linux/crypto/sha3_generic.c

311 lines
8.2 KiB
C

/*
* Cryptographic API.
*
* SHA-3, as specified in
* http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
*
* SHA-3 code by Jeff Garzik <jeff@garzik.org>
* Ard Biesheuvel <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)•
* any later version.
*
*/
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <crypto/sha3.h>
#include <asm/unaligned.h>
/*
* On some 32-bit architectures (h8300), GCC ends up using
* over 1 KB of stack if we inline the round calculation into the loop
* in keccakf(). On the other hand, on 64-bit architectures with plenty
* of [64-bit wide] general purpose registers, not inlining it severely
* hurts performance. So let's use 64-bitness as a heuristic to decide
* whether to inline or not.
*/
#ifdef CONFIG_64BIT
#define SHA3_INLINE inline
#else
#define SHA3_INLINE noinline
#endif
#define KECCAK_ROUNDS 24
static const u64 keccakf_rndc[24] = {
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
};
/* update the state with given number of rounds */
static SHA3_INLINE void keccakf_round(u64 st[25])
{
u64 t[5], tt, bc[5];
/* Theta */
bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
t[0] = bc[4] ^ rol64(bc[1], 1);
t[1] = bc[0] ^ rol64(bc[2], 1);
t[2] = bc[1] ^ rol64(bc[3], 1);
t[3] = bc[2] ^ rol64(bc[4], 1);
t[4] = bc[3] ^ rol64(bc[0], 1);
st[0] ^= t[0];
/* Rho Pi */
tt = st[1];
st[ 1] = rol64(st[ 6] ^ t[1], 44);
st[ 6] = rol64(st[ 9] ^ t[4], 20);
st[ 9] = rol64(st[22] ^ t[2], 61);
st[22] = rol64(st[14] ^ t[4], 39);
st[14] = rol64(st[20] ^ t[0], 18);
st[20] = rol64(st[ 2] ^ t[2], 62);
st[ 2] = rol64(st[12] ^ t[2], 43);
st[12] = rol64(st[13] ^ t[3], 25);
st[13] = rol64(st[19] ^ t[4], 8);
st[19] = rol64(st[23] ^ t[3], 56);
st[23] = rol64(st[15] ^ t[0], 41);
st[15] = rol64(st[ 4] ^ t[4], 27);
st[ 4] = rol64(st[24] ^ t[4], 14);
st[24] = rol64(st[21] ^ t[1], 2);
st[21] = rol64(st[ 8] ^ t[3], 55);
st[ 8] = rol64(st[16] ^ t[1], 45);
st[16] = rol64(st[ 5] ^ t[0], 36);
st[ 5] = rol64(st[ 3] ^ t[3], 28);
st[ 3] = rol64(st[18] ^ t[3], 21);
st[18] = rol64(st[17] ^ t[2], 15);
st[17] = rol64(st[11] ^ t[1], 10);
st[11] = rol64(st[ 7] ^ t[2], 6);
st[ 7] = rol64(st[10] ^ t[0], 3);
st[10] = rol64( tt ^ t[1], 1);
/* Chi */
bc[ 0] = ~st[ 1] & st[ 2];
bc[ 1] = ~st[ 2] & st[ 3];
bc[ 2] = ~st[ 3] & st[ 4];
bc[ 3] = ~st[ 4] & st[ 0];
bc[ 4] = ~st[ 0] & st[ 1];
st[ 0] ^= bc[ 0];
st[ 1] ^= bc[ 1];
st[ 2] ^= bc[ 2];
st[ 3] ^= bc[ 3];
st[ 4] ^= bc[ 4];
bc[ 0] = ~st[ 6] & st[ 7];
bc[ 1] = ~st[ 7] & st[ 8];
bc[ 2] = ~st[ 8] & st[ 9];
bc[ 3] = ~st[ 9] & st[ 5];
bc[ 4] = ~st[ 5] & st[ 6];
st[ 5] ^= bc[ 0];
st[ 6] ^= bc[ 1];
st[ 7] ^= bc[ 2];
st[ 8] ^= bc[ 3];
st[ 9] ^= bc[ 4];
bc[ 0] = ~st[11] & st[12];
bc[ 1] = ~st[12] & st[13];
bc[ 2] = ~st[13] & st[14];
bc[ 3] = ~st[14] & st[10];
bc[ 4] = ~st[10] & st[11];
st[10] ^= bc[ 0];
st[11] ^= bc[ 1];
st[12] ^= bc[ 2];
st[13] ^= bc[ 3];
st[14] ^= bc[ 4];
bc[ 0] = ~st[16] & st[17];
bc[ 1] = ~st[17] & st[18];
bc[ 2] = ~st[18] & st[19];
bc[ 3] = ~st[19] & st[15];
bc[ 4] = ~st[15] & st[16];
st[15] ^= bc[ 0];
st[16] ^= bc[ 1];
st[17] ^= bc[ 2];
st[18] ^= bc[ 3];
st[19] ^= bc[ 4];
bc[ 0] = ~st[21] & st[22];
bc[ 1] = ~st[22] & st[23];
bc[ 2] = ~st[23] & st[24];
bc[ 3] = ~st[24] & st[20];
bc[ 4] = ~st[20] & st[21];
st[20] ^= bc[ 0];
st[21] ^= bc[ 1];
st[22] ^= bc[ 2];
st[23] ^= bc[ 3];
st[24] ^= bc[ 4];
}
static void keccakf(u64 st[25])
{
int round;
for (round = 0; round < KECCAK_ROUNDS; round++) {
keccakf_round(st);
/* Iota */
st[0] ^= keccakf_rndc[round];
}
}
int crypto_sha3_init(struct shash_desc *desc)
{
struct sha3_state *sctx = shash_desc_ctx(desc);
unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
sctx->rsiz = 200 - 2 * digest_size;
sctx->rsizw = sctx->rsiz / 8;
sctx->partial = 0;
memset(sctx->st, 0, sizeof(sctx->st));
return 0;
}
EXPORT_SYMBOL(crypto_sha3_init);
int crypto_sha3_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha3_state *sctx = shash_desc_ctx(desc);
unsigned int done;
const u8 *src;
done = 0;
src = data;
if ((sctx->partial + len) > (sctx->rsiz - 1)) {
if (sctx->partial) {
done = -sctx->partial;
memcpy(sctx->buf + sctx->partial, data,
done + sctx->rsiz);
src = sctx->buf;
}
do {
unsigned int i;
for (i = 0; i < sctx->rsizw; i++)
sctx->st[i] ^= get_unaligned_le64(src + 8 * i);
keccakf(sctx->st);
done += sctx->rsiz;
src = data + done;
} while (done + (sctx->rsiz - 1) < len);
sctx->partial = 0;
}
memcpy(sctx->buf + sctx->partial, src, len - done);
sctx->partial += (len - done);
return 0;
}
EXPORT_SYMBOL(crypto_sha3_update);
int crypto_sha3_final(struct shash_desc *desc, u8 *out)
{
struct sha3_state *sctx = shash_desc_ctx(desc);
unsigned int i, inlen = sctx->partial;
unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
__le64 *digest = (__le64 *)out;
sctx->buf[inlen++] = 0x06;
memset(sctx->buf + inlen, 0, sctx->rsiz - inlen);
sctx->buf[sctx->rsiz - 1] |= 0x80;
for (i = 0; i < sctx->rsizw; i++)
sctx->st[i] ^= get_unaligned_le64(sctx->buf + 8 * i);
keccakf(sctx->st);
for (i = 0; i < digest_size / 8; i++)
put_unaligned_le64(sctx->st[i], digest++);
if (digest_size & 4)
put_unaligned_le32(sctx->st[i], (__le32 *)digest);
memset(sctx, 0, sizeof(*sctx));
return 0;
}
EXPORT_SYMBOL(crypto_sha3_final);
static struct shash_alg algs[] = { {
.digestsize = SHA3_224_DIGEST_SIZE,
.init = crypto_sha3_init,
.update = crypto_sha3_update,
.final = crypto_sha3_final,
.descsize = sizeof(struct sha3_state),
.base.cra_name = "sha3-224",
.base.cra_driver_name = "sha3-224-generic",
.base.cra_blocksize = SHA3_224_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
}, {
.digestsize = SHA3_256_DIGEST_SIZE,
.init = crypto_sha3_init,
.update = crypto_sha3_update,
.final = crypto_sha3_final,
.descsize = sizeof(struct sha3_state),
.base.cra_name = "sha3-256",
.base.cra_driver_name = "sha3-256-generic",
.base.cra_blocksize = SHA3_256_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
}, {
.digestsize = SHA3_384_DIGEST_SIZE,
.init = crypto_sha3_init,
.update = crypto_sha3_update,
.final = crypto_sha3_final,
.descsize = sizeof(struct sha3_state),
.base.cra_name = "sha3-384",
.base.cra_driver_name = "sha3-384-generic",
.base.cra_blocksize = SHA3_384_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
}, {
.digestsize = SHA3_512_DIGEST_SIZE,
.init = crypto_sha3_init,
.update = crypto_sha3_update,
.final = crypto_sha3_final,
.descsize = sizeof(struct sha3_state),
.base.cra_name = "sha3-512",
.base.cra_driver_name = "sha3-512-generic",
.base.cra_blocksize = SHA3_512_BLOCK_SIZE,
.base.cra_module = THIS_MODULE,
} };
static int __init sha3_generic_mod_init(void)
{
return crypto_register_shashes(algs, ARRAY_SIZE(algs));
}
static void __exit sha3_generic_mod_fini(void)
{
crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
}
subsys_initcall(sha3_generic_mod_init);
module_exit(sha3_generic_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA-3 Secure Hash Algorithm");
MODULE_ALIAS_CRYPTO("sha3-224");
MODULE_ALIAS_CRYPTO("sha3-224-generic");
MODULE_ALIAS_CRYPTO("sha3-256");
MODULE_ALIAS_CRYPTO("sha3-256-generic");
MODULE_ALIAS_CRYPTO("sha3-384");
MODULE_ALIAS_CRYPTO("sha3-384-generic");
MODULE_ALIAS_CRYPTO("sha3-512");
MODULE_ALIAS_CRYPTO("sha3-512-generic");