mirror of https://gitee.com/openkylin/linux.git
725 lines
16 KiB
C
725 lines
16 KiB
C
/*
|
|
** SMP Support
|
|
**
|
|
** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
|
** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
|
|
** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
|
|
**
|
|
** Lots of stuff stolen from arch/alpha/kernel/smp.c
|
|
** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
|
|
**
|
|
** Thanks to John Curry and Ullas Ponnadi. I learned alot from their work.
|
|
** -grant (1/12/2001)
|
|
**
|
|
** This program is free software; you can redistribute it and/or modify
|
|
** it under the terms of the GNU General Public License as published by
|
|
** the Free Software Foundation; either version 2 of the License, or
|
|
** (at your option) any later version.
|
|
*/
|
|
#undef ENTRY_SYS_CPUS /* syscall support for iCOD-like functionality */
|
|
|
|
#include <linux/config.h>
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/atomic.h>
|
|
#include <asm/current.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/pgalloc.h> /* for flush_tlb_all() proto/macro */
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/cacheflush.h>
|
|
|
|
#define kDEBUG 0
|
|
|
|
DEFINE_SPINLOCK(smp_lock);
|
|
|
|
volatile struct task_struct *smp_init_current_idle_task;
|
|
|
|
static volatile int cpu_now_booting = 0; /* track which CPU is booting */
|
|
|
|
static int parisc_max_cpus = 1;
|
|
|
|
/* online cpus are ones that we've managed to bring up completely
|
|
* possible cpus are all valid cpu
|
|
* present cpus are all detected cpu
|
|
*
|
|
* On startup we bring up the "possible" cpus. Since we discover
|
|
* CPUs later, we add them as hotplug, so the possible cpu mask is
|
|
* empty in the beginning.
|
|
*/
|
|
|
|
cpumask_t cpu_online_map = CPU_MASK_NONE; /* Bitmap of online CPUs */
|
|
cpumask_t cpu_possible_map = CPU_MASK_ALL; /* Bitmap of Present CPUs */
|
|
|
|
EXPORT_SYMBOL(cpu_online_map);
|
|
EXPORT_SYMBOL(cpu_possible_map);
|
|
|
|
|
|
struct smp_call_struct {
|
|
void (*func) (void *info);
|
|
void *info;
|
|
long wait;
|
|
atomic_t unstarted_count;
|
|
atomic_t unfinished_count;
|
|
};
|
|
static volatile struct smp_call_struct *smp_call_function_data;
|
|
|
|
enum ipi_message_type {
|
|
IPI_NOP=0,
|
|
IPI_RESCHEDULE=1,
|
|
IPI_CALL_FUNC,
|
|
IPI_CPU_START,
|
|
IPI_CPU_STOP,
|
|
IPI_CPU_TEST
|
|
};
|
|
|
|
|
|
/********** SMP inter processor interrupt and communication routines */
|
|
|
|
#undef PER_CPU_IRQ_REGION
|
|
#ifdef PER_CPU_IRQ_REGION
|
|
/* XXX REVISIT Ignore for now.
|
|
** *May* need this "hook" to register IPI handler
|
|
** once we have perCPU ExtIntr switch tables.
|
|
*/
|
|
static void
|
|
ipi_init(int cpuid)
|
|
{
|
|
|
|
/* If CPU is present ... */
|
|
#ifdef ENTRY_SYS_CPUS
|
|
/* *and* running (not stopped) ... */
|
|
#error iCOD support wants state checked here.
|
|
#endif
|
|
|
|
#error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
|
|
|
|
if(cpu_online(cpuid) )
|
|
{
|
|
switch_to_idle_task(current);
|
|
}
|
|
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
** Yoink this CPU from the runnable list...
|
|
**
|
|
*/
|
|
static void
|
|
halt_processor(void)
|
|
{
|
|
#ifdef ENTRY_SYS_CPUS
|
|
#error halt_processor() needs rework
|
|
/*
|
|
** o migrate I/O interrupts off this CPU.
|
|
** o leave IPI enabled - __cli() will disable IPI.
|
|
** o leave CPU in online map - just change the state
|
|
*/
|
|
cpu_data[this_cpu].state = STATE_STOPPED;
|
|
mark_bh(IPI_BH);
|
|
#else
|
|
/* REVISIT : redirect I/O Interrupts to another CPU? */
|
|
/* REVISIT : does PM *know* this CPU isn't available? */
|
|
cpu_clear(smp_processor_id(), cpu_online_map);
|
|
local_irq_disable();
|
|
for (;;)
|
|
;
|
|
#endif
|
|
}
|
|
|
|
|
|
irqreturn_t
|
|
ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
int this_cpu = smp_processor_id();
|
|
struct cpuinfo_parisc *p = &cpu_data[this_cpu];
|
|
unsigned long ops;
|
|
unsigned long flags;
|
|
|
|
/* Count this now; we may make a call that never returns. */
|
|
p->ipi_count++;
|
|
|
|
mb(); /* Order interrupt and bit testing. */
|
|
|
|
for (;;) {
|
|
spin_lock_irqsave(&(p->lock),flags);
|
|
ops = p->pending_ipi;
|
|
p->pending_ipi = 0;
|
|
spin_unlock_irqrestore(&(p->lock),flags);
|
|
|
|
mb(); /* Order bit clearing and data access. */
|
|
|
|
if (!ops)
|
|
break;
|
|
|
|
while (ops) {
|
|
unsigned long which = ffz(~ops);
|
|
|
|
switch (which) {
|
|
case IPI_RESCHEDULE:
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "CPU%d IPI_RESCHEDULE\n",this_cpu);
|
|
#endif /* kDEBUG */
|
|
ops &= ~(1 << IPI_RESCHEDULE);
|
|
/*
|
|
* Reschedule callback. Everything to be
|
|
* done is done by the interrupt return path.
|
|
*/
|
|
break;
|
|
|
|
case IPI_CALL_FUNC:
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "CPU%d IPI_CALL_FUNC\n",this_cpu);
|
|
#endif /* kDEBUG */
|
|
ops &= ~(1 << IPI_CALL_FUNC);
|
|
{
|
|
volatile struct smp_call_struct *data;
|
|
void (*func)(void *info);
|
|
void *info;
|
|
int wait;
|
|
|
|
data = smp_call_function_data;
|
|
func = data->func;
|
|
info = data->info;
|
|
wait = data->wait;
|
|
|
|
mb();
|
|
atomic_dec ((atomic_t *)&data->unstarted_count);
|
|
|
|
/* At this point, *data can't
|
|
* be relied upon.
|
|
*/
|
|
|
|
(*func)(info);
|
|
|
|
/* Notify the sending CPU that the
|
|
* task is done.
|
|
*/
|
|
mb();
|
|
if (wait)
|
|
atomic_dec ((atomic_t *)&data->unfinished_count);
|
|
}
|
|
break;
|
|
|
|
case IPI_CPU_START:
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "CPU%d IPI_CPU_START\n",this_cpu);
|
|
#endif /* kDEBUG */
|
|
ops &= ~(1 << IPI_CPU_START);
|
|
#ifdef ENTRY_SYS_CPUS
|
|
p->state = STATE_RUNNING;
|
|
#endif
|
|
break;
|
|
|
|
case IPI_CPU_STOP:
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "CPU%d IPI_CPU_STOP\n",this_cpu);
|
|
#endif /* kDEBUG */
|
|
ops &= ~(1 << IPI_CPU_STOP);
|
|
#ifdef ENTRY_SYS_CPUS
|
|
#else
|
|
halt_processor();
|
|
#endif
|
|
break;
|
|
|
|
case IPI_CPU_TEST:
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "CPU%d is alive!\n",this_cpu);
|
|
#endif /* kDEBUG */
|
|
ops &= ~(1 << IPI_CPU_TEST);
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
|
|
this_cpu, which);
|
|
ops &= ~(1 << which);
|
|
return IRQ_NONE;
|
|
} /* Switch */
|
|
} /* while (ops) */
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static inline void
|
|
ipi_send(int cpu, enum ipi_message_type op)
|
|
{
|
|
struct cpuinfo_parisc *p = &cpu_data[cpu];
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&(p->lock),flags);
|
|
p->pending_ipi |= 1 << op;
|
|
gsc_writel(IPI_IRQ - CPU_IRQ_BASE, cpu_data[cpu].hpa);
|
|
spin_unlock_irqrestore(&(p->lock),flags);
|
|
}
|
|
|
|
|
|
static inline void
|
|
send_IPI_single(int dest_cpu, enum ipi_message_type op)
|
|
{
|
|
if (dest_cpu == NO_PROC_ID) {
|
|
BUG();
|
|
return;
|
|
}
|
|
|
|
ipi_send(dest_cpu, op);
|
|
}
|
|
|
|
static inline void
|
|
send_IPI_allbutself(enum ipi_message_type op)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (cpu_online(i) && i != smp_processor_id())
|
|
send_IPI_single(i, op);
|
|
}
|
|
}
|
|
|
|
|
|
inline void
|
|
smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
|
|
|
|
static inline void
|
|
smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
|
|
|
|
void
|
|
smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
|
|
|
|
|
|
/**
|
|
* Run a function on all other CPUs.
|
|
* <func> The function to run. This must be fast and non-blocking.
|
|
* <info> An arbitrary pointer to pass to the function.
|
|
* <retry> If true, keep retrying until ready.
|
|
* <wait> If true, wait until function has completed on other CPUs.
|
|
* [RETURNS] 0 on success, else a negative status code.
|
|
*
|
|
* Does not return until remote CPUs are nearly ready to execute <func>
|
|
* or have executed.
|
|
*/
|
|
|
|
int
|
|
smp_call_function (void (*func) (void *info), void *info, int retry, int wait)
|
|
{
|
|
struct smp_call_struct data;
|
|
unsigned long timeout;
|
|
static DEFINE_SPINLOCK(lock);
|
|
int retries = 0;
|
|
|
|
if (num_online_cpus() < 2)
|
|
return 0;
|
|
|
|
/* Can deadlock when called with interrupts disabled */
|
|
WARN_ON(irqs_disabled());
|
|
|
|
data.func = func;
|
|
data.info = info;
|
|
data.wait = wait;
|
|
atomic_set(&data.unstarted_count, num_online_cpus() - 1);
|
|
atomic_set(&data.unfinished_count, num_online_cpus() - 1);
|
|
|
|
if (retry) {
|
|
spin_lock (&lock);
|
|
while (smp_call_function_data != 0)
|
|
barrier();
|
|
}
|
|
else {
|
|
spin_lock (&lock);
|
|
if (smp_call_function_data) {
|
|
spin_unlock (&lock);
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
|
|
smp_call_function_data = &data;
|
|
spin_unlock (&lock);
|
|
|
|
/* Send a message to all other CPUs and wait for them to respond */
|
|
send_IPI_allbutself(IPI_CALL_FUNC);
|
|
|
|
retry:
|
|
/* Wait for response */
|
|
timeout = jiffies + HZ;
|
|
while ( (atomic_read (&data.unstarted_count) > 0) &&
|
|
time_before (jiffies, timeout) )
|
|
barrier ();
|
|
|
|
if (atomic_read (&data.unstarted_count) > 0) {
|
|
printk(KERN_CRIT "SMP CALL FUNCTION TIMED OUT! (cpu=%d), try %d\n",
|
|
smp_processor_id(), ++retries);
|
|
goto retry;
|
|
}
|
|
/* We either got one or timed out. Release the lock */
|
|
|
|
mb();
|
|
smp_call_function_data = NULL;
|
|
|
|
while (wait && atomic_read (&data.unfinished_count) > 0)
|
|
barrier ();
|
|
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL(smp_call_function);
|
|
|
|
/*
|
|
* Flush all other CPU's tlb and then mine. Do this with on_each_cpu()
|
|
* as we want to ensure all TLB's flushed before proceeding.
|
|
*/
|
|
|
|
extern void flush_tlb_all_local(void);
|
|
|
|
void
|
|
smp_flush_tlb_all(void)
|
|
{
|
|
on_each_cpu((void (*)(void *))flush_tlb_all_local, NULL, 1, 1);
|
|
}
|
|
|
|
|
|
void
|
|
smp_do_timer(struct pt_regs *regs)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
struct cpuinfo_parisc *data = &cpu_data[cpu];
|
|
|
|
if (!--data->prof_counter) {
|
|
data->prof_counter = data->prof_multiplier;
|
|
update_process_times(user_mode(regs));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called by secondaries to update state and initialize CPU registers.
|
|
*/
|
|
static void __init
|
|
smp_cpu_init(int cpunum)
|
|
{
|
|
extern int init_per_cpu(int); /* arch/parisc/kernel/setup.c */
|
|
extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
|
|
|
|
/* Set modes and Enable floating point coprocessor */
|
|
(void) init_per_cpu(cpunum);
|
|
|
|
disable_sr_hashing();
|
|
|
|
mb();
|
|
|
|
/* Well, support 2.4 linux scheme as well. */
|
|
if (cpu_test_and_set(cpunum, cpu_online_map))
|
|
{
|
|
extern void machine_halt(void); /* arch/parisc.../process.c */
|
|
|
|
printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
|
|
machine_halt();
|
|
}
|
|
|
|
/* Initialise the idle task for this CPU */
|
|
atomic_inc(&init_mm.mm_count);
|
|
current->active_mm = &init_mm;
|
|
if(current->mm)
|
|
BUG();
|
|
enter_lazy_tlb(&init_mm, current);
|
|
|
|
init_IRQ(); /* make sure no IRQ's are enabled or pending */
|
|
}
|
|
|
|
|
|
/*
|
|
* Slaves start using C here. Indirectly called from smp_slave_stext.
|
|
* Do what start_kernel() and main() do for boot strap processor (aka monarch)
|
|
*/
|
|
void __init smp_callin(void)
|
|
{
|
|
int slave_id = cpu_now_booting;
|
|
#if 0
|
|
void *istack;
|
|
#endif
|
|
|
|
smp_cpu_init(slave_id);
|
|
preempt_disable();
|
|
|
|
#if 0 /* NOT WORKING YET - see entry.S */
|
|
istack = (void *)__get_free_pages(GFP_KERNEL,ISTACK_ORDER);
|
|
if (istack == NULL) {
|
|
printk(KERN_CRIT "Failed to allocate interrupt stack for cpu %d\n",slave_id);
|
|
BUG();
|
|
}
|
|
mtctl(istack,31);
|
|
#endif
|
|
|
|
flush_cache_all_local(); /* start with known state */
|
|
flush_tlb_all_local();
|
|
|
|
local_irq_enable(); /* Interrupts have been off until now */
|
|
|
|
cpu_idle(); /* Wait for timer to schedule some work */
|
|
|
|
/* NOTREACHED */
|
|
panic("smp_callin() AAAAaaaaahhhh....\n");
|
|
}
|
|
|
|
/*
|
|
* Bring one cpu online.
|
|
*/
|
|
int __init smp_boot_one_cpu(int cpuid)
|
|
{
|
|
struct task_struct *idle;
|
|
long timeout;
|
|
|
|
/*
|
|
* Create an idle task for this CPU. Note the address wed* give
|
|
* to kernel_thread is irrelevant -- it's going to start
|
|
* where OS_BOOT_RENDEVZ vector in SAL says to start. But
|
|
* this gets all the other task-y sort of data structures set
|
|
* up like we wish. We need to pull the just created idle task
|
|
* off the run queue and stuff it into the init_tasks[] array.
|
|
* Sheesh . . .
|
|
*/
|
|
|
|
idle = fork_idle(cpuid);
|
|
if (IS_ERR(idle))
|
|
panic("SMP: fork failed for CPU:%d", cpuid);
|
|
|
|
idle->thread_info->cpu = cpuid;
|
|
|
|
/* Let _start know what logical CPU we're booting
|
|
** (offset into init_tasks[],cpu_data[])
|
|
*/
|
|
cpu_now_booting = cpuid;
|
|
|
|
/*
|
|
** boot strap code needs to know the task address since
|
|
** it also contains the process stack.
|
|
*/
|
|
smp_init_current_idle_task = idle ;
|
|
mb();
|
|
|
|
printk("Releasing cpu %d now, hpa=%lx\n", cpuid, cpu_data[cpuid].hpa);
|
|
|
|
/*
|
|
** This gets PDC to release the CPU from a very tight loop.
|
|
**
|
|
** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
|
|
** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
|
|
** is executed after receiving the rendezvous signal (an interrupt to
|
|
** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
|
|
** contents of memory are valid."
|
|
*/
|
|
gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, cpu_data[cpuid].hpa);
|
|
mb();
|
|
|
|
/*
|
|
* OK, wait a bit for that CPU to finish staggering about.
|
|
* Slave will set a bit when it reaches smp_cpu_init().
|
|
* Once the "monarch CPU" sees the bit change, it can move on.
|
|
*/
|
|
for (timeout = 0; timeout < 10000; timeout++) {
|
|
if(cpu_online(cpuid)) {
|
|
/* Which implies Slave has started up */
|
|
cpu_now_booting = 0;
|
|
smp_init_current_idle_task = NULL;
|
|
goto alive ;
|
|
}
|
|
udelay(100);
|
|
barrier();
|
|
}
|
|
|
|
put_task_struct(idle);
|
|
idle = NULL;
|
|
|
|
printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
|
|
return -1;
|
|
|
|
alive:
|
|
/* Remember the Slave data */
|
|
#if (kDEBUG>=100)
|
|
printk(KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
|
|
cpuid, timeout * 100);
|
|
#endif /* kDEBUG */
|
|
#ifdef ENTRY_SYS_CPUS
|
|
cpu_data[cpuid].state = STATE_RUNNING;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void __devinit smp_prepare_boot_cpu(void)
|
|
{
|
|
int bootstrap_processor=cpu_data[0].cpuid; /* CPU ID of BSP */
|
|
|
|
#ifdef ENTRY_SYS_CPUS
|
|
cpu_data[0].state = STATE_RUNNING;
|
|
#endif
|
|
|
|
/* Setup BSP mappings */
|
|
printk("SMP: bootstrap CPU ID is %d\n",bootstrap_processor);
|
|
|
|
cpu_set(bootstrap_processor, cpu_online_map);
|
|
cpu_set(bootstrap_processor, cpu_present_map);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
** inventory.c:do_inventory() hasn't yet been run and thus we
|
|
** don't 'discover' the additional CPU's until later.
|
|
*/
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
cpus_clear(cpu_present_map);
|
|
cpu_set(0, cpu_present_map);
|
|
|
|
parisc_max_cpus = max_cpus;
|
|
if (!max_cpus)
|
|
printk(KERN_INFO "SMP mode deactivated.\n");
|
|
}
|
|
|
|
|
|
void smp_cpus_done(unsigned int cpu_max)
|
|
{
|
|
return;
|
|
}
|
|
|
|
|
|
int __devinit __cpu_up(unsigned int cpu)
|
|
{
|
|
if (cpu != 0 && cpu < parisc_max_cpus)
|
|
smp_boot_one_cpu(cpu);
|
|
|
|
return cpu_online(cpu) ? 0 : -ENOSYS;
|
|
}
|
|
|
|
|
|
|
|
#ifdef ENTRY_SYS_CPUS
|
|
/* Code goes along with:
|
|
** entry.s: ENTRY_NAME(sys_cpus) / * 215, for cpu stat * /
|
|
*/
|
|
int sys_cpus(int argc, char **argv)
|
|
{
|
|
int i,j=0;
|
|
extern int current_pid(int cpu);
|
|
|
|
if( argc > 2 ) {
|
|
printk("sys_cpus:Only one argument supported\n");
|
|
return (-1);
|
|
}
|
|
if ( argc == 1 ){
|
|
|
|
#ifdef DUMP_MORE_STATE
|
|
for(i=0; i<NR_CPUS; i++) {
|
|
int cpus_per_line = 4;
|
|
if(cpu_online(i)) {
|
|
if (j++ % cpus_per_line)
|
|
printk(" %3d",i);
|
|
else
|
|
printk("\n %3d",i);
|
|
}
|
|
}
|
|
printk("\n");
|
|
#else
|
|
printk("\n 0\n");
|
|
#endif
|
|
} else if((argc==2) && !(strcmp(argv[1],"-l"))) {
|
|
printk("\nCPUSTATE TASK CPUNUM CPUID HARDCPU(HPA)\n");
|
|
#ifdef DUMP_MORE_STATE
|
|
for(i=0;i<NR_CPUS;i++) {
|
|
if (!cpu_online(i))
|
|
continue;
|
|
if (cpu_data[i].cpuid != NO_PROC_ID) {
|
|
switch(cpu_data[i].state) {
|
|
case STATE_RENDEZVOUS:
|
|
printk("RENDEZVS ");
|
|
break;
|
|
case STATE_RUNNING:
|
|
printk((current_pid(i)!=0) ? "RUNNING " : "IDLING ");
|
|
break;
|
|
case STATE_STOPPED:
|
|
printk("STOPPED ");
|
|
break;
|
|
case STATE_HALTED:
|
|
printk("HALTED ");
|
|
break;
|
|
default:
|
|
printk("%08x?", cpu_data[i].state);
|
|
break;
|
|
}
|
|
if(cpu_online(i)) {
|
|
printk(" %4d",current_pid(i));
|
|
}
|
|
printk(" %6d",cpu_number_map(i));
|
|
printk(" %5d",i);
|
|
printk(" 0x%lx\n",cpu_data[i].hpa);
|
|
}
|
|
}
|
|
#else
|
|
printk("\n%s %4d 0 0 --------",
|
|
(current->pid)?"RUNNING ": "IDLING ",current->pid);
|
|
#endif
|
|
} else if ((argc==2) && !(strcmp(argv[1],"-s"))) {
|
|
#ifdef DUMP_MORE_STATE
|
|
printk("\nCPUSTATE CPUID\n");
|
|
for (i=0;i<NR_CPUS;i++) {
|
|
if (!cpu_online(i))
|
|
continue;
|
|
if (cpu_data[i].cpuid != NO_PROC_ID) {
|
|
switch(cpu_data[i].state) {
|
|
case STATE_RENDEZVOUS:
|
|
printk("RENDEZVS");break;
|
|
case STATE_RUNNING:
|
|
printk((current_pid(i)!=0) ? "RUNNING " : "IDLING");
|
|
break;
|
|
case STATE_STOPPED:
|
|
printk("STOPPED ");break;
|
|
case STATE_HALTED:
|
|
printk("HALTED ");break;
|
|
default:
|
|
}
|
|
printk(" %5d\n",i);
|
|
}
|
|
}
|
|
#else
|
|
printk("\n%s CPU0",(current->pid==0)?"RUNNING ":"IDLING ");
|
|
#endif
|
|
} else {
|
|
printk("sys_cpus:Unknown request\n");
|
|
return (-1);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* ENTRY_SYS_CPUS */
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
int __init
|
|
setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return -EINVAL;
|
|
}
|
|
#endif
|