linux/drivers/iio/gyro/bmg160_core.c

1270 lines
30 KiB
C

/*
* BMG160 Gyro Sensor driver
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/regmap.h>
#include "bmg160.h"
#define BMG160_IRQ_NAME "bmg160_event"
#define BMG160_REG_CHIP_ID 0x00
#define BMG160_CHIP_ID_VAL 0x0F
#define BMG160_REG_PMU_LPW 0x11
#define BMG160_MODE_NORMAL 0x00
#define BMG160_MODE_DEEP_SUSPEND 0x20
#define BMG160_MODE_SUSPEND 0x80
#define BMG160_REG_RANGE 0x0F
#define BMG160_RANGE_2000DPS 0
#define BMG160_RANGE_1000DPS 1
#define BMG160_RANGE_500DPS 2
#define BMG160_RANGE_250DPS 3
#define BMG160_RANGE_125DPS 4
#define BMG160_REG_PMU_BW 0x10
#define BMG160_NO_FILTER 0
#define BMG160_DEF_BW 100
#define BMG160_REG_PMU_BW_RES BIT(7)
#define BMG160_GYRO_REG_RESET 0x14
#define BMG160_GYRO_RESET_VAL 0xb6
#define BMG160_REG_INT_MAP_0 0x17
#define BMG160_INT_MAP_0_BIT_ANY BIT(1)
#define BMG160_REG_INT_MAP_1 0x18
#define BMG160_INT_MAP_1_BIT_NEW_DATA BIT(0)
#define BMG160_REG_INT_RST_LATCH 0x21
#define BMG160_INT_MODE_LATCH_RESET 0x80
#define BMG160_INT_MODE_LATCH_INT 0x0F
#define BMG160_INT_MODE_NON_LATCH_INT 0x00
#define BMG160_REG_INT_EN_0 0x15
#define BMG160_DATA_ENABLE_INT BIT(7)
#define BMG160_REG_INT_EN_1 0x16
#define BMG160_INT1_BIT_OD BIT(1)
#define BMG160_REG_XOUT_L 0x02
#define BMG160_AXIS_TO_REG(axis) (BMG160_REG_XOUT_L + (axis * 2))
#define BMG160_REG_SLOPE_THRES 0x1B
#define BMG160_SLOPE_THRES_MASK 0x0F
#define BMG160_REG_MOTION_INTR 0x1C
#define BMG160_INT_MOTION_X BIT(0)
#define BMG160_INT_MOTION_Y BIT(1)
#define BMG160_INT_MOTION_Z BIT(2)
#define BMG160_ANY_DUR_MASK 0x30
#define BMG160_ANY_DUR_SHIFT 4
#define BMG160_REG_INT_STATUS_2 0x0B
#define BMG160_ANY_MOTION_MASK 0x07
#define BMG160_ANY_MOTION_BIT_X BIT(0)
#define BMG160_ANY_MOTION_BIT_Y BIT(1)
#define BMG160_ANY_MOTION_BIT_Z BIT(2)
#define BMG160_REG_TEMP 0x08
#define BMG160_TEMP_CENTER_VAL 23
#define BMG160_MAX_STARTUP_TIME_MS 80
#define BMG160_AUTO_SUSPEND_DELAY_MS 2000
struct bmg160_data {
struct regmap *regmap;
struct iio_trigger *dready_trig;
struct iio_trigger *motion_trig;
struct mutex mutex;
s16 buffer[8];
u32 dps_range;
int ev_enable_state;
int slope_thres;
bool dready_trigger_on;
bool motion_trigger_on;
int irq;
};
enum bmg160_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
AXIS_MAX,
};
static const struct {
int odr;
int filter;
int bw_bits;
} bmg160_samp_freq_table[] = { {100, 32, 0x07},
{200, 64, 0x06},
{100, 12, 0x05},
{200, 23, 0x04},
{400, 47, 0x03},
{1000, 116, 0x02},
{2000, 230, 0x01} };
static const struct {
int scale;
int dps_range;
} bmg160_scale_table[] = { { 1065, BMG160_RANGE_2000DPS},
{ 532, BMG160_RANGE_1000DPS},
{ 266, BMG160_RANGE_500DPS},
{ 133, BMG160_RANGE_250DPS},
{ 66, BMG160_RANGE_125DPS} };
static int bmg160_set_mode(struct bmg160_data *data, u8 mode)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
ret = regmap_write(data->regmap, BMG160_REG_PMU_LPW, mode);
if (ret < 0) {
dev_err(dev, "Error writing reg_pmu_lpw\n");
return ret;
}
return 0;
}
static int bmg160_convert_freq_to_bit(int val)
{
int i;
for (i = 0; i < ARRAY_SIZE(bmg160_samp_freq_table); ++i) {
if (bmg160_samp_freq_table[i].odr == val)
return bmg160_samp_freq_table[i].bw_bits;
}
return -EINVAL;
}
static int bmg160_set_bw(struct bmg160_data *data, int val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
int bw_bits;
bw_bits = bmg160_convert_freq_to_bit(val);
if (bw_bits < 0)
return bw_bits;
ret = regmap_write(data->regmap, BMG160_REG_PMU_BW, bw_bits);
if (ret < 0) {
dev_err(dev, "Error writing reg_pmu_bw\n");
return ret;
}
return 0;
}
static int bmg160_get_filter(struct bmg160_data *data, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
int i;
unsigned int bw_bits;
ret = regmap_read(data->regmap, BMG160_REG_PMU_BW, &bw_bits);
if (ret < 0) {
dev_err(dev, "Error reading reg_pmu_bw\n");
return ret;
}
/* Ignore the readonly reserved bit. */
bw_bits &= ~BMG160_REG_PMU_BW_RES;
for (i = 0; i < ARRAY_SIZE(bmg160_samp_freq_table); ++i) {
if (bmg160_samp_freq_table[i].bw_bits == bw_bits)
break;
}
*val = bmg160_samp_freq_table[i].filter;
return ret ? ret : IIO_VAL_INT;
}
static int bmg160_set_filter(struct bmg160_data *data, int val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
int i;
for (i = 0; i < ARRAY_SIZE(bmg160_samp_freq_table); ++i) {
if (bmg160_samp_freq_table[i].filter == val)
break;
}
ret = regmap_write(data->regmap, BMG160_REG_PMU_BW,
bmg160_samp_freq_table[i].bw_bits);
if (ret < 0) {
dev_err(dev, "Error writing reg_pmu_bw\n");
return ret;
}
return 0;
}
static int bmg160_chip_init(struct bmg160_data *data)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
unsigned int val;
/*
* Reset chip to get it in a known good state. A delay of 30ms after
* reset is required according to the datasheet.
*/
regmap_write(data->regmap, BMG160_GYRO_REG_RESET,
BMG160_GYRO_RESET_VAL);
usleep_range(30000, 30700);
ret = regmap_read(data->regmap, BMG160_REG_CHIP_ID, &val);
if (ret < 0) {
dev_err(dev, "Error reading reg_chip_id\n");
return ret;
}
dev_dbg(dev, "Chip Id %x\n", val);
if (val != BMG160_CHIP_ID_VAL) {
dev_err(dev, "invalid chip %x\n", val);
return -ENODEV;
}
ret = bmg160_set_mode(data, BMG160_MODE_NORMAL);
if (ret < 0)
return ret;
/* Wait upto 500 ms to be ready after changing mode */
usleep_range(500, 1000);
/* Set Bandwidth */
ret = bmg160_set_bw(data, BMG160_DEF_BW);
if (ret < 0)
return ret;
/* Set Default Range */
ret = regmap_write(data->regmap, BMG160_REG_RANGE, BMG160_RANGE_500DPS);
if (ret < 0) {
dev_err(dev, "Error writing reg_range\n");
return ret;
}
data->dps_range = BMG160_RANGE_500DPS;
ret = regmap_read(data->regmap, BMG160_REG_SLOPE_THRES, &val);
if (ret < 0) {
dev_err(dev, "Error reading reg_slope_thres\n");
return ret;
}
data->slope_thres = val;
/* Set default interrupt mode */
ret = regmap_update_bits(data->regmap, BMG160_REG_INT_EN_1,
BMG160_INT1_BIT_OD, 0);
if (ret < 0) {
dev_err(dev, "Error updating bits in reg_int_en_1\n");
return ret;
}
ret = regmap_write(data->regmap, BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(dev,
"Error writing reg_motion_intr\n");
return ret;
}
return 0;
}
static int bmg160_set_power_state(struct bmg160_data *data, bool on)
{
#ifdef CONFIG_PM
struct device *dev = regmap_get_device(data->regmap);
int ret;
if (on)
ret = pm_runtime_get_sync(dev);
else {
pm_runtime_mark_last_busy(dev);
ret = pm_runtime_put_autosuspend(dev);
}
if (ret < 0) {
dev_err(dev, "Failed: bmg160_set_power_state for %d\n", on);
if (on)
pm_runtime_put_noidle(dev);
return ret;
}
#endif
return 0;
}
static int bmg160_setup_any_motion_interrupt(struct bmg160_data *data,
bool status)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
/* Enable/Disable INT_MAP0 mapping */
ret = regmap_update_bits(data->regmap, BMG160_REG_INT_MAP_0,
BMG160_INT_MAP_0_BIT_ANY,
(status ? BMG160_INT_MAP_0_BIT_ANY : 0));
if (ret < 0) {
dev_err(dev, "Error updating bits reg_int_map0\n");
return ret;
}
/* Enable/Disable slope interrupts */
if (status) {
/* Update slope thres */
ret = regmap_write(data->regmap, BMG160_REG_SLOPE_THRES,
data->slope_thres);
if (ret < 0) {
dev_err(dev, "Error writing reg_slope_thres\n");
return ret;
}
ret = regmap_write(data->regmap, BMG160_REG_MOTION_INTR,
BMG160_INT_MOTION_X | BMG160_INT_MOTION_Y |
BMG160_INT_MOTION_Z);
if (ret < 0) {
dev_err(dev, "Error writing reg_motion_intr\n");
return ret;
}
/*
* New data interrupt is always non-latched,
* which will have higher priority, so no need
* to set latched mode, we will be flooded anyway with INTR
*/
if (!data->dready_trigger_on) {
ret = regmap_write(data->regmap,
BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(dev, "Error writing reg_rst_latch\n");
return ret;
}
}
ret = regmap_write(data->regmap, BMG160_REG_INT_EN_0,
BMG160_DATA_ENABLE_INT);
} else {
ret = regmap_write(data->regmap, BMG160_REG_INT_EN_0, 0);
}
if (ret < 0) {
dev_err(dev, "Error writing reg_int_en0\n");
return ret;
}
return 0;
}
static int bmg160_setup_new_data_interrupt(struct bmg160_data *data,
bool status)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
/* Enable/Disable INT_MAP1 mapping */
ret = regmap_update_bits(data->regmap, BMG160_REG_INT_MAP_1,
BMG160_INT_MAP_1_BIT_NEW_DATA,
(status ? BMG160_INT_MAP_1_BIT_NEW_DATA : 0));
if (ret < 0) {
dev_err(dev, "Error updating bits in reg_int_map1\n");
return ret;
}
if (status) {
ret = regmap_write(data->regmap, BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_NON_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(dev, "Error writing reg_rst_latch\n");
return ret;
}
ret = regmap_write(data->regmap, BMG160_REG_INT_EN_0,
BMG160_DATA_ENABLE_INT);
} else {
/* Restore interrupt mode */
ret = regmap_write(data->regmap, BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(dev, "Error writing reg_rst_latch\n");
return ret;
}
ret = regmap_write(data->regmap, BMG160_REG_INT_EN_0, 0);
}
if (ret < 0) {
dev_err(dev, "Error writing reg_int_en0\n");
return ret;
}
return 0;
}
static int bmg160_get_bw(struct bmg160_data *data, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int i;
unsigned int bw_bits;
int ret;
ret = regmap_read(data->regmap, BMG160_REG_PMU_BW, &bw_bits);
if (ret < 0) {
dev_err(dev, "Error reading reg_pmu_bw\n");
return ret;
}
/* Ignore the readonly reserved bit. */
bw_bits &= ~BMG160_REG_PMU_BW_RES;
for (i = 0; i < ARRAY_SIZE(bmg160_samp_freq_table); ++i) {
if (bmg160_samp_freq_table[i].bw_bits == bw_bits) {
*val = bmg160_samp_freq_table[i].odr;
return IIO_VAL_INT;
}
}
return -EINVAL;
}
static int bmg160_set_scale(struct bmg160_data *data, int val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret, i;
for (i = 0; i < ARRAY_SIZE(bmg160_scale_table); ++i) {
if (bmg160_scale_table[i].scale == val) {
ret = regmap_write(data->regmap, BMG160_REG_RANGE,
bmg160_scale_table[i].dps_range);
if (ret < 0) {
dev_err(dev, "Error writing reg_range\n");
return ret;
}
data->dps_range = bmg160_scale_table[i].dps_range;
return 0;
}
}
return -EINVAL;
}
static int bmg160_get_temp(struct bmg160_data *data, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
unsigned int raw_val;
mutex_lock(&data->mutex);
ret = bmg160_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_read(data->regmap, BMG160_REG_TEMP, &raw_val);
if (ret < 0) {
dev_err(dev, "Error reading reg_temp\n");
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(raw_val, 7);
ret = bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
static int bmg160_get_axis(struct bmg160_data *data, int axis, int *val)
{
struct device *dev = regmap_get_device(data->regmap);
int ret;
__le16 raw_val;
mutex_lock(&data->mutex);
ret = bmg160_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = regmap_bulk_read(data->regmap, BMG160_AXIS_TO_REG(axis), &raw_val,
sizeof(raw_val));
if (ret < 0) {
dev_err(dev, "Error reading axis %d\n", axis);
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(le16_to_cpu(raw_val), 15);
ret = bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
static int bmg160_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
return bmg160_get_temp(data, val);
case IIO_ANGL_VEL:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
else
return bmg160_get_axis(data, chan->scan_index,
val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
if (chan->type == IIO_TEMP) {
*val = BMG160_TEMP_CENTER_VAL;
return IIO_VAL_INT;
} else
return -EINVAL;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
return bmg160_get_filter(data, val);
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
*val = 500;
return IIO_VAL_INT;
case IIO_ANGL_VEL:
{
int i;
for (i = 0; i < ARRAY_SIZE(bmg160_scale_table); ++i) {
if (bmg160_scale_table[i].dps_range ==
data->dps_range) {
*val = 0;
*val2 = bmg160_scale_table[i].scale;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
*val2 = 0;
mutex_lock(&data->mutex);
ret = bmg160_get_bw(data, val);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
}
static int bmg160_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
/*
* Section 4.2 of spec
* In suspend mode, the only supported operations are reading
* registers as well as writing to the (0x14) softreset
* register. Since we will be in suspend mode by default, change
* mode to power on for other writes.
*/
ret = bmg160_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_bw(data, val);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
if (val2)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmg160_set_power_state(data, true);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_filter(data, val);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
case IIO_CHAN_INFO_SCALE:
if (val)
return -EINVAL;
mutex_lock(&data->mutex);
/* Refer to comments above for the suspend mode ops */
ret = bmg160_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_scale(data, val2);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
return -EINVAL;
}
static int bmg160_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct bmg160_data *data = iio_priv(indio_dev);
*val2 = 0;
switch (info) {
case IIO_EV_INFO_VALUE:
*val = data->slope_thres & BMG160_SLOPE_THRES_MASK;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
}
static int bmg160_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct bmg160_data *data = iio_priv(indio_dev);
switch (info) {
case IIO_EV_INFO_VALUE:
if (data->ev_enable_state)
return -EBUSY;
data->slope_thres &= ~BMG160_SLOPE_THRES_MASK;
data->slope_thres |= (val & BMG160_SLOPE_THRES_MASK);
break;
default:
return -EINVAL;
}
return 0;
}
static int bmg160_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct bmg160_data *data = iio_priv(indio_dev);
return data->ev_enable_state;
}
static int bmg160_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
if (state && data->ev_enable_state)
return 0;
mutex_lock(&data->mutex);
if (!state && data->motion_trigger_on) {
data->ev_enable_state = 0;
mutex_unlock(&data->mutex);
return 0;
}
/*
* We will expect the enable and disable to do operation in
* in reverse order. This will happen here anyway as our
* resume operation uses sync mode runtime pm calls, the
* suspend operation will be delayed by autosuspend delay
* So the disable operation will still happen in reverse of
* enable operation. When runtime pm is disabled the mode
* is always on so sequence doesn't matter
*/
ret = bmg160_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmg160_setup_any_motion_interrupt(data, state);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
data->ev_enable_state = state;
mutex_unlock(&data->mutex);
return 0;
}
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("100 200 400 1000 2000");
static IIO_CONST_ATTR(in_anglvel_scale_available,
"0.001065 0.000532 0.000266 0.000133 0.000066");
static struct attribute *bmg160_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmg160_attrs_group = {
.attrs = bmg160_attributes,
};
static const struct iio_event_spec bmg160_event = {
.type = IIO_EV_TYPE_ROC,
.dir = IIO_EV_DIR_EITHER,
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE)
};
#define BMG160_CHANNEL(_axis) { \
.type = IIO_ANGL_VEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
.event_spec = &bmg160_event, \
.num_event_specs = 1 \
}
static const struct iio_chan_spec bmg160_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = -1,
},
BMG160_CHANNEL(X),
BMG160_CHANNEL(Y),
BMG160_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_info bmg160_info = {
.attrs = &bmg160_attrs_group,
.read_raw = bmg160_read_raw,
.write_raw = bmg160_write_raw,
.read_event_value = bmg160_read_event,
.write_event_value = bmg160_write_event,
.write_event_config = bmg160_write_event_config,
.read_event_config = bmg160_read_event_config,
};
static const unsigned long bmg160_accel_scan_masks[] = {
BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
0};
static irqreturn_t bmg160_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
ret = regmap_bulk_read(data->regmap, BMG160_REG_XOUT_L,
data->buffer, AXIS_MAX * 2);
mutex_unlock(&data->mutex);
if (ret < 0)
goto err;
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
pf->timestamp);
err:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmg160_trig_try_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmg160_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
/* new data interrupts don't need ack */
if (data->dready_trigger_on)
return 0;
/* Set latched mode interrupt and clear any latched interrupt */
ret = regmap_write(data->regmap, BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(dev, "Error writing reg_rst_latch\n");
return ret;
}
return 0;
}
static int bmg160_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
if (!state && data->ev_enable_state && data->motion_trigger_on) {
data->motion_trigger_on = false;
mutex_unlock(&data->mutex);
return 0;
}
/*
* Refer to comment in bmg160_write_event_config for
* enable/disable operation order
*/
ret = bmg160_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
ret = bmg160_setup_any_motion_interrupt(data, state);
else
ret = bmg160_setup_new_data_interrupt(data, state);
if (ret < 0) {
bmg160_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
data->motion_trigger_on = state;
else
data->dready_trigger_on = state;
mutex_unlock(&data->mutex);
return 0;
}
static const struct iio_trigger_ops bmg160_trigger_ops = {
.set_trigger_state = bmg160_data_rdy_trigger_set_state,
.try_reenable = bmg160_trig_try_reen,
};
static irqreturn_t bmg160_event_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmg160_data *data = iio_priv(indio_dev);
struct device *dev = regmap_get_device(data->regmap);
int ret;
int dir;
unsigned int val;
ret = regmap_read(data->regmap, BMG160_REG_INT_STATUS_2, &val);
if (ret < 0) {
dev_err(dev, "Error reading reg_int_status2\n");
goto ack_intr_status;
}
if (val & 0x08)
dir = IIO_EV_DIR_RISING;
else
dir = IIO_EV_DIR_FALLING;
if (val & BMG160_ANY_MOTION_BIT_X)
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ANGL_VEL,
0,
IIO_MOD_X,
IIO_EV_TYPE_ROC,
dir),
iio_get_time_ns(indio_dev));
if (val & BMG160_ANY_MOTION_BIT_Y)
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ANGL_VEL,
0,
IIO_MOD_Y,
IIO_EV_TYPE_ROC,
dir),
iio_get_time_ns(indio_dev));
if (val & BMG160_ANY_MOTION_BIT_Z)
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ANGL_VEL,
0,
IIO_MOD_Z,
IIO_EV_TYPE_ROC,
dir),
iio_get_time_ns(indio_dev));
ack_intr_status:
if (!data->dready_trigger_on) {
ret = regmap_write(data->regmap, BMG160_REG_INT_RST_LATCH,
BMG160_INT_MODE_LATCH_INT |
BMG160_INT_MODE_LATCH_RESET);
if (ret < 0)
dev_err(dev, "Error writing reg_rst_latch\n");
}
return IRQ_HANDLED;
}
static irqreturn_t bmg160_data_rdy_trig_poll(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmg160_data *data = iio_priv(indio_dev);
if (data->dready_trigger_on)
iio_trigger_poll(data->dready_trig);
else if (data->motion_trigger_on)
iio_trigger_poll(data->motion_trig);
if (data->ev_enable_state)
return IRQ_WAKE_THREAD;
else
return IRQ_HANDLED;
}
static int bmg160_buffer_preenable(struct iio_dev *indio_dev)
{
struct bmg160_data *data = iio_priv(indio_dev);
return bmg160_set_power_state(data, true);
}
static int bmg160_buffer_postdisable(struct iio_dev *indio_dev)
{
struct bmg160_data *data = iio_priv(indio_dev);
return bmg160_set_power_state(data, false);
}
static const struct iio_buffer_setup_ops bmg160_buffer_setup_ops = {
.preenable = bmg160_buffer_preenable,
.postenable = iio_triggered_buffer_postenable,
.predisable = iio_triggered_buffer_predisable,
.postdisable = bmg160_buffer_postdisable,
};
static const char *bmg160_match_acpi_device(struct device *dev)
{
const struct acpi_device_id *id;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return NULL;
return dev_name(dev);
}
int bmg160_core_probe(struct device *dev, struct regmap *regmap, int irq,
const char *name)
{
struct bmg160_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->irq = irq;
data->regmap = regmap;
ret = bmg160_chip_init(data);
if (ret < 0)
return ret;
mutex_init(&data->mutex);
if (ACPI_HANDLE(dev))
name = bmg160_match_acpi_device(dev);
indio_dev->dev.parent = dev;
indio_dev->channels = bmg160_channels;
indio_dev->num_channels = ARRAY_SIZE(bmg160_channels);
indio_dev->name = name;
indio_dev->available_scan_masks = bmg160_accel_scan_masks;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmg160_info;
if (data->irq > 0) {
ret = devm_request_threaded_irq(dev,
data->irq,
bmg160_data_rdy_trig_poll,
bmg160_event_handler,
IRQF_TRIGGER_RISING,
BMG160_IRQ_NAME,
indio_dev);
if (ret)
return ret;
data->dready_trig = devm_iio_trigger_alloc(dev,
"%s-dev%d",
indio_dev->name,
indio_dev->id);
if (!data->dready_trig)
return -ENOMEM;
data->motion_trig = devm_iio_trigger_alloc(dev,
"%s-any-motion-dev%d",
indio_dev->name,
indio_dev->id);
if (!data->motion_trig)
return -ENOMEM;
data->dready_trig->dev.parent = dev;
data->dready_trig->ops = &bmg160_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
ret = iio_trigger_register(data->dready_trig);
if (ret)
return ret;
data->motion_trig->dev.parent = dev;
data->motion_trig->ops = &bmg160_trigger_ops;
iio_trigger_set_drvdata(data->motion_trig, indio_dev);
ret = iio_trigger_register(data->motion_trig);
if (ret) {
data->motion_trig = NULL;
goto err_trigger_unregister;
}
}
ret = iio_triggered_buffer_setup(indio_dev,
iio_pollfunc_store_time,
bmg160_trigger_handler,
&bmg160_buffer_setup_ops);
if (ret < 0) {
dev_err(dev,
"iio triggered buffer setup failed\n");
goto err_trigger_unregister;
}
ret = pm_runtime_set_active(dev);
if (ret)
goto err_buffer_cleanup;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev,
BMG160_AUTO_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(dev);
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(dev, "unable to register iio device\n");
goto err_buffer_cleanup;
}
return 0;
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_trigger_unregister:
if (data->dready_trig)
iio_trigger_unregister(data->dready_trig);
if (data->motion_trig)
iio_trigger_unregister(data->motion_trig);
return ret;
}
EXPORT_SYMBOL_GPL(bmg160_core_probe);
void bmg160_core_remove(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmg160_data *data = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
pm_runtime_put_noidle(dev);
iio_triggered_buffer_cleanup(indio_dev);
if (data->dready_trig) {
iio_trigger_unregister(data->dready_trig);
iio_trigger_unregister(data->motion_trig);
}
mutex_lock(&data->mutex);
bmg160_set_mode(data, BMG160_MODE_DEEP_SUSPEND);
mutex_unlock(&data->mutex);
}
EXPORT_SYMBOL_GPL(bmg160_core_remove);
#ifdef CONFIG_PM_SLEEP
static int bmg160_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmg160_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
bmg160_set_mode(data, BMG160_MODE_SUSPEND);
mutex_unlock(&data->mutex);
return 0;
}
static int bmg160_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmg160_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
if (data->dready_trigger_on || data->motion_trigger_on ||
data->ev_enable_state)
bmg160_set_mode(data, BMG160_MODE_NORMAL);
mutex_unlock(&data->mutex);
return 0;
}
#endif
#ifdef CONFIG_PM
static int bmg160_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
ret = bmg160_set_mode(data, BMG160_MODE_SUSPEND);
if (ret < 0) {
dev_err(dev, "set mode failed\n");
return -EAGAIN;
}
return 0;
}
static int bmg160_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct bmg160_data *data = iio_priv(indio_dev);
int ret;
ret = bmg160_set_mode(data, BMG160_MODE_NORMAL);
if (ret < 0)
return ret;
msleep_interruptible(BMG160_MAX_STARTUP_TIME_MS);
return 0;
}
#endif
const struct dev_pm_ops bmg160_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmg160_suspend, bmg160_resume)
SET_RUNTIME_PM_OPS(bmg160_runtime_suspend,
bmg160_runtime_resume, NULL)
};
EXPORT_SYMBOL_GPL(bmg160_pm_ops);
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMG160 Gyro driver");