);
/* Set the device type */
if (client->dev.of_node)
data->kind = (enum chips)of_device_get_match_data(&client->dev);
else
data->kind = id->driver_data;
if (data->kind == lm64)
data->temp2_offset = 16000;
/* Initialize chip */
lm63_init_client(data);
/* Register sysfs hooks */
data->groups[groups++] = &lm63_group;
if (data->config & 0x04) /* tachometer enabled */
data->groups[groups++] = &lm63_group_fan1;
if (data->kind == lm96163) {
data->groups[groups++] = &lm63_group_temp2_type;
data->groups[groups++] = &lm63_group_extra_lut;
}
hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
data, data->groups);
return PTR_ERR_OR_ZERO(hwmon_dev);
}
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id lm63_id[] = {
{ "lm63", lm63 },
{ "lm64", lm64 },
{ "lm96163", lm96163 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm63_id);
static const struct of_device_id __maybe_unused lm63_of_match[] = {
{
.compatible = "national,lm63",
.data = (void *)lm63
},
{
.compatible = "national,lm64",
.data = (void *)lm64
},
{
.compatible = "national,lm96163",
.data = (void *)lm96163
},
{ },
};
MODULE_DEVICE_TABLE(of, lm63_of_match);
static struct i2c_driver lm63_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm63",
.of_match_table = of_match_ptr(lm63_of_match),
},
.probe = lm63_probe,
.id_table = lm63_id,
.detect = lm63_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm63_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("LM63 driver");
MODULE_LICENSE("GPL");