linux/arch/arm/mach-omap2/omap-mpuss-lowpower.c

499 lines
14 KiB
C

/*
* OMAP MPUSS low power code
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* OMAP4430 MPUSS mainly consists of dual Cortex-A9 with per-CPU
* Local timer and Watchdog, GIC, SCU, PL310 L2 cache controller,
* CPU0 and CPU1 LPRM modules.
* CPU0, CPU1 and MPUSS each have there own power domain and
* hence multiple low power combinations of MPUSS are possible.
*
* The CPU0 and CPU1 can't support Closed switch Retention (CSWR)
* because the mode is not supported by hw constraints of dormant
* mode. While waking up from the dormant mode, a reset signal
* to the Cortex-A9 processor must be asserted by the external
* power controller.
*
* With architectural inputs and hardware recommendations, only
* below modes are supported from power gain vs latency point of view.
*
* CPU0 CPU1 MPUSS
* ----------------------------------------------
* ON ON ON
* ON(Inactive) OFF ON(Inactive)
* OFF OFF CSWR
* OFF OFF OSWR
* OFF OFF OFF(Device OFF *TBD)
* ----------------------------------------------
*
* Note: CPU0 is the master core and it is the last CPU to go down
* and first to wake-up when MPUSS low power states are excercised
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/linkage.h>
#include <linux/smp.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/smp_scu.h>
#include <asm/pgalloc.h>
#include <asm/suspend.h>
#include <asm/virt.h>
#include <asm/hardware/cache-l2x0.h>
#include "soc.h"
#include "common.h"
#include "omap44xx.h"
#include "omap4-sar-layout.h"
#include "pm.h"
#include "prcm_mpu44xx.h"
#include "prcm_mpu54xx.h"
#include "prminst44xx.h"
#include "prcm44xx.h"
#include "prm44xx.h"
#include "prm-regbits-44xx.h"
static void __iomem *sar_base;
static u32 old_cpu1_ns_pa_addr;
#if defined(CONFIG_PM) && defined(CONFIG_SMP)
struct omap4_cpu_pm_info {
struct powerdomain *pwrdm;
void __iomem *scu_sar_addr;
void __iomem *wkup_sar_addr;
void __iomem *l2x0_sar_addr;
};
/**
* struct cpu_pm_ops - CPU pm operations
* @finish_suspend: CPU suspend finisher function pointer
* @resume: CPU resume function pointer
* @scu_prepare: CPU Snoop Control program function pointer
* @hotplug_restart: CPU restart function pointer
*
* Structure holds functions pointer for CPU low power operations like
* suspend, resume and scu programming.
*/
struct cpu_pm_ops {
int (*finish_suspend)(unsigned long cpu_state);
void (*resume)(void);
void (*scu_prepare)(unsigned int cpu_id, unsigned int cpu_state);
void (*hotplug_restart)(void);
};
static DEFINE_PER_CPU(struct omap4_cpu_pm_info, omap4_pm_info);
static struct powerdomain *mpuss_pd;
static u32 cpu_context_offset;
static int default_finish_suspend(unsigned long cpu_state)
{
omap_do_wfi();
return 0;
}
static void dummy_cpu_resume(void)
{}
static void dummy_scu_prepare(unsigned int cpu_id, unsigned int cpu_state)
{}
static struct cpu_pm_ops omap_pm_ops = {
.finish_suspend = default_finish_suspend,
.resume = dummy_cpu_resume,
.scu_prepare = dummy_scu_prepare,
.hotplug_restart = dummy_cpu_resume,
};
/*
* Program the wakeup routine address for the CPU0 and CPU1
* used for OFF or DORMANT wakeup.
*/
static inline void set_cpu_wakeup_addr(unsigned int cpu_id, u32 addr)
{
struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
if (pm_info->wkup_sar_addr)
writel_relaxed(addr, pm_info->wkup_sar_addr);
}
/*
* Store the SCU power status value to scratchpad memory
*/
static void scu_pwrst_prepare(unsigned int cpu_id, unsigned int cpu_state)
{
struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
u32 scu_pwr_st;
switch (cpu_state) {
case PWRDM_POWER_RET:
scu_pwr_st = SCU_PM_DORMANT;
break;
case PWRDM_POWER_OFF:
scu_pwr_st = SCU_PM_POWEROFF;
break;
case PWRDM_POWER_ON:
case PWRDM_POWER_INACTIVE:
default:
scu_pwr_st = SCU_PM_NORMAL;
break;
}
if (pm_info->scu_sar_addr)
writel_relaxed(scu_pwr_st, pm_info->scu_sar_addr);
}
/* Helper functions for MPUSS OSWR */
static inline void mpuss_clear_prev_logic_pwrst(void)
{
u32 reg;
reg = omap4_prminst_read_inst_reg(OMAP4430_PRM_PARTITION,
OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
omap4_prminst_write_inst_reg(reg, OMAP4430_PRM_PARTITION,
OMAP4430_PRM_MPU_INST, OMAP4_RM_MPU_MPU_CONTEXT_OFFSET);
}
static inline void cpu_clear_prev_logic_pwrst(unsigned int cpu_id)
{
u32 reg;
if (cpu_id) {
reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU1_INST,
cpu_context_offset);
omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU1_INST,
cpu_context_offset);
} else {
reg = omap4_prcm_mpu_read_inst_reg(OMAP4430_PRCM_MPU_CPU0_INST,
cpu_context_offset);
omap4_prcm_mpu_write_inst_reg(reg, OMAP4430_PRCM_MPU_CPU0_INST,
cpu_context_offset);
}
}
/*
* Store the CPU cluster state for L2X0 low power operations.
*/
static void l2x0_pwrst_prepare(unsigned int cpu_id, unsigned int save_state)
{
struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu_id);
if (pm_info->l2x0_sar_addr)
writel_relaxed(save_state, pm_info->l2x0_sar_addr);
}
/*
* Save the L2X0 AUXCTRL and POR value to SAR memory. Its used to
* in every restore MPUSS OFF path.
*/
#ifdef CONFIG_CACHE_L2X0
static void __init save_l2x0_context(void)
{
void __iomem *l2x0_base = omap4_get_l2cache_base();
if (l2x0_base && sar_base) {
writel_relaxed(l2x0_saved_regs.aux_ctrl,
sar_base + L2X0_AUXCTRL_OFFSET);
writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
sar_base + L2X0_PREFETCH_CTRL_OFFSET);
}
}
#else
static void __init save_l2x0_context(void)
{}
#endif
u32 omap4_get_cpu1_ns_pa_addr(void)
{
return old_cpu1_ns_pa_addr;
}
/**
* omap4_enter_lowpower: OMAP4 MPUSS Low Power Entry Function
* The purpose of this function is to manage low power programming
* of OMAP4 MPUSS subsystem
* @cpu : CPU ID
* @power_state: Low power state.
*
* MPUSS states for the context save:
* save_state =
* 0 - Nothing lost and no need to save: MPUSS INACTIVE
* 1 - CPUx L1 and logic lost: MPUSS CSWR
* 2 - CPUx L1 and logic lost + GIC lost: MPUSS OSWR
* 3 - CPUx L1 and logic lost + GIC + L2 lost: DEVICE OFF
*/
int omap4_enter_lowpower(unsigned int cpu, unsigned int power_state)
{
struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
unsigned int save_state = 0, cpu_logic_state = PWRDM_POWER_RET;
unsigned int wakeup_cpu;
if (omap_rev() == OMAP4430_REV_ES1_0)
return -ENXIO;
switch (power_state) {
case PWRDM_POWER_ON:
case PWRDM_POWER_INACTIVE:
save_state = 0;
break;
case PWRDM_POWER_OFF:
cpu_logic_state = PWRDM_POWER_OFF;
save_state = 1;
break;
case PWRDM_POWER_RET:
if (IS_PM44XX_ERRATUM(PM_OMAP4_CPU_OSWR_DISABLE))
save_state = 0;
break;
default:
/*
* CPUx CSWR is invalid hardware state. Also CPUx OSWR
* doesn't make much scense, since logic is lost and $L1
* needs to be cleaned because of coherency. This makes
* CPUx OSWR equivalent to CPUX OFF and hence not supported
*/
WARN_ON(1);
return -ENXIO;
}
pwrdm_pre_transition(NULL);
/*
* Check MPUSS next state and save interrupt controller if needed.
* In MPUSS OSWR or device OFF, interrupt controller contest is lost.
*/
mpuss_clear_prev_logic_pwrst();
if ((pwrdm_read_next_pwrst(mpuss_pd) == PWRDM_POWER_RET) &&
(pwrdm_read_logic_retst(mpuss_pd) == PWRDM_POWER_OFF))
save_state = 2;
cpu_clear_prev_logic_pwrst(cpu);
pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
pwrdm_set_logic_retst(pm_info->pwrdm, cpu_logic_state);
set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.resume));
omap_pm_ops.scu_prepare(cpu, power_state);
l2x0_pwrst_prepare(cpu, save_state);
/*
* Call low level function with targeted low power state.
*/
if (save_state)
cpu_suspend(save_state, omap_pm_ops.finish_suspend);
else
omap_pm_ops.finish_suspend(save_state);
if (IS_PM44XX_ERRATUM(PM_OMAP4_ROM_SMP_BOOT_ERRATUM_GICD) && cpu)
gic_dist_enable();
/*
* Restore the CPUx power state to ON otherwise CPUx
* power domain can transitions to programmed low power
* state while doing WFI outside the low powe code. On
* secure devices, CPUx does WFI which can result in
* domain transition
*/
wakeup_cpu = smp_processor_id();
pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
pwrdm_post_transition(NULL);
return 0;
}
/**
* omap4_hotplug_cpu: OMAP4 CPU hotplug entry
* @cpu : CPU ID
* @power_state: CPU low power state.
*/
int omap4_hotplug_cpu(unsigned int cpu, unsigned int power_state)
{
struct omap4_cpu_pm_info *pm_info = &per_cpu(omap4_pm_info, cpu);
unsigned int cpu_state = 0;
if (omap_rev() == OMAP4430_REV_ES1_0)
return -ENXIO;
/* Use the achievable power state for the domain */
power_state = pwrdm_get_valid_lp_state(pm_info->pwrdm,
false, power_state);
if (power_state == PWRDM_POWER_OFF)
cpu_state = 1;
pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
pwrdm_set_next_pwrst(pm_info->pwrdm, power_state);
set_cpu_wakeup_addr(cpu, __pa_symbol(omap_pm_ops.hotplug_restart));
omap_pm_ops.scu_prepare(cpu, power_state);
/*
* CPU never retuns back if targeted power state is OFF mode.
* CPU ONLINE follows normal CPU ONLINE ptah via
* omap4_secondary_startup().
*/
omap_pm_ops.finish_suspend(cpu_state);
pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
return 0;
}
/*
* Enable Mercury Fast HG retention mode by default.
*/
static void enable_mercury_retention_mode(void)
{
u32 reg;
reg = omap4_prcm_mpu_read_inst_reg(OMAP54XX_PRCM_MPU_DEVICE_INST,
OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
/* Enable HG_EN, HG_RAMPUP = fast mode */
reg |= BIT(24) | BIT(25);
omap4_prcm_mpu_write_inst_reg(reg, OMAP54XX_PRCM_MPU_DEVICE_INST,
OMAP54XX_PRCM_MPU_PRM_PSCON_COUNT_OFFSET);
}
/*
* Initialise OMAP4 MPUSS
*/
int __init omap4_mpuss_init(void)
{
struct omap4_cpu_pm_info *pm_info;
if (omap_rev() == OMAP4430_REV_ES1_0) {
WARN(1, "Power Management not supported on OMAP4430 ES1.0\n");
return -ENODEV;
}
/* Initilaise per CPU PM information */
pm_info = &per_cpu(omap4_pm_info, 0x0);
if (sar_base) {
pm_info->scu_sar_addr = sar_base + SCU_OFFSET0;
if (cpu_is_omap44xx())
pm_info->wkup_sar_addr = sar_base +
CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
else
pm_info->wkup_sar_addr = sar_base +
OMAP5_CPU0_WAKEUP_NS_PA_ADDR_OFFSET;
pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET0;
}
pm_info->pwrdm = pwrdm_lookup("cpu0_pwrdm");
if (!pm_info->pwrdm) {
pr_err("Lookup failed for CPU0 pwrdm\n");
return -ENODEV;
}
/* Clear CPU previous power domain state */
pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
cpu_clear_prev_logic_pwrst(0);
/* Initialise CPU0 power domain state to ON */
pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
pm_info = &per_cpu(omap4_pm_info, 0x1);
if (sar_base) {
pm_info->scu_sar_addr = sar_base + SCU_OFFSET1;
if (cpu_is_omap44xx())
pm_info->wkup_sar_addr = sar_base +
CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
else
pm_info->wkup_sar_addr = sar_base +
OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
pm_info->l2x0_sar_addr = sar_base + L2X0_SAVE_OFFSET1;
}
pm_info->pwrdm = pwrdm_lookup("cpu1_pwrdm");
if (!pm_info->pwrdm) {
pr_err("Lookup failed for CPU1 pwrdm\n");
return -ENODEV;
}
/* Clear CPU previous power domain state */
pwrdm_clear_all_prev_pwrst(pm_info->pwrdm);
cpu_clear_prev_logic_pwrst(1);
/* Initialise CPU1 power domain state to ON */
pwrdm_set_next_pwrst(pm_info->pwrdm, PWRDM_POWER_ON);
mpuss_pd = pwrdm_lookup("mpu_pwrdm");
if (!mpuss_pd) {
pr_err("Failed to lookup MPUSS power domain\n");
return -ENODEV;
}
pwrdm_clear_all_prev_pwrst(mpuss_pd);
mpuss_clear_prev_logic_pwrst();
if (sar_base) {
/* Save device type on scratchpad for low level code to use */
writel_relaxed((omap_type() != OMAP2_DEVICE_TYPE_GP) ? 1 : 0,
sar_base + OMAP_TYPE_OFFSET);
save_l2x0_context();
}
if (cpu_is_omap44xx()) {
omap_pm_ops.finish_suspend = omap4_finish_suspend;
omap_pm_ops.resume = omap4_cpu_resume;
omap_pm_ops.scu_prepare = scu_pwrst_prepare;
omap_pm_ops.hotplug_restart = omap4_secondary_startup;
cpu_context_offset = OMAP4_RM_CPU0_CPU0_CONTEXT_OFFSET;
} else if (soc_is_omap54xx() || soc_is_dra7xx()) {
cpu_context_offset = OMAP54XX_RM_CPU0_CPU0_CONTEXT_OFFSET;
enable_mercury_retention_mode();
}
if (cpu_is_omap446x())
omap_pm_ops.hotplug_restart = omap4460_secondary_startup;
return 0;
}
#endif
/*
* For kexec, we must set CPU1_WAKEUP_NS_PA_ADDR to point to
* current kernel's secondary_startup() early before
* clockdomains_init(). Otherwise clockdomain_init() can
* wake CPU1 and cause a hang.
*/
void __init omap4_mpuss_early_init(void)
{
unsigned long startup_pa;
void __iomem *ns_pa_addr;
if (!(soc_is_omap44xx() || soc_is_omap54xx()))
return;
sar_base = omap4_get_sar_ram_base();
/* Save old NS_PA_ADDR for validity checks later on */
if (soc_is_omap44xx())
ns_pa_addr = sar_base + CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
else
ns_pa_addr = sar_base + OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET;
old_cpu1_ns_pa_addr = readl_relaxed(ns_pa_addr);
if (soc_is_omap443x())
startup_pa = __pa_symbol(omap4_secondary_startup);
else if (soc_is_omap446x())
startup_pa = __pa_symbol(omap4460_secondary_startup);
else if ((__boot_cpu_mode & MODE_MASK) == HYP_MODE)
startup_pa = __pa_symbol(omap5_secondary_hyp_startup);
else
startup_pa = __pa_symbol(omap5_secondary_startup);
if (soc_is_omap44xx())
writel_relaxed(startup_pa, sar_base +
CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
else
writel_relaxed(startup_pa, sar_base +
OMAP5_CPU1_WAKEUP_NS_PA_ADDR_OFFSET);
}