linux/drivers/input/misc/winbond-cir.c

1609 lines
41 KiB
C

/*
* winbond-cir.c - Driver for the Consumer IR functionality of Winbond
* SuperI/O chips.
*
* Currently supports the Winbond WPCD376i chip (PNP id WEC1022), but
* could probably support others (Winbond WEC102X, NatSemi, etc)
* with minor modifications.
*
* Original Author: David Härdeman <david@hardeman.nu>
* Copyright (C) 2009 David Härdeman <david@hardeman.nu>
*
* Dedicated to Matilda, my newborn daughter, without whose loving attention
* this driver would have been finished in half the time and with a fraction
* of the bugs.
*
* Written using:
* o Winbond WPCD376I datasheet helpfully provided by Jesse Barnes at Intel
* o NatSemi PC87338/PC97338 datasheet (for the serial port stuff)
* o DSDT dumps
*
* Supported features:
* o RC6
* o Wake-On-CIR functionality
*
* To do:
* o Test NEC and RC5
*
* Left as an exercise for the reader:
* o Learning (I have neither the hardware, nor the need)
* o IR Transmit (ibid)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/pnp.h>
#include <linux/interrupt.h>
#include <linux/timer.h>
#include <linux/input.h>
#include <linux/leds.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/pci_ids.h>
#include <linux/io.h>
#include <linux/bitrev.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#define DRVNAME "winbond-cir"
/* CEIR Wake-Up Registers, relative to data->wbase */
#define WBCIR_REG_WCEIR_CTL 0x03 /* CEIR Receiver Control */
#define WBCIR_REG_WCEIR_STS 0x04 /* CEIR Receiver Status */
#define WBCIR_REG_WCEIR_EV_EN 0x05 /* CEIR Receiver Event Enable */
#define WBCIR_REG_WCEIR_CNTL 0x06 /* CEIR Receiver Counter Low */
#define WBCIR_REG_WCEIR_CNTH 0x07 /* CEIR Receiver Counter High */
#define WBCIR_REG_WCEIR_INDEX 0x08 /* CEIR Receiver Index */
#define WBCIR_REG_WCEIR_DATA 0x09 /* CEIR Receiver Data */
#define WBCIR_REG_WCEIR_CSL 0x0A /* CEIR Re. Compare Strlen */
#define WBCIR_REG_WCEIR_CFG1 0x0B /* CEIR Re. Configuration 1 */
#define WBCIR_REG_WCEIR_CFG2 0x0C /* CEIR Re. Configuration 2 */
/* CEIR Enhanced Functionality Registers, relative to data->ebase */
#define WBCIR_REG_ECEIR_CTS 0x00 /* Enhanced IR Control Status */
#define WBCIR_REG_ECEIR_CCTL 0x01 /* Infrared Counter Control */
#define WBCIR_REG_ECEIR_CNT_LO 0x02 /* Infrared Counter LSB */
#define WBCIR_REG_ECEIR_CNT_HI 0x03 /* Infrared Counter MSB */
#define WBCIR_REG_ECEIR_IREM 0x04 /* Infrared Emitter Status */
/* SP3 Banked Registers, relative to data->sbase */
#define WBCIR_REG_SP3_BSR 0x03 /* Bank Select, all banks */
/* Bank 0 */
#define WBCIR_REG_SP3_RXDATA 0x00 /* FIFO RX data (r) */
#define WBCIR_REG_SP3_TXDATA 0x00 /* FIFO TX data (w) */
#define WBCIR_REG_SP3_IER 0x01 /* Interrupt Enable */
#define WBCIR_REG_SP3_EIR 0x02 /* Event Identification (r) */
#define WBCIR_REG_SP3_FCR 0x02 /* FIFO Control (w) */
#define WBCIR_REG_SP3_MCR 0x04 /* Mode Control */
#define WBCIR_REG_SP3_LSR 0x05 /* Link Status */
#define WBCIR_REG_SP3_MSR 0x06 /* Modem Status */
#define WBCIR_REG_SP3_ASCR 0x07 /* Aux Status and Control */
/* Bank 2 */
#define WBCIR_REG_SP3_BGDL 0x00 /* Baud Divisor LSB */
#define WBCIR_REG_SP3_BGDH 0x01 /* Baud Divisor MSB */
#define WBCIR_REG_SP3_EXCR1 0x02 /* Extended Control 1 */
#define WBCIR_REG_SP3_EXCR2 0x04 /* Extended Control 2 */
#define WBCIR_REG_SP3_TXFLV 0x06 /* TX FIFO Level */
#define WBCIR_REG_SP3_RXFLV 0x07 /* RX FIFO Level */
/* Bank 3 */
#define WBCIR_REG_SP3_MRID 0x00 /* Module Identification */
#define WBCIR_REG_SP3_SH_LCR 0x01 /* LCR Shadow */
#define WBCIR_REG_SP3_SH_FCR 0x02 /* FCR Shadow */
/* Bank 4 */
#define WBCIR_REG_SP3_IRCR1 0x02 /* Infrared Control 1 */
/* Bank 5 */
#define WBCIR_REG_SP3_IRCR2 0x04 /* Infrared Control 2 */
/* Bank 6 */
#define WBCIR_REG_SP3_IRCR3 0x00 /* Infrared Control 3 */
#define WBCIR_REG_SP3_SIR_PW 0x02 /* SIR Pulse Width */
/* Bank 7 */
#define WBCIR_REG_SP3_IRRXDC 0x00 /* IR RX Demod Control */
#define WBCIR_REG_SP3_IRTXMC 0x01 /* IR TX Mod Control */
#define WBCIR_REG_SP3_RCCFG 0x02 /* CEIR Config */
#define WBCIR_REG_SP3_IRCFG1 0x04 /* Infrared Config 1 */
#define WBCIR_REG_SP3_IRCFG4 0x07 /* Infrared Config 4 */
/*
* Magic values follow
*/
/* No interrupts for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_NONE 0x00
/* RX data bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_RX 0x01
/* Over/Under-flow bit for WBCIR_REG_SP3_IER and WBCIR_REG_SP3_EIR */
#define WBCIR_IRQ_ERR 0x04
/* Led enable/disable bit for WBCIR_REG_ECEIR_CTS */
#define WBCIR_LED_ENABLE 0x80
/* RX data available bit for WBCIR_REG_SP3_LSR */
#define WBCIR_RX_AVAIL 0x01
/* RX disable bit for WBCIR_REG_SP3_ASCR */
#define WBCIR_RX_DISABLE 0x20
/* Extended mode enable bit for WBCIR_REG_SP3_EXCR1 */
#define WBCIR_EXT_ENABLE 0x01
/* Select compare register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */
#define WBCIR_REGSEL_COMPARE 0x10
/* Select mask register in WBCIR_REG_WCEIR_INDEX (bits 5 & 6) */
#define WBCIR_REGSEL_MASK 0x20
/* Starting address of selected register in WBCIR_REG_WCEIR_INDEX */
#define WBCIR_REG_ADDR0 0x00
/* Valid banks for the SP3 UART */
enum wbcir_bank {
WBCIR_BANK_0 = 0x00,
WBCIR_BANK_1 = 0x80,
WBCIR_BANK_2 = 0xE0,
WBCIR_BANK_3 = 0xE4,
WBCIR_BANK_4 = 0xE8,
WBCIR_BANK_5 = 0xEC,
WBCIR_BANK_6 = 0xF0,
WBCIR_BANK_7 = 0xF4,
};
/* Supported IR Protocols */
enum wbcir_protocol {
IR_PROTOCOL_RC5 = 0x0,
IR_PROTOCOL_NEC = 0x1,
IR_PROTOCOL_RC6 = 0x2,
};
/* Misc */
#define WBCIR_NAME "Winbond CIR"
#define WBCIR_ID_FAMILY 0xF1 /* Family ID for the WPCD376I */
#define WBCIR_ID_CHIP 0x04 /* Chip ID for the WPCD376I */
#define IR_KEYPRESS_TIMEOUT 250 /* FIXME: should be per-protocol? */
#define INVALID_SCANCODE 0x7FFFFFFF /* Invalid with all protos */
#define WAKEUP_IOMEM_LEN 0x10 /* Wake-Up I/O Reg Len */
#define EHFUNC_IOMEM_LEN 0x10 /* Enhanced Func I/O Reg Len */
#define SP_IOMEM_LEN 0x08 /* Serial Port 3 (IR) Reg Len */
#define WBCIR_MAX_IDLE_BYTES 10
static DEFINE_SPINLOCK(wbcir_lock);
static DEFINE_RWLOCK(keytable_lock);
struct wbcir_key {
u32 scancode;
unsigned int keycode;
};
struct wbcir_keyentry {
struct wbcir_key key;
struct list_head list;
};
static struct wbcir_key rc6_def_keymap[] = {
{ 0x800F0400, KEY_NUMERIC_0 },
{ 0x800F0401, KEY_NUMERIC_1 },
{ 0x800F0402, KEY_NUMERIC_2 },
{ 0x800F0403, KEY_NUMERIC_3 },
{ 0x800F0404, KEY_NUMERIC_4 },
{ 0x800F0405, KEY_NUMERIC_5 },
{ 0x800F0406, KEY_NUMERIC_6 },
{ 0x800F0407, KEY_NUMERIC_7 },
{ 0x800F0408, KEY_NUMERIC_8 },
{ 0x800F0409, KEY_NUMERIC_9 },
{ 0x800F041D, KEY_NUMERIC_STAR },
{ 0x800F041C, KEY_NUMERIC_POUND },
{ 0x800F0410, KEY_VOLUMEUP },
{ 0x800F0411, KEY_VOLUMEDOWN },
{ 0x800F0412, KEY_CHANNELUP },
{ 0x800F0413, KEY_CHANNELDOWN },
{ 0x800F040E, KEY_MUTE },
{ 0x800F040D, KEY_VENDOR }, /* Vista Logo Key */
{ 0x800F041E, KEY_UP },
{ 0x800F041F, KEY_DOWN },
{ 0x800F0420, KEY_LEFT },
{ 0x800F0421, KEY_RIGHT },
{ 0x800F0422, KEY_OK },
{ 0x800F0423, KEY_ESC },
{ 0x800F040F, KEY_INFO },
{ 0x800F040A, KEY_CLEAR },
{ 0x800F040B, KEY_ENTER },
{ 0x800F045B, KEY_RED },
{ 0x800F045C, KEY_GREEN },
{ 0x800F045D, KEY_YELLOW },
{ 0x800F045E, KEY_BLUE },
{ 0x800F045A, KEY_TEXT },
{ 0x800F0427, KEY_SWITCHVIDEOMODE },
{ 0x800F040C, KEY_POWER },
{ 0x800F0450, KEY_RADIO },
{ 0x800F0448, KEY_PVR },
{ 0x800F0447, KEY_AUDIO },
{ 0x800F0426, KEY_EPG },
{ 0x800F0449, KEY_CAMERA },
{ 0x800F0425, KEY_TV },
{ 0x800F044A, KEY_VIDEO },
{ 0x800F0424, KEY_DVD },
{ 0x800F0416, KEY_PLAY },
{ 0x800F0418, KEY_PAUSE },
{ 0x800F0419, KEY_STOP },
{ 0x800F0414, KEY_FASTFORWARD },
{ 0x800F041A, KEY_NEXT },
{ 0x800F041B, KEY_PREVIOUS },
{ 0x800F0415, KEY_REWIND },
{ 0x800F0417, KEY_RECORD },
};
/* Registers and other state is protected by wbcir_lock */
struct wbcir_data {
unsigned long wbase; /* Wake-Up Baseaddr */
unsigned long ebase; /* Enhanced Func. Baseaddr */
unsigned long sbase; /* Serial Port Baseaddr */
unsigned int irq; /* Serial Port IRQ */
struct input_dev *input_dev;
struct timer_list timer_keyup;
struct led_trigger *rxtrigger;
struct led_trigger *txtrigger;
struct led_classdev led;
u32 last_scancode;
unsigned int last_keycode;
u8 last_toggle;
u8 keypressed;
unsigned long keyup_jiffies;
unsigned int idle_count;
/* RX irdata and parsing state */
unsigned long irdata[30];
unsigned int irdata_count;
unsigned int irdata_idle;
unsigned int irdata_off;
unsigned int irdata_error;
/* Protected by keytable_lock */
struct list_head keytable;
};
static enum wbcir_protocol protocol = IR_PROTOCOL_RC6;
module_param(protocol, uint, 0444);
MODULE_PARM_DESC(protocol, "IR protocol to use "
"(0 = RC5, 1 = NEC, 2 = RC6A, default)");
static int invert; /* default = 0 */
module_param(invert, bool, 0444);
MODULE_PARM_DESC(invert, "Invert the signal from the IR receiver");
static unsigned int wake_sc = 0x800F040C;
module_param(wake_sc, uint, 0644);
MODULE_PARM_DESC(wake_sc, "Scancode of the power-on IR command");
static unsigned int wake_rc6mode = 6;
module_param(wake_rc6mode, uint, 0644);
MODULE_PARM_DESC(wake_rc6mode, "RC6 mode for the power-on command "
"(0 = 0, 6 = 6A, default)");
/*****************************************************************************
*
* UTILITY FUNCTIONS
*
*****************************************************************************/
/* Caller needs to hold wbcir_lock */
static void
wbcir_set_bits(unsigned long addr, u8 bits, u8 mask)
{
u8 val;
val = inb(addr);
val = ((val & ~mask) | (bits & mask));
outb(val, addr);
}
/* Selects the register bank for the serial port */
static inline void
wbcir_select_bank(struct wbcir_data *data, enum wbcir_bank bank)
{
outb(bank, data->sbase + WBCIR_REG_SP3_BSR);
}
static enum led_brightness
wbcir_led_brightness_get(struct led_classdev *led_cdev)
{
struct wbcir_data *data = container_of(led_cdev,
struct wbcir_data,
led);
if (inb(data->ebase + WBCIR_REG_ECEIR_CTS) & WBCIR_LED_ENABLE)
return LED_FULL;
else
return LED_OFF;
}
static void
wbcir_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct wbcir_data *data = container_of(led_cdev,
struct wbcir_data,
led);
wbcir_set_bits(data->ebase + WBCIR_REG_ECEIR_CTS,
brightness == LED_OFF ? 0x00 : WBCIR_LED_ENABLE,
WBCIR_LED_ENABLE);
}
/* Manchester encodes bits to RC6 message cells (see wbcir_parse_rc6) */
static u8
wbcir_to_rc6cells(u8 val)
{
u8 coded = 0x00;
int i;
val &= 0x0F;
for (i = 0; i < 4; i++) {
if (val & 0x01)
coded |= 0x02 << (i * 2);
else
coded |= 0x01 << (i * 2);
val >>= 1;
}
return coded;
}
/*****************************************************************************
*
* INPUT FUNCTIONS
*
*****************************************************************************/
static unsigned int
wbcir_do_getkeycode(struct wbcir_data *data, u32 scancode)
{
struct wbcir_keyentry *keyentry;
unsigned int keycode = KEY_RESERVED;
unsigned long flags;
read_lock_irqsave(&keytable_lock, flags);
list_for_each_entry(keyentry, &data->keytable, list) {
if (keyentry->key.scancode == scancode) {
keycode = keyentry->key.keycode;
break;
}
}
read_unlock_irqrestore(&keytable_lock, flags);
return keycode;
}
static int
wbcir_getkeycode(struct input_dev *dev,
unsigned int scancode, unsigned int *keycode)
{
struct wbcir_data *data = input_get_drvdata(dev);
*keycode = wbcir_do_getkeycode(data, scancode);
return 0;
}
static int
wbcir_setkeycode(struct input_dev *dev,
unsigned int scancode, unsigned int keycode)
{
struct wbcir_data *data = input_get_drvdata(dev);
struct wbcir_keyentry *keyentry;
struct wbcir_keyentry *new_keyentry;
unsigned long flags;
unsigned int old_keycode = KEY_RESERVED;
new_keyentry = kmalloc(sizeof(*new_keyentry), GFP_KERNEL);
if (!new_keyentry)
return -ENOMEM;
write_lock_irqsave(&keytable_lock, flags);
list_for_each_entry(keyentry, &data->keytable, list) {
if (keyentry->key.scancode != scancode)
continue;
old_keycode = keyentry->key.keycode;
keyentry->key.keycode = keycode;
if (keyentry->key.keycode == KEY_RESERVED) {
list_del(&keyentry->list);
kfree(keyentry);
}
break;
}
set_bit(keycode, dev->keybit);
if (old_keycode == KEY_RESERVED) {
new_keyentry->key.scancode = scancode;
new_keyentry->key.keycode = keycode;
list_add(&new_keyentry->list, &data->keytable);
} else {
kfree(new_keyentry);
clear_bit(old_keycode, dev->keybit);
list_for_each_entry(keyentry, &data->keytable, list) {
if (keyentry->key.keycode == old_keycode) {
set_bit(old_keycode, dev->keybit);
break;
}
}
}
write_unlock_irqrestore(&keytable_lock, flags);
return 0;
}
/*
* Timer function to report keyup event some time after keydown is
* reported by the ISR.
*/
static void
wbcir_keyup(unsigned long cookie)
{
struct wbcir_data *data = (struct wbcir_data *)cookie;
unsigned long flags;
/*
* data->keyup_jiffies is used to prevent a race condition if a
* hardware interrupt occurs at this point and the keyup timer
* event is moved further into the future as a result.
*
* The timer will then be reactivated and this function called
* again in the future. We need to exit gracefully in that case
* to allow the input subsystem to do its auto-repeat magic or
* a keyup event might follow immediately after the keydown.
*/
spin_lock_irqsave(&wbcir_lock, flags);
if (time_is_after_eq_jiffies(data->keyup_jiffies) && data->keypressed) {
data->keypressed = 0;
led_trigger_event(data->rxtrigger, LED_OFF);
input_report_key(data->input_dev, data->last_keycode, 0);
input_sync(data->input_dev);
}
spin_unlock_irqrestore(&wbcir_lock, flags);
}
static void
wbcir_keydown(struct wbcir_data *data, u32 scancode, u8 toggle)
{
unsigned int keycode;
/* Repeat? */
if (data->last_scancode == scancode &&
data->last_toggle == toggle &&
data->keypressed)
goto set_timer;
data->last_scancode = scancode;
/* Do we need to release an old keypress? */
if (data->keypressed) {
input_report_key(data->input_dev, data->last_keycode, 0);
input_sync(data->input_dev);
data->keypressed = 0;
}
/* Report scancode */
input_event(data->input_dev, EV_MSC, MSC_SCAN, (int)scancode);
/* Do we know this scancode? */
keycode = wbcir_do_getkeycode(data, scancode);
if (keycode == KEY_RESERVED)
goto set_timer;
/* Register a keypress */
input_report_key(data->input_dev, keycode, 1);
data->keypressed = 1;
data->last_keycode = keycode;
data->last_toggle = toggle;
set_timer:
input_sync(data->input_dev);
led_trigger_event(data->rxtrigger,
data->keypressed ? LED_FULL : LED_OFF);
data->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
mod_timer(&data->timer_keyup, data->keyup_jiffies);
}
/*****************************************************************************
*
* IR PARSING FUNCTIONS
*
*****************************************************************************/
/* Resets all irdata */
static void
wbcir_reset_irdata(struct wbcir_data *data)
{
memset(data->irdata, 0, sizeof(data->irdata));
data->irdata_count = 0;
data->irdata_off = 0;
data->irdata_error = 0;
data->idle_count = 0;
}
/* Adds one bit of irdata */
static void
add_irdata_bit(struct wbcir_data *data, int set)
{
if (data->irdata_count >= sizeof(data->irdata) * 8) {
data->irdata_error = 1;
return;
}
if (set)
__set_bit(data->irdata_count, data->irdata);
data->irdata_count++;
}
/* Gets count bits of irdata */
static u16
get_bits(struct wbcir_data *data, int count)
{
u16 val = 0x0;
if (data->irdata_count - data->irdata_off < count) {
data->irdata_error = 1;
return 0x0;
}
while (count > 0) {
val <<= 1;
if (test_bit(data->irdata_off, data->irdata))
val |= 0x1;
count--;
data->irdata_off++;
}
return val;
}
/* Reads 16 cells and converts them to a byte */
static u8
wbcir_rc6cells_to_byte(struct wbcir_data *data)
{
u16 raw = get_bits(data, 16);
u8 val = 0x00;
int bit;
for (bit = 0; bit < 8; bit++) {
switch (raw & 0x03) {
case 0x01:
break;
case 0x02:
val |= (0x01 << bit);
break;
default:
data->irdata_error = 1;
break;
}
raw >>= 2;
}
return val;
}
/* Decodes a number of bits from raw RC5 data */
static u8
wbcir_get_rc5bits(struct wbcir_data *data, unsigned int count)
{
u16 raw = get_bits(data, count * 2);
u8 val = 0x00;
int bit;
for (bit = 0; bit < count; bit++) {
switch (raw & 0x03) {
case 0x01:
val |= (0x01 << bit);
break;
case 0x02:
break;
default:
data->irdata_error = 1;
break;
}
raw >>= 2;
}
return val;
}
static void
wbcir_parse_rc6(struct device *dev, struct wbcir_data *data)
{
/*
* Normal bits are manchester coded as follows:
* cell0 + cell1 = logic "0"
* cell1 + cell0 = logic "1"
*
* The IR pulse has the following components:
*
* Leader - 6 * cell1 - discarded
* Gap - 2 * cell0 - discarded
* Start bit - Normal Coding - always "1"
* Mode Bit 2 - 0 - Normal Coding
* Toggle bit - Normal Coding with double bit time,
* e.g. cell0 + cell0 + cell1 + cell1
* means logic "0".
*
* The rest depends on the mode, the following modes are known:
*
* MODE 0:
* Address Bit 7 - 0 - Normal Coding
* Command Bit 7 - 0 - Normal Coding
*
* MODE 6:
* The above Toggle Bit is used as a submode bit, 0 = A, 1 = B.
* Submode B is for pointing devices, only remotes using submode A
* are supported.
*
* Customer range bit - 0 => Customer = 7 bits, 0...127
* 1 => Customer = 15 bits, 32768...65535
* Customer Bits - Normal Coding
*
* Customer codes are allocated by Philips. The rest of the bits
* are customer dependent. The following is commonly used (and the
* only supported config):
*
* Toggle Bit - Normal Coding
* Address Bit 6 - 0 - Normal Coding
* Command Bit 7 - 0 - Normal Coding
*
* All modes are followed by at least 6 * cell0.
*
* MODE 0 msglen:
* 1 * 2 (start bit) + 3 * 2 (mode) + 2 * 2 (toggle) +
* 8 * 2 (address) + 8 * 2 (command) =
* 44 cells
*
* MODE 6A msglen:
* 1 * 2 (start bit) + 3 * 2 (mode) + 2 * 2 (submode) +
* 1 * 2 (customer range bit) + 7/15 * 2 (customer bits) +
* 1 * 2 (toggle bit) + 7 * 2 (address) + 8 * 2 (command) =
* 60 - 76 cells
*/
u8 mode;
u8 toggle;
u16 customer = 0x0;
u8 address;
u8 command;
u32 scancode;
/* Leader mark */
while (get_bits(data, 1) && !data->irdata_error)
/* Do nothing */;
/* Leader space */
if (get_bits(data, 1)) {
dev_dbg(dev, "RC6 - Invalid leader space\n");
return;
}
/* Start bit */
if (get_bits(data, 2) != 0x02) {
dev_dbg(dev, "RC6 - Invalid start bit\n");
return;
}
/* Mode */
mode = get_bits(data, 6);
switch (mode) {
case 0x15: /* 010101 = b000 */
mode = 0;
break;
case 0x29: /* 101001 = b110 */
mode = 6;
break;
default:
dev_dbg(dev, "RC6 - Invalid mode\n");
return;
}
/* Toggle bit / Submode bit */
toggle = get_bits(data, 4);
switch (toggle) {
case 0x03:
toggle = 0;
break;
case 0x0C:
toggle = 1;
break;
default:
dev_dbg(dev, "RC6 - Toggle bit error\n");
break;
}
/* Customer */
if (mode == 6) {
if (toggle != 0) {
dev_dbg(dev, "RC6B - Not Supported\n");
return;
}
customer = wbcir_rc6cells_to_byte(data);
if (customer & 0x80) {
/* 15 bit customer value */
customer <<= 8;
customer |= wbcir_rc6cells_to_byte(data);
}
}
/* Address */
address = wbcir_rc6cells_to_byte(data);
if (mode == 6) {
toggle = address >> 7;
address &= 0x7F;
}
/* Command */
command = wbcir_rc6cells_to_byte(data);
/* Create scancode */
scancode = command;
scancode |= address << 8;
scancode |= customer << 16;
/* Last sanity check */
if (data->irdata_error) {
dev_dbg(dev, "RC6 - Cell error(s)\n");
return;
}
dev_dbg(dev, "IR-RC6 ad 0x%02X cm 0x%02X cu 0x%04X "
"toggle %u mode %u scan 0x%08X\n",
address,
command,
customer,
(unsigned int)toggle,
(unsigned int)mode,
scancode);
wbcir_keydown(data, scancode, toggle);
}
static void
wbcir_parse_rc5(struct device *dev, struct wbcir_data *data)
{
/*
* Bits are manchester coded as follows:
* cell1 + cell0 = logic "0"
* cell0 + cell1 = logic "1"
* (i.e. the reverse of RC6)
*
* Start bit 1 - "1" - discarded
* Start bit 2 - Must be inverted to get command bit 6
* Toggle bit
* Address Bit 4 - 0
* Command Bit 5 - 0
*/
u8 toggle;
u8 address;
u8 command;
u32 scancode;
/* Start bit 1 */
if (!get_bits(data, 1)) {
dev_dbg(dev, "RC5 - Invalid start bit\n");
return;
}
/* Start bit 2 */
if (!wbcir_get_rc5bits(data, 1))
command = 0x40;
else
command = 0x00;
toggle = wbcir_get_rc5bits(data, 1);
address = wbcir_get_rc5bits(data, 5);
command |= wbcir_get_rc5bits(data, 6);
scancode = address << 7 | command;
/* Last sanity check */
if (data->irdata_error) {
dev_dbg(dev, "RC5 - Invalid message\n");
return;
}
dev_dbg(dev, "IR-RC5 ad %u cm %u t %u s %u\n",
(unsigned int)address,
(unsigned int)command,
(unsigned int)toggle,
(unsigned int)scancode);
wbcir_keydown(data, scancode, toggle);
}
static void
wbcir_parse_nec(struct device *dev, struct wbcir_data *data)
{
/*
* Each bit represents 560 us.
*
* Leader - 9 ms burst
* Gap - 4.5 ms silence
* Address1 bit 0 - 7 - Address 1
* Address2 bit 0 - 7 - Address 2
* Command1 bit 0 - 7 - Command 1
* Command2 bit 0 - 7 - Command 2
*
* Note the bit order!
*
* With the old NEC protocol, Address2 was the inverse of Address1
* and Command2 was the inverse of Command1 and were used as
* an error check.
*
* With NEC extended, Address1 is the LSB of the Address and
* Address2 is the MSB, Command parsing remains unchanged.
*
* A repeat message is coded as:
* Leader - 9 ms burst
* Gap - 2.25 ms silence
* Repeat - 560 us active
*/
u8 address1;
u8 address2;
u8 command1;
u8 command2;
u16 address;
u32 scancode;
/* Leader mark */
while (get_bits(data, 1) && !data->irdata_error)
/* Do nothing */;
/* Leader space */
if (get_bits(data, 4)) {
dev_dbg(dev, "NEC - Invalid leader space\n");
return;
}
/* Repeat? */
if (get_bits(data, 1)) {
if (!data->keypressed) {
dev_dbg(dev, "NEC - Stray repeat message\n");
return;
}
dev_dbg(dev, "IR-NEC repeat s %u\n",
(unsigned int)data->last_scancode);
wbcir_keydown(data, data->last_scancode, data->last_toggle);
return;
}
/* Remaining leader space */
if (get_bits(data, 3)) {
dev_dbg(dev, "NEC - Invalid leader space\n");
return;
}
address1 = bitrev8(get_bits(data, 8));
address2 = bitrev8(get_bits(data, 8));
command1 = bitrev8(get_bits(data, 8));
command2 = bitrev8(get_bits(data, 8));
/* Sanity check */
if (data->irdata_error) {
dev_dbg(dev, "NEC - Invalid message\n");
return;
}
/* Check command validity */
if (command1 != ~command2) {
dev_dbg(dev, "NEC - Command bytes mismatch\n");
return;
}
/* Check for extended NEC protocol */
address = address1;
if (address1 != ~address2)
address |= address2 << 8;
scancode = address << 8 | command1;
dev_dbg(dev, "IR-NEC ad %u cm %u s %u\n",
(unsigned int)address,
(unsigned int)command1,
(unsigned int)scancode);
wbcir_keydown(data, scancode, !data->last_toggle);
}
/*****************************************************************************
*
* INTERRUPT FUNCTIONS
*
*****************************************************************************/
static irqreturn_t
wbcir_irq_handler(int irqno, void *cookie)
{
struct pnp_dev *device = cookie;
struct wbcir_data *data = pnp_get_drvdata(device);
struct device *dev = &device->dev;
u8 status;
unsigned long flags;
u8 irdata[8];
int i;
unsigned int hw;
spin_lock_irqsave(&wbcir_lock, flags);
wbcir_select_bank(data, WBCIR_BANK_0);
status = inb(data->sbase + WBCIR_REG_SP3_EIR);
if (!(status & (WBCIR_IRQ_RX | WBCIR_IRQ_ERR))) {
spin_unlock_irqrestore(&wbcir_lock, flags);
return IRQ_NONE;
}
if (status & WBCIR_IRQ_ERR)
data->irdata_error = 1;
if (!(status & WBCIR_IRQ_RX))
goto out;
/* Since RXHDLEV is set, at least 8 bytes are in the FIFO */
insb(data->sbase + WBCIR_REG_SP3_RXDATA, &irdata[0], 8);
for (i = 0; i < sizeof(irdata); i++) {
hw = hweight8(irdata[i]);
if (hw > 4)
add_irdata_bit(data, 0);
else
add_irdata_bit(data, 1);
if (hw == 8)
data->idle_count++;
else
data->idle_count = 0;
}
if (data->idle_count > WBCIR_MAX_IDLE_BYTES) {
/* Set RXINACTIVE... */
outb(WBCIR_RX_DISABLE, data->sbase + WBCIR_REG_SP3_ASCR);
/* ...and drain the FIFO */
while (inb(data->sbase + WBCIR_REG_SP3_LSR) & WBCIR_RX_AVAIL)
inb(data->sbase + WBCIR_REG_SP3_RXDATA);
dev_dbg(dev, "IRDATA:\n");
for (i = 0; i < data->irdata_count; i += BITS_PER_LONG)
dev_dbg(dev, "0x%08lX\n", data->irdata[i/BITS_PER_LONG]);
switch (protocol) {
case IR_PROTOCOL_RC5:
wbcir_parse_rc5(dev, data);
break;
case IR_PROTOCOL_RC6:
wbcir_parse_rc6(dev, data);
break;
case IR_PROTOCOL_NEC:
wbcir_parse_nec(dev, data);
break;
}
wbcir_reset_irdata(data);
}
out:
spin_unlock_irqrestore(&wbcir_lock, flags);
return IRQ_HANDLED;
}
/*****************************************************************************
*
* SETUP/INIT/SUSPEND/RESUME FUNCTIONS
*
*****************************************************************************/
static void
wbcir_shutdown(struct pnp_dev *device)
{
struct device *dev = &device->dev;
struct wbcir_data *data = pnp_get_drvdata(device);
int do_wake = 1;
u8 match[11];
u8 mask[11];
u8 rc6_csl = 0;
int i;
memset(match, 0, sizeof(match));
memset(mask, 0, sizeof(mask));
if (wake_sc == INVALID_SCANCODE || !device_may_wakeup(dev)) {
do_wake = 0;
goto finish;
}
switch (protocol) {
case IR_PROTOCOL_RC5:
if (wake_sc > 0xFFF) {
do_wake = 0;
dev_err(dev, "RC5 - Invalid wake scancode\n");
break;
}
/* Mask = 13 bits, ex toggle */
mask[0] = 0xFF;
mask[1] = 0x17;
match[0] = (wake_sc & 0x003F); /* 6 command bits */
match[0] |= (wake_sc & 0x0180) >> 1; /* 2 address bits */
match[1] = (wake_sc & 0x0E00) >> 9; /* 3 address bits */
if (!(wake_sc & 0x0040)) /* 2nd start bit */
match[1] |= 0x10;
break;
case IR_PROTOCOL_NEC:
if (wake_sc > 0xFFFFFF) {
do_wake = 0;
dev_err(dev, "NEC - Invalid wake scancode\n");
break;
}
mask[0] = mask[1] = mask[2] = mask[3] = 0xFF;
match[1] = bitrev8((wake_sc & 0xFF));
match[0] = ~match[1];
match[3] = bitrev8((wake_sc & 0xFF00) >> 8);
if (wake_sc > 0xFFFF)
match[2] = bitrev8((wake_sc & 0xFF0000) >> 16);
else
match[2] = ~match[3];
break;
case IR_PROTOCOL_RC6:
if (wake_rc6mode == 0) {
if (wake_sc > 0xFFFF) {
do_wake = 0;
dev_err(dev, "RC6 - Invalid wake scancode\n");
break;
}
/* Command */
match[0] = wbcir_to_rc6cells(wake_sc >> 0);
mask[0] = 0xFF;
match[1] = wbcir_to_rc6cells(wake_sc >> 4);
mask[1] = 0xFF;
/* Address */
match[2] = wbcir_to_rc6cells(wake_sc >> 8);
mask[2] = 0xFF;
match[3] = wbcir_to_rc6cells(wake_sc >> 12);
mask[3] = 0xFF;
/* Header */
match[4] = 0x50; /* mode1 = mode0 = 0, ignore toggle */
mask[4] = 0xF0;
match[5] = 0x09; /* start bit = 1, mode2 = 0 */
mask[5] = 0x0F;
rc6_csl = 44;
} else if (wake_rc6mode == 6) {
i = 0;
/* Command */
match[i] = wbcir_to_rc6cells(wake_sc >> 0);
mask[i++] = 0xFF;
match[i] = wbcir_to_rc6cells(wake_sc >> 4);
mask[i++] = 0xFF;
/* Address + Toggle */
match[i] = wbcir_to_rc6cells(wake_sc >> 8);
mask[i++] = 0xFF;
match[i] = wbcir_to_rc6cells(wake_sc >> 12);
mask[i++] = 0x3F;
/* Customer bits 7 - 0 */
match[i] = wbcir_to_rc6cells(wake_sc >> 16);
mask[i++] = 0xFF;
match[i] = wbcir_to_rc6cells(wake_sc >> 20);
mask[i++] = 0xFF;
if (wake_sc & 0x80000000) {
/* Customer range bit and bits 15 - 8 */
match[i] = wbcir_to_rc6cells(wake_sc >> 24);
mask[i++] = 0xFF;
match[i] = wbcir_to_rc6cells(wake_sc >> 28);
mask[i++] = 0xFF;
rc6_csl = 76;
} else if (wake_sc <= 0x007FFFFF) {
rc6_csl = 60;
} else {
do_wake = 0;
dev_err(dev, "RC6 - Invalid wake scancode\n");
break;
}
/* Header */
match[i] = 0x93; /* mode1 = mode0 = 1, submode = 0 */
mask[i++] = 0xFF;
match[i] = 0x0A; /* start bit = 1, mode2 = 1 */
mask[i++] = 0x0F;
} else {
do_wake = 0;
dev_err(dev, "RC6 - Invalid wake mode\n");
}
break;
default:
do_wake = 0;
break;
}
finish:
if (do_wake) {
/* Set compare and compare mask */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX,
WBCIR_REGSEL_COMPARE | WBCIR_REG_ADDR0,
0x3F);
outsb(data->wbase + WBCIR_REG_WCEIR_DATA, match, 11);
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_INDEX,
WBCIR_REGSEL_MASK | WBCIR_REG_ADDR0,
0x3F);
outsb(data->wbase + WBCIR_REG_WCEIR_DATA, mask, 11);
/* RC6 Compare String Len */
outb(rc6_csl, data->wbase + WBCIR_REG_WCEIR_CSL);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear BUFF_EN, Clear END_EN, Set MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x01, 0x07);
/* Set CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x01, 0x01);
} else {
/* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
/* Clear CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01);
}
/* Disable interrupts */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(WBCIR_IRQ_NONE, data->sbase + WBCIR_REG_SP3_IER);
/*
* ACPI will set the HW disable bit for SP3 which means that the
* output signals are left in an undefined state which may cause
* spurious interrupts which we need to ignore until the hardware
* is reinitialized.
*/
disable_irq(data->irq);
}
static int
wbcir_suspend(struct pnp_dev *device, pm_message_t state)
{
wbcir_shutdown(device);
return 0;
}
static void
wbcir_init_hw(struct wbcir_data *data)
{
u8 tmp;
/* Disable interrupts */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(WBCIR_IRQ_NONE, data->sbase + WBCIR_REG_SP3_IER);
/* Set PROT_SEL, RX_INV, Clear CEIR_EN (needed for the led) */
tmp = protocol << 4;
if (invert)
tmp |= 0x08;
outb(tmp, data->wbase + WBCIR_REG_WCEIR_CTL);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear BUFF_EN, Clear END_EN, Clear MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
/* Set RC5 cell time to correspond to 36 kHz */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CFG1, 0x4A, 0x7F);
/* Set IRTX_INV */
if (invert)
outb(0x04, data->ebase + WBCIR_REG_ECEIR_CCTL);
else
outb(0x00, data->ebase + WBCIR_REG_ECEIR_CCTL);
/*
* Clear IR LED, set SP3 clock to 24Mhz
* set SP3_IRRX_SW to binary 01, helpfully not documented
*/
outb(0x10, data->ebase + WBCIR_REG_ECEIR_CTS);
/* Enable extended mode */
wbcir_select_bank(data, WBCIR_BANK_2);
outb(WBCIR_EXT_ENABLE, data->sbase + WBCIR_REG_SP3_EXCR1);
/*
* Configure baud generator, IR data will be sampled at
* a bitrate of: (24Mhz * prescaler) / (divisor * 16).
*
* The ECIR registers include a flag to change the
* 24Mhz clock freq to 48Mhz.
*
* It's not documented in the specs, but fifo levels
* other than 16 seems to be unsupported.
*/
/* prescaler 1.0, tx/rx fifo lvl 16 */
outb(0x30, data->sbase + WBCIR_REG_SP3_EXCR2);
/* Set baud divisor to generate one byte per bit/cell */
switch (protocol) {
case IR_PROTOCOL_RC5:
outb(0xA7, data->sbase + WBCIR_REG_SP3_BGDL);
break;
case IR_PROTOCOL_RC6:
outb(0x53, data->sbase + WBCIR_REG_SP3_BGDL);
break;
case IR_PROTOCOL_NEC:
outb(0x69, data->sbase + WBCIR_REG_SP3_BGDL);
break;
}
outb(0x00, data->sbase + WBCIR_REG_SP3_BGDH);
/* Set CEIR mode */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(0xC0, data->sbase + WBCIR_REG_SP3_MCR);
inb(data->sbase + WBCIR_REG_SP3_LSR); /* Clear LSR */
inb(data->sbase + WBCIR_REG_SP3_MSR); /* Clear MSR */
/* Disable RX demod, run-length encoding/decoding, set freq span */
wbcir_select_bank(data, WBCIR_BANK_7);
outb(0x10, data->sbase + WBCIR_REG_SP3_RCCFG);
/* Disable timer */
wbcir_select_bank(data, WBCIR_BANK_4);
outb(0x00, data->sbase + WBCIR_REG_SP3_IRCR1);
/* Enable MSR interrupt, Clear AUX_IRX */
wbcir_select_bank(data, WBCIR_BANK_5);
outb(0x00, data->sbase + WBCIR_REG_SP3_IRCR2);
/* Disable CRC */
wbcir_select_bank(data, WBCIR_BANK_6);
outb(0x20, data->sbase + WBCIR_REG_SP3_IRCR3);
/* Set RX/TX (de)modulation freq, not really used */
wbcir_select_bank(data, WBCIR_BANK_7);
outb(0xF2, data->sbase + WBCIR_REG_SP3_IRRXDC);
outb(0x69, data->sbase + WBCIR_REG_SP3_IRTXMC);
/* Set invert and pin direction */
if (invert)
outb(0x10, data->sbase + WBCIR_REG_SP3_IRCFG4);
else
outb(0x00, data->sbase + WBCIR_REG_SP3_IRCFG4);
/* Set FIFO thresholds (RX = 8, TX = 3), reset RX/TX */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(0x97, data->sbase + WBCIR_REG_SP3_FCR);
/* Clear AUX status bits */
outb(0xE0, data->sbase + WBCIR_REG_SP3_ASCR);
/* Enable interrupts */
wbcir_reset_irdata(data);
outb(WBCIR_IRQ_RX | WBCIR_IRQ_ERR, data->sbase + WBCIR_REG_SP3_IER);
}
static int
wbcir_resume(struct pnp_dev *device)
{
struct wbcir_data *data = pnp_get_drvdata(device);
wbcir_init_hw(data);
enable_irq(data->irq);
return 0;
}
static int __devinit
wbcir_probe(struct pnp_dev *device, const struct pnp_device_id *dev_id)
{
struct device *dev = &device->dev;
struct wbcir_data *data;
int err;
if (!(pnp_port_len(device, 0) == EHFUNC_IOMEM_LEN &&
pnp_port_len(device, 1) == WAKEUP_IOMEM_LEN &&
pnp_port_len(device, 2) == SP_IOMEM_LEN)) {
dev_err(dev, "Invalid resources\n");
return -ENODEV;
}
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
pnp_set_drvdata(device, data);
data->ebase = pnp_port_start(device, 0);
data->wbase = pnp_port_start(device, 1);
data->sbase = pnp_port_start(device, 2);
data->irq = pnp_irq(device, 0);
if (data->wbase == 0 || data->ebase == 0 ||
data->sbase == 0 || data->irq == 0) {
err = -ENODEV;
dev_err(dev, "Invalid resources\n");
goto exit_free_data;
}
dev_dbg(&device->dev, "Found device "
"(w: 0x%lX, e: 0x%lX, s: 0x%lX, i: %u)\n",
data->wbase, data->ebase, data->sbase, data->irq);
if (!request_region(data->wbase, WAKEUP_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->wbase, data->wbase + WAKEUP_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_free_data;
}
if (!request_region(data->ebase, EHFUNC_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->ebase, data->ebase + EHFUNC_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_release_wbase;
}
if (!request_region(data->sbase, SP_IOMEM_LEN, DRVNAME)) {
dev_err(dev, "Region 0x%lx-0x%lx already in use!\n",
data->sbase, data->sbase + SP_IOMEM_LEN - 1);
err = -EBUSY;
goto exit_release_ebase;
}
err = request_irq(data->irq, wbcir_irq_handler,
IRQF_DISABLED, DRVNAME, device);
if (err) {
dev_err(dev, "Failed to claim IRQ %u\n", data->irq);
err = -EBUSY;
goto exit_release_sbase;
}
led_trigger_register_simple("cir-tx", &data->txtrigger);
if (!data->txtrigger) {
err = -ENOMEM;
goto exit_free_irq;
}
led_trigger_register_simple("cir-rx", &data->rxtrigger);
if (!data->rxtrigger) {
err = -ENOMEM;
goto exit_unregister_txtrigger;
}
data->led.name = "cir::activity";
data->led.default_trigger = "cir-rx";
data->led.brightness_set = wbcir_led_brightness_set;
data->led.brightness_get = wbcir_led_brightness_get;
err = led_classdev_register(&device->dev, &data->led);
if (err)
goto exit_unregister_rxtrigger;
data->input_dev = input_allocate_device();
if (!data->input_dev) {
err = -ENOMEM;
goto exit_unregister_led;
}
data->input_dev->evbit[0] = BIT(EV_KEY);
data->input_dev->name = WBCIR_NAME;
data->input_dev->phys = "wbcir/cir0";
data->input_dev->id.bustype = BUS_HOST;
data->input_dev->id.vendor = PCI_VENDOR_ID_WINBOND;
data->input_dev->id.product = WBCIR_ID_FAMILY;
data->input_dev->id.version = WBCIR_ID_CHIP;
data->input_dev->getkeycode = wbcir_getkeycode;
data->input_dev->setkeycode = wbcir_setkeycode;
input_set_capability(data->input_dev, EV_MSC, MSC_SCAN);
input_set_drvdata(data->input_dev, data);
err = input_register_device(data->input_dev);
if (err)
goto exit_free_input;
data->last_scancode = INVALID_SCANCODE;
INIT_LIST_HEAD(&data->keytable);
setup_timer(&data->timer_keyup, wbcir_keyup, (unsigned long)data);
/* Load default keymaps */
if (protocol == IR_PROTOCOL_RC6) {
int i;
for (i = 0; i < ARRAY_SIZE(rc6_def_keymap); i++) {
err = wbcir_setkeycode(data->input_dev,
(int)rc6_def_keymap[i].scancode,
(int)rc6_def_keymap[i].keycode);
if (err)
goto exit_unregister_keys;
}
}
device_init_wakeup(&device->dev, 1);
wbcir_init_hw(data);
return 0;
exit_unregister_keys:
if (!list_empty(&data->keytable)) {
struct wbcir_keyentry *key;
struct wbcir_keyentry *keytmp;
list_for_each_entry_safe(key, keytmp, &data->keytable, list) {
list_del(&key->list);
kfree(key);
}
}
input_unregister_device(data->input_dev);
/* Can't call input_free_device on an unregistered device */
data->input_dev = NULL;
exit_free_input:
input_free_device(data->input_dev);
exit_unregister_led:
led_classdev_unregister(&data->led);
exit_unregister_rxtrigger:
led_trigger_unregister_simple(data->rxtrigger);
exit_unregister_txtrigger:
led_trigger_unregister_simple(data->txtrigger);
exit_free_irq:
free_irq(data->irq, device);
exit_release_sbase:
release_region(data->sbase, SP_IOMEM_LEN);
exit_release_ebase:
release_region(data->ebase, EHFUNC_IOMEM_LEN);
exit_release_wbase:
release_region(data->wbase, WAKEUP_IOMEM_LEN);
exit_free_data:
kfree(data);
pnp_set_drvdata(device, NULL);
exit:
return err;
}
static void __devexit
wbcir_remove(struct pnp_dev *device)
{
struct wbcir_data *data = pnp_get_drvdata(device);
struct wbcir_keyentry *key;
struct wbcir_keyentry *keytmp;
/* Disable interrupts */
wbcir_select_bank(data, WBCIR_BANK_0);
outb(WBCIR_IRQ_NONE, data->sbase + WBCIR_REG_SP3_IER);
del_timer_sync(&data->timer_keyup);
free_irq(data->irq, device);
/* Clear status bits NEC_REP, BUFF, MSG_END, MATCH */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_STS, 0x17, 0x17);
/* Clear CEIR_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_CTL, 0x00, 0x01);
/* Clear BUFF_EN, END_EN, MATCH_EN */
wbcir_set_bits(data->wbase + WBCIR_REG_WCEIR_EV_EN, 0x00, 0x07);
/* This will generate a keyup event if necessary */
input_unregister_device(data->input_dev);
led_trigger_unregister_simple(data->rxtrigger);
led_trigger_unregister_simple(data->txtrigger);
led_classdev_unregister(&data->led);
/* This is ok since &data->led isn't actually used */
wbcir_led_brightness_set(&data->led, LED_OFF);
release_region(data->wbase, WAKEUP_IOMEM_LEN);
release_region(data->ebase, EHFUNC_IOMEM_LEN);
release_region(data->sbase, SP_IOMEM_LEN);
list_for_each_entry_safe(key, keytmp, &data->keytable, list) {
list_del(&key->list);
kfree(key);
}
kfree(data);
pnp_set_drvdata(device, NULL);
}
static const struct pnp_device_id wbcir_ids[] = {
{ "WEC1022", 0 },
{ "", 0 }
};
MODULE_DEVICE_TABLE(pnp, wbcir_ids);
static struct pnp_driver wbcir_driver = {
.name = WBCIR_NAME,
.id_table = wbcir_ids,
.probe = wbcir_probe,
.remove = __devexit_p(wbcir_remove),
.suspend = wbcir_suspend,
.resume = wbcir_resume,
.shutdown = wbcir_shutdown
};
static int __init
wbcir_init(void)
{
int ret;
switch (protocol) {
case IR_PROTOCOL_RC5:
case IR_PROTOCOL_NEC:
case IR_PROTOCOL_RC6:
break;
default:
printk(KERN_ERR DRVNAME ": Invalid protocol argument\n");
return -EINVAL;
}
ret = pnp_register_driver(&wbcir_driver);
if (ret)
printk(KERN_ERR DRVNAME ": Unable to register driver\n");
return ret;
}
static void __exit
wbcir_exit(void)
{
pnp_unregister_driver(&wbcir_driver);
}
MODULE_AUTHOR("David Härdeman <david@hardeman.nu>");
MODULE_DESCRIPTION("Winbond SuperI/O Consumer IR Driver");
MODULE_LICENSE("GPL");
module_init(wbcir_init);
module_exit(wbcir_exit);