linux/Documentation/media/uapi/v4l/rw.rst

48 lines
1.9 KiB
ReStructuredText

.. -*- coding: utf-8; mode: rst -*-
.. _rw:
**********
Read/Write
**********
Input and output devices support the :ref:`read() <func-read>` and
:ref:`write() <func-write>` function, respectively, when the
``V4L2_CAP_READWRITE`` flag in the ``capabilities`` field of struct
:c:type:`v4l2_capability` returned by the
:ref:`VIDIOC_QUERYCAP` ioctl is set.
Drivers may need the CPU to copy the data, but they may also support DMA
to or from user memory, so this I/O method is not necessarily less
efficient than other methods merely exchanging buffer pointers. It is
considered inferior though because no meta-information like frame
counters or timestamps are passed. This information is necessary to
recognize frame dropping and to synchronize with other data streams.
However this is also the simplest I/O method, requiring little or no
setup to exchange data. It permits command line stunts like this (the
vidctrl tool is fictitious):
.. code-block:: none
$ vidctrl /dev/video --input=0 --format=YUYV --size=352x288
$ dd if=/dev/video of=myimage.422 bs=202752 count=1
To read from the device applications use the :ref:`read() <func-read>`
function, to write the :ref:`write() <func-write>` function. Drivers
must implement one I/O method if they exchange data with applications,
but it need not be this. [#f1]_ When reading or writing is supported, the
driver must also support the :ref:`select() <func-select>` and
:ref:`poll() <func-poll>` function. [#f2]_
.. [#f1]
It would be desirable if applications could depend on drivers
supporting all I/O interfaces, but as much as the complex memory
mapping I/O can be inadequate for some devices we have no reason to
require this interface, which is most useful for simple applications
capturing still images.
.. [#f2]
At the driver level :ref:`select() <func-select>` and :ref:`poll() <func-poll>` are
the same, and :ref:`select() <func-select>` is too important to be optional.