mirror of https://gitee.com/openkylin/linux.git
1716 lines
48 KiB
C
1716 lines
48 KiB
C
/*
|
|
* drivers/mtd/nand/diskonchip.c
|
|
*
|
|
* (C) 2003 Red Hat, Inc.
|
|
* (C) 2004 Dan Brown <dan_brown@ieee.org>
|
|
* (C) 2004 Kalev Lember <kalev@smartlink.ee>
|
|
*
|
|
* Author: David Woodhouse <dwmw2@infradead.org>
|
|
* Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
|
|
* Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
|
|
*
|
|
* Error correction code lifted from the old docecc code
|
|
* Author: Fabrice Bellard (fabrice.bellard@netgem.com)
|
|
* Copyright (C) 2000 Netgem S.A.
|
|
* converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
|
|
*
|
|
* Interface to generic NAND code for M-Systems DiskOnChip devices
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/rslib.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/doc2000.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/inftl.h>
|
|
#include <linux/module.h>
|
|
|
|
/* Where to look for the devices? */
|
|
#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
|
|
#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
|
|
#endif
|
|
|
|
static unsigned long doc_locations[] __initdata = {
|
|
#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
|
|
#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
|
|
0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
|
|
0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
|
|
0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
|
|
0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
|
|
0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
|
|
#else
|
|
0xc8000, 0xca000, 0xcc000, 0xce000,
|
|
0xd0000, 0xd2000, 0xd4000, 0xd6000,
|
|
0xd8000, 0xda000, 0xdc000, 0xde000,
|
|
0xe0000, 0xe2000, 0xe4000, 0xe6000,
|
|
0xe8000, 0xea000, 0xec000, 0xee000,
|
|
#endif
|
|
#endif
|
|
0xffffffff };
|
|
|
|
static struct mtd_info *doclist = NULL;
|
|
|
|
struct doc_priv {
|
|
void __iomem *virtadr;
|
|
unsigned long physadr;
|
|
u_char ChipID;
|
|
u_char CDSNControl;
|
|
int chips_per_floor; /* The number of chips detected on each floor */
|
|
int curfloor;
|
|
int curchip;
|
|
int mh0_page;
|
|
int mh1_page;
|
|
struct mtd_info *nextdoc;
|
|
|
|
/* Handle the last stage of initialization (BBT scan, partitioning) */
|
|
int (*late_init)(struct mtd_info *mtd);
|
|
};
|
|
|
|
/* This is the syndrome computed by the HW ecc generator upon reading an empty
|
|
page, one with all 0xff for data and stored ecc code. */
|
|
static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
|
|
|
|
/* This is the ecc value computed by the HW ecc generator upon writing an empty
|
|
page, one with all 0xff for data. */
|
|
static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
|
|
|
|
#define INFTL_BBT_RESERVED_BLOCKS 4
|
|
|
|
#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
|
|
#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
|
|
#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
|
|
|
|
static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int bitmask);
|
|
static void doc200x_select_chip(struct mtd_info *mtd, int chip);
|
|
|
|
static int debug = 0;
|
|
module_param(debug, int, 0);
|
|
|
|
static int try_dword = 1;
|
|
module_param(try_dword, int, 0);
|
|
|
|
static int no_ecc_failures = 0;
|
|
module_param(no_ecc_failures, int, 0);
|
|
|
|
static int no_autopart = 0;
|
|
module_param(no_autopart, int, 0);
|
|
|
|
static int show_firmware_partition = 0;
|
|
module_param(show_firmware_partition, int, 0);
|
|
|
|
#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
|
|
static int inftl_bbt_write = 1;
|
|
#else
|
|
static int inftl_bbt_write = 0;
|
|
#endif
|
|
module_param(inftl_bbt_write, int, 0);
|
|
|
|
static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
|
|
module_param(doc_config_location, ulong, 0);
|
|
MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
|
|
|
|
/* Sector size for HW ECC */
|
|
#define SECTOR_SIZE 512
|
|
/* The sector bytes are packed into NB_DATA 10 bit words */
|
|
#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
|
|
/* Number of roots */
|
|
#define NROOTS 4
|
|
/* First consective root */
|
|
#define FCR 510
|
|
/* Number of symbols */
|
|
#define NN 1023
|
|
|
|
/* the Reed Solomon control structure */
|
|
static struct rs_control *rs_decoder;
|
|
|
|
/*
|
|
* The HW decoder in the DoC ASIC's provides us a error syndrome,
|
|
* which we must convert to a standard syndrome usable by the generic
|
|
* Reed-Solomon library code.
|
|
*
|
|
* Fabrice Bellard figured this out in the old docecc code. I added
|
|
* some comments, improved a minor bit and converted it to make use
|
|
* of the generic Reed-Solomon library. tglx
|
|
*/
|
|
static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
|
|
{
|
|
int i, j, nerr, errpos[8];
|
|
uint8_t parity;
|
|
uint16_t ds[4], s[5], tmp, errval[8], syn[4];
|
|
|
|
memset(syn, 0, sizeof(syn));
|
|
/* Convert the ecc bytes into words */
|
|
ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
|
|
ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
|
|
ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
|
|
ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
|
|
parity = ecc[1];
|
|
|
|
/* Initialize the syndrome buffer */
|
|
for (i = 0; i < NROOTS; i++)
|
|
s[i] = ds[0];
|
|
/*
|
|
* Evaluate
|
|
* s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
|
|
* where x = alpha^(FCR + i)
|
|
*/
|
|
for (j = 1; j < NROOTS; j++) {
|
|
if (ds[j] == 0)
|
|
continue;
|
|
tmp = rs->index_of[ds[j]];
|
|
for (i = 0; i < NROOTS; i++)
|
|
s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
|
|
}
|
|
|
|
/* Calc syn[i] = s[i] / alpha^(v + i) */
|
|
for (i = 0; i < NROOTS; i++) {
|
|
if (s[i])
|
|
syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
|
|
}
|
|
/* Call the decoder library */
|
|
nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
|
|
|
|
/* Incorrectable errors ? */
|
|
if (nerr < 0)
|
|
return nerr;
|
|
|
|
/*
|
|
* Correct the errors. The bitpositions are a bit of magic,
|
|
* but they are given by the design of the de/encoder circuit
|
|
* in the DoC ASIC's.
|
|
*/
|
|
for (i = 0; i < nerr; i++) {
|
|
int index, bitpos, pos = 1015 - errpos[i];
|
|
uint8_t val;
|
|
if (pos >= NB_DATA && pos < 1019)
|
|
continue;
|
|
if (pos < NB_DATA) {
|
|
/* extract bit position (MSB first) */
|
|
pos = 10 * (NB_DATA - 1 - pos) - 6;
|
|
/* now correct the following 10 bits. At most two bytes
|
|
can be modified since pos is even */
|
|
index = (pos >> 3) ^ 1;
|
|
bitpos = pos & 7;
|
|
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
|
|
val = (uint8_t) (errval[i] >> (2 + bitpos));
|
|
parity ^= val;
|
|
if (index < SECTOR_SIZE)
|
|
data[index] ^= val;
|
|
}
|
|
index = ((pos >> 3) + 1) ^ 1;
|
|
bitpos = (bitpos + 10) & 7;
|
|
if (bitpos == 0)
|
|
bitpos = 8;
|
|
if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
|
|
val = (uint8_t) (errval[i] << (8 - bitpos));
|
|
parity ^= val;
|
|
if (index < SECTOR_SIZE)
|
|
data[index] ^= val;
|
|
}
|
|
}
|
|
}
|
|
/* If the parity is wrong, no rescue possible */
|
|
return parity ? -EBADMSG : nerr;
|
|
}
|
|
|
|
static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
|
|
{
|
|
volatile char dummy;
|
|
int i;
|
|
|
|
for (i = 0; i < cycles; i++) {
|
|
if (DoC_is_Millennium(doc))
|
|
dummy = ReadDOC(doc->virtadr, NOP);
|
|
else if (DoC_is_MillenniumPlus(doc))
|
|
dummy = ReadDOC(doc->virtadr, Mplus_NOP);
|
|
else
|
|
dummy = ReadDOC(doc->virtadr, DOCStatus);
|
|
}
|
|
|
|
}
|
|
|
|
#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
|
|
|
|
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
|
|
static int _DoC_WaitReady(struct doc_priv *doc)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
unsigned long timeo = jiffies + (HZ * 10);
|
|
|
|
if (debug)
|
|
printk("_DoC_WaitReady...\n");
|
|
/* Out-of-line routine to wait for chip response */
|
|
if (DoC_is_MillenniumPlus(doc)) {
|
|
while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
|
|
if (time_after(jiffies, timeo)) {
|
|
printk("_DoC_WaitReady timed out.\n");
|
|
return -EIO;
|
|
}
|
|
udelay(1);
|
|
cond_resched();
|
|
}
|
|
} else {
|
|
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
|
|
if (time_after(jiffies, timeo)) {
|
|
printk("_DoC_WaitReady timed out.\n");
|
|
return -EIO;
|
|
}
|
|
udelay(1);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int DoC_WaitReady(struct doc_priv *doc)
|
|
{
|
|
void __iomem *docptr = doc->virtadr;
|
|
int ret = 0;
|
|
|
|
if (DoC_is_MillenniumPlus(doc)) {
|
|
DoC_Delay(doc, 4);
|
|
|
|
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
|
|
/* Call the out-of-line routine to wait */
|
|
ret = _DoC_WaitReady(doc);
|
|
} else {
|
|
DoC_Delay(doc, 4);
|
|
|
|
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
|
|
/* Call the out-of-line routine to wait */
|
|
ret = _DoC_WaitReady(doc);
|
|
DoC_Delay(doc, 2);
|
|
}
|
|
|
|
if (debug)
|
|
printk("DoC_WaitReady OK\n");
|
|
return ret;
|
|
}
|
|
|
|
static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
if (debug)
|
|
printk("write_byte %02x\n", datum);
|
|
WriteDOC(datum, docptr, CDSNSlowIO);
|
|
WriteDOC(datum, docptr, 2k_CDSN_IO);
|
|
}
|
|
|
|
static u_char doc2000_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
u_char ret;
|
|
|
|
ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(doc, 2);
|
|
ret = ReadDOC(docptr, 2k_CDSN_IO);
|
|
if (debug)
|
|
printk("read_byte returns %02x\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
if (debug)
|
|
printk("writebuf of %d bytes: ", len);
|
|
for (i = 0; i < len; i++) {
|
|
WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
|
|
if (debug && i < 16)
|
|
printk("%02x ", buf[i]);
|
|
}
|
|
if (debug)
|
|
printk("\n");
|
|
}
|
|
|
|
static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (debug)
|
|
printk("readbuf of %d bytes: ", len);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
|
|
}
|
|
}
|
|
|
|
static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (debug)
|
|
printk("readbuf_dword of %d bytes: ", len);
|
|
|
|
if (unlikely((((unsigned long)buf) | len) & 3)) {
|
|
for (i = 0; i < len; i++) {
|
|
*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
|
|
}
|
|
} else {
|
|
for (i = 0; i < len; i += 4) {
|
|
*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
uint16_t ret;
|
|
|
|
doc200x_select_chip(mtd, nr);
|
|
doc200x_hwcontrol(mtd, NAND_CMD_READID,
|
|
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
/* We can't use dev_ready here, but at least we wait for the
|
|
* command to complete
|
|
*/
|
|
udelay(50);
|
|
|
|
ret = this->read_byte(mtd) << 8;
|
|
ret |= this->read_byte(mtd);
|
|
|
|
if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
|
|
/* First chip probe. See if we get same results by 32-bit access */
|
|
union {
|
|
uint32_t dword;
|
|
uint8_t byte[4];
|
|
} ident;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
doc200x_hwcontrol(mtd, NAND_CMD_READID,
|
|
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
|
|
doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
|
|
doc200x_hwcontrol(mtd, NAND_CMD_NONE,
|
|
NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
udelay(50);
|
|
|
|
ident.dword = readl(docptr + DoC_2k_CDSN_IO);
|
|
if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
|
|
printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
|
|
this->read_buf = &doc2000_readbuf_dword;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __init doc2000_count_chips(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
uint16_t mfrid;
|
|
int i;
|
|
|
|
/* Max 4 chips per floor on DiskOnChip 2000 */
|
|
doc->chips_per_floor = 4;
|
|
|
|
/* Find out what the first chip is */
|
|
mfrid = doc200x_ident_chip(mtd, 0);
|
|
|
|
/* Find how many chips in each floor. */
|
|
for (i = 1; i < 4; i++) {
|
|
if (doc200x_ident_chip(mtd, i) != mfrid)
|
|
break;
|
|
}
|
|
doc->chips_per_floor = i;
|
|
printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
|
|
}
|
|
|
|
static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
|
|
{
|
|
struct doc_priv *doc = this->priv;
|
|
|
|
int status;
|
|
|
|
DoC_WaitReady(doc);
|
|
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
|
|
DoC_WaitReady(doc);
|
|
status = (int)this->read_byte(mtd);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
WriteDOC(datum, docptr, CDSNSlowIO);
|
|
WriteDOC(datum, docptr, Mil_CDSN_IO);
|
|
WriteDOC(datum, docptr, WritePipeTerm);
|
|
}
|
|
|
|
static u_char doc2001_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
//ReadDOC(docptr, CDSNSlowIO);
|
|
/* 11.4.5 -- delay twice to allow extended length cycle */
|
|
DoC_Delay(doc, 2);
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
//return ReadDOC(docptr, Mil_CDSN_IO);
|
|
return ReadDOC(docptr, LastDataRead);
|
|
}
|
|
|
|
static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
|
|
/* Terminate write pipeline */
|
|
WriteDOC(0x00, docptr, WritePipeTerm);
|
|
}
|
|
|
|
static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
/* Start read pipeline */
|
|
ReadDOC(docptr, ReadPipeInit);
|
|
|
|
for (i = 0; i < len - 1; i++)
|
|
buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
|
|
|
|
/* Terminate read pipeline */
|
|
buf[i] = ReadDOC(docptr, LastDataRead);
|
|
}
|
|
|
|
static u_char doc2001plus_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
u_char ret;
|
|
|
|
ReadDOC(docptr, Mplus_ReadPipeInit);
|
|
ReadDOC(docptr, Mplus_ReadPipeInit);
|
|
ret = ReadDOC(docptr, Mplus_LastDataRead);
|
|
if (debug)
|
|
printk("read_byte returns %02x\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (debug)
|
|
printk("writebuf of %d bytes: ", len);
|
|
for (i = 0; i < len; i++) {
|
|
WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
|
|
if (debug && i < 16)
|
|
printk("%02x ", buf[i]);
|
|
}
|
|
if (debug)
|
|
printk("\n");
|
|
}
|
|
|
|
static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
|
|
if (debug)
|
|
printk("readbuf of %d bytes: ", len);
|
|
|
|
/* Start read pipeline */
|
|
ReadDOC(docptr, Mplus_ReadPipeInit);
|
|
ReadDOC(docptr, Mplus_ReadPipeInit);
|
|
|
|
for (i = 0; i < len - 2; i++) {
|
|
buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
|
|
if (debug && i < 16)
|
|
printk("%02x ", buf[i]);
|
|
}
|
|
|
|
/* Terminate read pipeline */
|
|
buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
|
|
if (debug && i < 16)
|
|
printk("%02x ", buf[len - 2]);
|
|
buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
|
|
if (debug && i < 16)
|
|
printk("%02x ", buf[len - 1]);
|
|
if (debug)
|
|
printk("\n");
|
|
}
|
|
|
|
static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int floor = 0;
|
|
|
|
if (debug)
|
|
printk("select chip (%d)\n", chip);
|
|
|
|
if (chip == -1) {
|
|
/* Disable flash internally */
|
|
WriteDOC(0, docptr, Mplus_FlashSelect);
|
|
return;
|
|
}
|
|
|
|
floor = chip / doc->chips_per_floor;
|
|
chip -= (floor * doc->chips_per_floor);
|
|
|
|
/* Assert ChipEnable and deassert WriteProtect */
|
|
WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
|
|
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
|
|
|
|
doc->curchip = chip;
|
|
doc->curfloor = floor;
|
|
}
|
|
|
|
static void doc200x_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int floor = 0;
|
|
|
|
if (debug)
|
|
printk("select chip (%d)\n", chip);
|
|
|
|
if (chip == -1)
|
|
return;
|
|
|
|
floor = chip / doc->chips_per_floor;
|
|
chip -= (floor * doc->chips_per_floor);
|
|
|
|
/* 11.4.4 -- deassert CE before changing chip */
|
|
doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
|
|
|
|
WriteDOC(floor, docptr, FloorSelect);
|
|
WriteDOC(chip, docptr, CDSNDeviceSelect);
|
|
|
|
doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
|
|
|
|
doc->curchip = chip;
|
|
doc->curfloor = floor;
|
|
}
|
|
|
|
#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
|
|
|
|
static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
if (ctrl & NAND_CTRL_CHANGE) {
|
|
doc->CDSNControl &= ~CDSN_CTRL_MSK;
|
|
doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
|
|
if (debug)
|
|
printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
|
|
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
|
|
/* 11.4.3 -- 4 NOPs after CSDNControl write */
|
|
DoC_Delay(doc, 4);
|
|
}
|
|
if (cmd != NAND_CMD_NONE) {
|
|
if (DoC_is_2000(doc))
|
|
doc2000_write_byte(mtd, cmd);
|
|
else
|
|
doc2001_write_byte(mtd, cmd);
|
|
}
|
|
}
|
|
|
|
static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/*
|
|
* Must terminate write pipeline before sending any commands
|
|
* to the device.
|
|
*/
|
|
if (command == NAND_CMD_PAGEPROG) {
|
|
WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
|
|
WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
|
|
}
|
|
|
|
/*
|
|
* Write out the command to the device.
|
|
*/
|
|
if (command == NAND_CMD_SEQIN) {
|
|
int readcmd;
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area */
|
|
column -= mtd->writesize;
|
|
readcmd = NAND_CMD_READOOB;
|
|
} else if (column < 256) {
|
|
/* First 256 bytes --> READ0 */
|
|
readcmd = NAND_CMD_READ0;
|
|
} else {
|
|
column -= 256;
|
|
readcmd = NAND_CMD_READ1;
|
|
}
|
|
WriteDOC(readcmd, docptr, Mplus_FlashCmd);
|
|
}
|
|
WriteDOC(command, docptr, Mplus_FlashCmd);
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
|
|
if (column != -1 || page_addr != -1) {
|
|
/* Serially input address */
|
|
if (column != -1) {
|
|
/* Adjust columns for 16 bit buswidth */
|
|
if (this->options & NAND_BUSWIDTH_16 &&
|
|
!nand_opcode_8bits(command))
|
|
column >>= 1;
|
|
WriteDOC(column, docptr, Mplus_FlashAddress);
|
|
}
|
|
if (page_addr != -1) {
|
|
WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
|
|
WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
|
|
/* One more address cycle for higher density devices */
|
|
if (this->chipsize & 0x0c000000) {
|
|
WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
|
|
printk("high density\n");
|
|
}
|
|
}
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
/* deassert ALE */
|
|
if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
|
|
command == NAND_CMD_READOOB || command == NAND_CMD_READID)
|
|
WriteDOC(0, docptr, Mplus_FlashControl);
|
|
}
|
|
|
|
/*
|
|
* program and erase have their own busy handlers
|
|
* status and sequential in needs no delay
|
|
*/
|
|
switch (command) {
|
|
|
|
case NAND_CMD_PAGEPROG:
|
|
case NAND_CMD_ERASE1:
|
|
case NAND_CMD_ERASE2:
|
|
case NAND_CMD_SEQIN:
|
|
case NAND_CMD_STATUS:
|
|
return;
|
|
|
|
case NAND_CMD_RESET:
|
|
if (this->dev_ready)
|
|
break;
|
|
udelay(this->chip_delay);
|
|
WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
WriteDOC(0, docptr, Mplus_WritePipeTerm);
|
|
while (!(this->read_byte(mtd) & 0x40)) ;
|
|
return;
|
|
|
|
/* This applies to read commands */
|
|
default:
|
|
/*
|
|
* If we don't have access to the busy pin, we apply the given
|
|
* command delay
|
|
*/
|
|
if (!this->dev_ready) {
|
|
udelay(this->chip_delay);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Apply this short delay always to ensure that we do wait tWB in
|
|
* any case on any machine. */
|
|
ndelay(100);
|
|
/* wait until command is processed */
|
|
while (!this->dev_ready(mtd)) ;
|
|
}
|
|
|
|
static int doc200x_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
if (DoC_is_MillenniumPlus(doc)) {
|
|
/* 11.4.2 -- must NOP four times before checking FR/B# */
|
|
DoC_Delay(doc, 4);
|
|
if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
|
|
if (debug)
|
|
printk("not ready\n");
|
|
return 0;
|
|
}
|
|
if (debug)
|
|
printk("was ready\n");
|
|
return 1;
|
|
} else {
|
|
/* 11.4.2 -- must NOP four times before checking FR/B# */
|
|
DoC_Delay(doc, 4);
|
|
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
|
|
if (debug)
|
|
printk("not ready\n");
|
|
return 0;
|
|
}
|
|
/* 11.4.2 -- Must NOP twice if it's ready */
|
|
DoC_Delay(doc, 2);
|
|
if (debug)
|
|
printk("was ready\n");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
|
|
{
|
|
/* This is our last resort if we couldn't find or create a BBT. Just
|
|
pretend all blocks are good. */
|
|
return 0;
|
|
}
|
|
|
|
static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* Prime the ECC engine */
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
|
|
break;
|
|
case NAND_ECC_WRITE:
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
|
|
/* Prime the ECC engine */
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
|
|
WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
|
|
break;
|
|
case NAND_ECC_WRITE:
|
|
WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
|
|
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* This code is only called on write */
|
|
static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
int i;
|
|
int emptymatch = 1;
|
|
|
|
/* flush the pipeline */
|
|
if (DoC_is_2000(doc)) {
|
|
WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
|
|
WriteDOC(0, docptr, 2k_CDSN_IO);
|
|
WriteDOC(0, docptr, 2k_CDSN_IO);
|
|
WriteDOC(0, docptr, 2k_CDSN_IO);
|
|
WriteDOC(doc->CDSNControl, docptr, CDSNControl);
|
|
} else if (DoC_is_MillenniumPlus(doc)) {
|
|
WriteDOC(0, docptr, Mplus_NOP);
|
|
WriteDOC(0, docptr, Mplus_NOP);
|
|
WriteDOC(0, docptr, Mplus_NOP);
|
|
} else {
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
}
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
if (DoC_is_MillenniumPlus(doc))
|
|
ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
|
|
else
|
|
ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
|
|
if (ecc_code[i] != empty_write_ecc[i])
|
|
emptymatch = 0;
|
|
}
|
|
if (DoC_is_MillenniumPlus(doc))
|
|
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
|
|
else
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
#if 0
|
|
/* If emptymatch=1, we might have an all-0xff data buffer. Check. */
|
|
if (emptymatch) {
|
|
/* Note: this somewhat expensive test should not be triggered
|
|
often. It could be optimized away by examining the data in
|
|
the writebuf routine, and remembering the result. */
|
|
for (i = 0; i < 512; i++) {
|
|
if (dat[i] == 0xff)
|
|
continue;
|
|
emptymatch = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* If emptymatch still =1, we do have an all-0xff data buffer.
|
|
Return all-0xff ecc value instead of the computed one, so
|
|
it'll look just like a freshly-erased page. */
|
|
if (emptymatch)
|
|
memset(ecc_code, 0xff, 6);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
|
|
u_char *read_ecc, u_char *isnull)
|
|
{
|
|
int i, ret = 0;
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
void __iomem *docptr = doc->virtadr;
|
|
uint8_t calc_ecc[6];
|
|
volatile u_char dummy;
|
|
int emptymatch = 1;
|
|
|
|
/* flush the pipeline */
|
|
if (DoC_is_2000(doc)) {
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
} else if (DoC_is_MillenniumPlus(doc)) {
|
|
dummy = ReadDOC(docptr, Mplus_ECCConf);
|
|
dummy = ReadDOC(docptr, Mplus_ECCConf);
|
|
dummy = ReadDOC(docptr, Mplus_ECCConf);
|
|
} else {
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
}
|
|
|
|
/* Error occurred ? */
|
|
if (dummy & 0x80) {
|
|
for (i = 0; i < 6; i++) {
|
|
if (DoC_is_MillenniumPlus(doc))
|
|
calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
|
|
else
|
|
calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
|
|
if (calc_ecc[i] != empty_read_syndrome[i])
|
|
emptymatch = 0;
|
|
}
|
|
/* If emptymatch=1, the read syndrome is consistent with an
|
|
all-0xff data and stored ecc block. Check the stored ecc. */
|
|
if (emptymatch) {
|
|
for (i = 0; i < 6; i++) {
|
|
if (read_ecc[i] == 0xff)
|
|
continue;
|
|
emptymatch = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* If emptymatch still =1, check the data block. */
|
|
if (emptymatch) {
|
|
/* Note: this somewhat expensive test should not be triggered
|
|
often. It could be optimized away by examining the data in
|
|
the readbuf routine, and remembering the result. */
|
|
for (i = 0; i < 512; i++) {
|
|
if (dat[i] == 0xff)
|
|
continue;
|
|
emptymatch = 0;
|
|
break;
|
|
}
|
|
}
|
|
/* If emptymatch still =1, this is almost certainly a freshly-
|
|
erased block, in which case the ECC will not come out right.
|
|
We'll suppress the error and tell the caller everything's
|
|
OK. Because it is. */
|
|
if (!emptymatch)
|
|
ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
|
|
if (ret > 0)
|
|
printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
|
|
}
|
|
if (DoC_is_MillenniumPlus(doc))
|
|
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
|
|
else
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
if (no_ecc_failures && mtd_is_eccerr(ret)) {
|
|
printk(KERN_ERR "suppressing ECC failure\n");
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
//u_char mydatabuf[528];
|
|
|
|
/* The strange out-of-order .oobfree list below is a (possibly unneeded)
|
|
* attempt to retain compatibility. It used to read:
|
|
* .oobfree = { {8, 8} }
|
|
* Since that leaves two bytes unusable, it was changed. But the following
|
|
* scheme might affect existing jffs2 installs by moving the cleanmarker:
|
|
* .oobfree = { {6, 10} }
|
|
* jffs2 seems to handle the above gracefully, but the current scheme seems
|
|
* safer. The only problem with it is that any code that parses oobfree must
|
|
* be able to handle out-of-order segments.
|
|
*/
|
|
static struct nand_ecclayout doc200x_oobinfo = {
|
|
.eccbytes = 6,
|
|
.eccpos = {0, 1, 2, 3, 4, 5},
|
|
.oobfree = {{8, 8}, {6, 2}}
|
|
};
|
|
|
|
/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
|
|
On successful return, buf will contain a copy of the media header for
|
|
further processing. id is the string to scan for, and will presumably be
|
|
either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
|
|
header. The page #s of the found media headers are placed in mh0_page and
|
|
mh1_page in the DOC private structure. */
|
|
static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
unsigned offs;
|
|
int ret;
|
|
size_t retlen;
|
|
|
|
for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
|
|
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
|
|
if (retlen != mtd->writesize)
|
|
continue;
|
|
if (ret) {
|
|
printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
|
|
}
|
|
if (memcmp(buf, id, 6))
|
|
continue;
|
|
printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
|
|
if (doc->mh0_page == -1) {
|
|
doc->mh0_page = offs >> this->page_shift;
|
|
if (!findmirror)
|
|
return 1;
|
|
continue;
|
|
}
|
|
doc->mh1_page = offs >> this->page_shift;
|
|
return 2;
|
|
}
|
|
if (doc->mh0_page == -1) {
|
|
printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
|
|
return 0;
|
|
}
|
|
/* Only one mediaheader was found. We want buf to contain a
|
|
mediaheader on return, so we'll have to re-read the one we found. */
|
|
offs = doc->mh0_page << this->page_shift;
|
|
ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
|
|
if (retlen != mtd->writesize) {
|
|
/* Insanity. Give up. */
|
|
printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
int ret = 0;
|
|
u_char *buf;
|
|
struct NFTLMediaHeader *mh;
|
|
const unsigned psize = 1 << this->page_shift;
|
|
int numparts = 0;
|
|
unsigned blocks, maxblocks;
|
|
int offs, numheaders;
|
|
|
|
buf = kmalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!buf) {
|
|
return 0;
|
|
}
|
|
if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
|
|
goto out;
|
|
mh = (struct NFTLMediaHeader *)buf;
|
|
|
|
le16_to_cpus(&mh->NumEraseUnits);
|
|
le16_to_cpus(&mh->FirstPhysicalEUN);
|
|
le32_to_cpus(&mh->FormattedSize);
|
|
|
|
printk(KERN_INFO " DataOrgID = %s\n"
|
|
" NumEraseUnits = %d\n"
|
|
" FirstPhysicalEUN = %d\n"
|
|
" FormattedSize = %d\n"
|
|
" UnitSizeFactor = %d\n",
|
|
mh->DataOrgID, mh->NumEraseUnits,
|
|
mh->FirstPhysicalEUN, mh->FormattedSize,
|
|
mh->UnitSizeFactor);
|
|
|
|
blocks = mtd->size >> this->phys_erase_shift;
|
|
maxblocks = min(32768U, mtd->erasesize - psize);
|
|
|
|
if (mh->UnitSizeFactor == 0x00) {
|
|
/* Auto-determine UnitSizeFactor. The constraints are:
|
|
- There can be at most 32768 virtual blocks.
|
|
- There can be at most (virtual block size - page size)
|
|
virtual blocks (because MediaHeader+BBT must fit in 1).
|
|
*/
|
|
mh->UnitSizeFactor = 0xff;
|
|
while (blocks > maxblocks) {
|
|
blocks >>= 1;
|
|
maxblocks = min(32768U, (maxblocks << 1) + psize);
|
|
mh->UnitSizeFactor--;
|
|
}
|
|
printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
|
|
}
|
|
|
|
/* NOTE: The lines below modify internal variables of the NAND and MTD
|
|
layers; variables with have already been configured by nand_scan.
|
|
Unfortunately, we didn't know before this point what these values
|
|
should be. Thus, this code is somewhat dependent on the exact
|
|
implementation of the NAND layer. */
|
|
if (mh->UnitSizeFactor != 0xff) {
|
|
this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
|
|
mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
|
|
printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
|
|
blocks = mtd->size >> this->bbt_erase_shift;
|
|
maxblocks = min(32768U, mtd->erasesize - psize);
|
|
}
|
|
|
|
if (blocks > maxblocks) {
|
|
printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
|
|
goto out;
|
|
}
|
|
|
|
/* Skip past the media headers. */
|
|
offs = max(doc->mh0_page, doc->mh1_page);
|
|
offs <<= this->page_shift;
|
|
offs += mtd->erasesize;
|
|
|
|
if (show_firmware_partition == 1) {
|
|
parts[0].name = " DiskOnChip Firmware / Media Header partition";
|
|
parts[0].offset = 0;
|
|
parts[0].size = offs;
|
|
numparts = 1;
|
|
}
|
|
|
|
parts[numparts].name = " DiskOnChip BDTL partition";
|
|
parts[numparts].offset = offs;
|
|
parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
|
|
|
|
offs += parts[numparts].size;
|
|
numparts++;
|
|
|
|
if (offs < mtd->size) {
|
|
parts[numparts].name = " DiskOnChip Remainder partition";
|
|
parts[numparts].offset = offs;
|
|
parts[numparts].size = mtd->size - offs;
|
|
numparts++;
|
|
}
|
|
|
|
ret = numparts;
|
|
out:
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
/* This is a stripped-down copy of the code in inftlmount.c */
|
|
static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
int ret = 0;
|
|
u_char *buf;
|
|
struct INFTLMediaHeader *mh;
|
|
struct INFTLPartition *ip;
|
|
int numparts = 0;
|
|
int blocks;
|
|
int vshift, lastvunit = 0;
|
|
int i;
|
|
int end = mtd->size;
|
|
|
|
if (inftl_bbt_write)
|
|
end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
|
|
|
|
buf = kmalloc(mtd->writesize, GFP_KERNEL);
|
|
if (!buf) {
|
|
return 0;
|
|
}
|
|
|
|
if (!find_media_headers(mtd, buf, "BNAND", 0))
|
|
goto out;
|
|
doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
|
|
mh = (struct INFTLMediaHeader *)buf;
|
|
|
|
le32_to_cpus(&mh->NoOfBootImageBlocks);
|
|
le32_to_cpus(&mh->NoOfBinaryPartitions);
|
|
le32_to_cpus(&mh->NoOfBDTLPartitions);
|
|
le32_to_cpus(&mh->BlockMultiplierBits);
|
|
le32_to_cpus(&mh->FormatFlags);
|
|
le32_to_cpus(&mh->PercentUsed);
|
|
|
|
printk(KERN_INFO " bootRecordID = %s\n"
|
|
" NoOfBootImageBlocks = %d\n"
|
|
" NoOfBinaryPartitions = %d\n"
|
|
" NoOfBDTLPartitions = %d\n"
|
|
" BlockMultiplerBits = %d\n"
|
|
" FormatFlgs = %d\n"
|
|
" OsakVersion = %d.%d.%d.%d\n"
|
|
" PercentUsed = %d\n",
|
|
mh->bootRecordID, mh->NoOfBootImageBlocks,
|
|
mh->NoOfBinaryPartitions,
|
|
mh->NoOfBDTLPartitions,
|
|
mh->BlockMultiplierBits, mh->FormatFlags,
|
|
((unsigned char *) &mh->OsakVersion)[0] & 0xf,
|
|
((unsigned char *) &mh->OsakVersion)[1] & 0xf,
|
|
((unsigned char *) &mh->OsakVersion)[2] & 0xf,
|
|
((unsigned char *) &mh->OsakVersion)[3] & 0xf,
|
|
mh->PercentUsed);
|
|
|
|
vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
|
|
|
|
blocks = mtd->size >> vshift;
|
|
if (blocks > 32768) {
|
|
printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
|
|
goto out;
|
|
}
|
|
|
|
blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
|
|
if (inftl_bbt_write && (blocks > mtd->erasesize)) {
|
|
printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
|
|
goto out;
|
|
}
|
|
|
|
/* Scan the partitions */
|
|
for (i = 0; (i < 4); i++) {
|
|
ip = &(mh->Partitions[i]);
|
|
le32_to_cpus(&ip->virtualUnits);
|
|
le32_to_cpus(&ip->firstUnit);
|
|
le32_to_cpus(&ip->lastUnit);
|
|
le32_to_cpus(&ip->flags);
|
|
le32_to_cpus(&ip->spareUnits);
|
|
le32_to_cpus(&ip->Reserved0);
|
|
|
|
printk(KERN_INFO " PARTITION[%d] ->\n"
|
|
" virtualUnits = %d\n"
|
|
" firstUnit = %d\n"
|
|
" lastUnit = %d\n"
|
|
" flags = 0x%x\n"
|
|
" spareUnits = %d\n",
|
|
i, ip->virtualUnits, ip->firstUnit,
|
|
ip->lastUnit, ip->flags,
|
|
ip->spareUnits);
|
|
|
|
if ((show_firmware_partition == 1) &&
|
|
(i == 0) && (ip->firstUnit > 0)) {
|
|
parts[0].name = " DiskOnChip IPL / Media Header partition";
|
|
parts[0].offset = 0;
|
|
parts[0].size = mtd->erasesize * ip->firstUnit;
|
|
numparts = 1;
|
|
}
|
|
|
|
if (ip->flags & INFTL_BINARY)
|
|
parts[numparts].name = " DiskOnChip BDK partition";
|
|
else
|
|
parts[numparts].name = " DiskOnChip BDTL partition";
|
|
parts[numparts].offset = ip->firstUnit << vshift;
|
|
parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
|
|
numparts++;
|
|
if (ip->lastUnit > lastvunit)
|
|
lastvunit = ip->lastUnit;
|
|
if (ip->flags & INFTL_LAST)
|
|
break;
|
|
}
|
|
lastvunit++;
|
|
if ((lastvunit << vshift) < end) {
|
|
parts[numparts].name = " DiskOnChip Remainder partition";
|
|
parts[numparts].offset = lastvunit << vshift;
|
|
parts[numparts].size = end - parts[numparts].offset;
|
|
numparts++;
|
|
}
|
|
ret = numparts;
|
|
out:
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
static int __init nftl_scan_bbt(struct mtd_info *mtd)
|
|
{
|
|
int ret, numparts;
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
struct mtd_partition parts[2];
|
|
|
|
memset((char *)parts, 0, sizeof(parts));
|
|
/* On NFTL, we have to find the media headers before we can read the
|
|
BBTs, since they're stored in the media header eraseblocks. */
|
|
numparts = nftl_partscan(mtd, parts);
|
|
if (!numparts)
|
|
return -EIO;
|
|
this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
|
|
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
|
|
NAND_BBT_VERSION;
|
|
this->bbt_td->veroffs = 7;
|
|
this->bbt_td->pages[0] = doc->mh0_page + 1;
|
|
if (doc->mh1_page != -1) {
|
|
this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
|
|
NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
|
|
NAND_BBT_VERSION;
|
|
this->bbt_md->veroffs = 7;
|
|
this->bbt_md->pages[0] = doc->mh1_page + 1;
|
|
} else {
|
|
this->bbt_md = NULL;
|
|
}
|
|
|
|
ret = this->scan_bbt(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
|
|
}
|
|
|
|
static int __init inftl_scan_bbt(struct mtd_info *mtd)
|
|
{
|
|
int ret, numparts;
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
struct mtd_partition parts[5];
|
|
|
|
if (this->numchips > doc->chips_per_floor) {
|
|
printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
|
|
return -EIO;
|
|
}
|
|
|
|
if (DoC_is_MillenniumPlus(doc)) {
|
|
this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
|
|
if (inftl_bbt_write)
|
|
this->bbt_td->options |= NAND_BBT_WRITE;
|
|
this->bbt_td->pages[0] = 2;
|
|
this->bbt_md = NULL;
|
|
} else {
|
|
this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
|
|
if (inftl_bbt_write)
|
|
this->bbt_td->options |= NAND_BBT_WRITE;
|
|
this->bbt_td->offs = 8;
|
|
this->bbt_td->len = 8;
|
|
this->bbt_td->veroffs = 7;
|
|
this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
|
|
this->bbt_td->reserved_block_code = 0x01;
|
|
this->bbt_td->pattern = "MSYS_BBT";
|
|
|
|
this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
|
|
if (inftl_bbt_write)
|
|
this->bbt_md->options |= NAND_BBT_WRITE;
|
|
this->bbt_md->offs = 8;
|
|
this->bbt_md->len = 8;
|
|
this->bbt_md->veroffs = 7;
|
|
this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
|
|
this->bbt_md->reserved_block_code = 0x01;
|
|
this->bbt_md->pattern = "TBB_SYSM";
|
|
}
|
|
|
|
ret = this->scan_bbt(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memset((char *)parts, 0, sizeof(parts));
|
|
numparts = inftl_partscan(mtd, parts);
|
|
/* At least for now, require the INFTL Media Header. We could probably
|
|
do without it for non-INFTL use, since all it gives us is
|
|
autopartitioning, but I want to give it more thought. */
|
|
if (!numparts)
|
|
return -EIO;
|
|
return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts);
|
|
}
|
|
|
|
static inline int __init doc2000_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
|
|
this->read_byte = doc2000_read_byte;
|
|
this->write_buf = doc2000_writebuf;
|
|
this->read_buf = doc2000_readbuf;
|
|
doc->late_init = nftl_scan_bbt;
|
|
|
|
doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
|
|
doc2000_count_chips(mtd);
|
|
mtd->name = "DiskOnChip 2000 (NFTL Model)";
|
|
return (4 * doc->chips_per_floor);
|
|
}
|
|
|
|
static inline int __init doc2001_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
|
|
this->read_byte = doc2001_read_byte;
|
|
this->write_buf = doc2001_writebuf;
|
|
this->read_buf = doc2001_readbuf;
|
|
|
|
ReadDOC(doc->virtadr, ChipID);
|
|
ReadDOC(doc->virtadr, ChipID);
|
|
ReadDOC(doc->virtadr, ChipID);
|
|
if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
|
|
/* It's not a Millennium; it's one of the newer
|
|
DiskOnChip 2000 units with a similar ASIC.
|
|
Treat it like a Millennium, except that it
|
|
can have multiple chips. */
|
|
doc2000_count_chips(mtd);
|
|
mtd->name = "DiskOnChip 2000 (INFTL Model)";
|
|
doc->late_init = inftl_scan_bbt;
|
|
return (4 * doc->chips_per_floor);
|
|
} else {
|
|
/* Bog-standard Millennium */
|
|
doc->chips_per_floor = 1;
|
|
mtd->name = "DiskOnChip Millennium";
|
|
doc->late_init = nftl_scan_bbt;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static inline int __init doc2001plus_init(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
struct doc_priv *doc = this->priv;
|
|
|
|
this->read_byte = doc2001plus_read_byte;
|
|
this->write_buf = doc2001plus_writebuf;
|
|
this->read_buf = doc2001plus_readbuf;
|
|
doc->late_init = inftl_scan_bbt;
|
|
this->cmd_ctrl = NULL;
|
|
this->select_chip = doc2001plus_select_chip;
|
|
this->cmdfunc = doc2001plus_command;
|
|
this->ecc.hwctl = doc2001plus_enable_hwecc;
|
|
|
|
doc->chips_per_floor = 1;
|
|
mtd->name = "DiskOnChip Millennium Plus";
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init doc_probe(unsigned long physadr)
|
|
{
|
|
unsigned char ChipID;
|
|
struct mtd_info *mtd;
|
|
struct nand_chip *nand;
|
|
struct doc_priv *doc;
|
|
void __iomem *virtadr;
|
|
unsigned char save_control;
|
|
unsigned char tmp, tmpb, tmpc;
|
|
int reg, len, numchips;
|
|
int ret = 0;
|
|
|
|
if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip"))
|
|
return -EBUSY;
|
|
virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
|
|
if (!virtadr) {
|
|
printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
|
|
ret = -EIO;
|
|
goto error_ioremap;
|
|
}
|
|
|
|
/* It's not possible to cleanly detect the DiskOnChip - the
|
|
* bootup procedure will put the device into reset mode, and
|
|
* it's not possible to talk to it without actually writing
|
|
* to the DOCControl register. So we store the current contents
|
|
* of the DOCControl register's location, in case we later decide
|
|
* that it's not a DiskOnChip, and want to put it back how we
|
|
* found it.
|
|
*/
|
|
save_control = ReadDOC(virtadr, DOCControl);
|
|
|
|
/* Reset the DiskOnChip ASIC */
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
|
|
|
|
/* Enable the DiskOnChip ASIC */
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
|
|
|
|
ChipID = ReadDOC(virtadr, ChipID);
|
|
|
|
switch (ChipID) {
|
|
case DOC_ChipID_Doc2k:
|
|
reg = DoC_2k_ECCStatus;
|
|
break;
|
|
case DOC_ChipID_DocMil:
|
|
reg = DoC_ECCConf;
|
|
break;
|
|
case DOC_ChipID_DocMilPlus16:
|
|
case DOC_ChipID_DocMilPlus32:
|
|
case 0:
|
|
/* Possible Millennium Plus, need to do more checks */
|
|
/* Possibly release from power down mode */
|
|
for (tmp = 0; (tmp < 4); tmp++)
|
|
ReadDOC(virtadr, Mplus_Power);
|
|
|
|
/* Reset the Millennium Plus ASIC */
|
|
tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
|
|
WriteDOC(tmp, virtadr, Mplus_DOCControl);
|
|
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
|
|
|
|
mdelay(1);
|
|
/* Enable the Millennium Plus ASIC */
|
|
tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
|
|
WriteDOC(tmp, virtadr, Mplus_DOCControl);
|
|
WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
|
|
mdelay(1);
|
|
|
|
ChipID = ReadDOC(virtadr, ChipID);
|
|
|
|
switch (ChipID) {
|
|
case DOC_ChipID_DocMilPlus16:
|
|
reg = DoC_Mplus_Toggle;
|
|
break;
|
|
case DOC_ChipID_DocMilPlus32:
|
|
printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
|
|
default:
|
|
ret = -ENODEV;
|
|
goto notfound;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ret = -ENODEV;
|
|
goto notfound;
|
|
}
|
|
/* Check the TOGGLE bit in the ECC register */
|
|
tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
|
|
tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
|
|
tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
|
|
if ((tmp == tmpb) || (tmp != tmpc)) {
|
|
printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
|
|
ret = -ENODEV;
|
|
goto notfound;
|
|
}
|
|
|
|
for (mtd = doclist; mtd; mtd = doc->nextdoc) {
|
|
unsigned char oldval;
|
|
unsigned char newval;
|
|
nand = mtd->priv;
|
|
doc = nand->priv;
|
|
/* Use the alias resolution register to determine if this is
|
|
in fact the same DOC aliased to a new address. If writes
|
|
to one chip's alias resolution register change the value on
|
|
the other chip, they're the same chip. */
|
|
if (ChipID == DOC_ChipID_DocMilPlus16) {
|
|
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
|
|
newval = ReadDOC(virtadr, Mplus_AliasResolution);
|
|
} else {
|
|
oldval = ReadDOC(doc->virtadr, AliasResolution);
|
|
newval = ReadDOC(virtadr, AliasResolution);
|
|
}
|
|
if (oldval != newval)
|
|
continue;
|
|
if (ChipID == DOC_ChipID_DocMilPlus16) {
|
|
WriteDOC(~newval, virtadr, Mplus_AliasResolution);
|
|
oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
|
|
WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
|
|
} else {
|
|
WriteDOC(~newval, virtadr, AliasResolution);
|
|
oldval = ReadDOC(doc->virtadr, AliasResolution);
|
|
WriteDOC(newval, virtadr, AliasResolution); // restore it
|
|
}
|
|
newval = ~newval;
|
|
if (oldval == newval) {
|
|
printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
|
|
goto notfound;
|
|
}
|
|
}
|
|
|
|
printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
|
|
|
|
len = sizeof(struct mtd_info) +
|
|
sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
|
|
mtd = kzalloc(len, GFP_KERNEL);
|
|
if (!mtd) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
nand = (struct nand_chip *) (mtd + 1);
|
|
doc = (struct doc_priv *) (nand + 1);
|
|
nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
|
|
nand->bbt_md = nand->bbt_td + 1;
|
|
|
|
mtd->priv = nand;
|
|
mtd->owner = THIS_MODULE;
|
|
|
|
nand->priv = doc;
|
|
nand->select_chip = doc200x_select_chip;
|
|
nand->cmd_ctrl = doc200x_hwcontrol;
|
|
nand->dev_ready = doc200x_dev_ready;
|
|
nand->waitfunc = doc200x_wait;
|
|
nand->block_bad = doc200x_block_bad;
|
|
nand->ecc.hwctl = doc200x_enable_hwecc;
|
|
nand->ecc.calculate = doc200x_calculate_ecc;
|
|
nand->ecc.correct = doc200x_correct_data;
|
|
|
|
nand->ecc.layout = &doc200x_oobinfo;
|
|
nand->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
nand->ecc.size = 512;
|
|
nand->ecc.bytes = 6;
|
|
nand->ecc.strength = 2;
|
|
nand->bbt_options = NAND_BBT_USE_FLASH;
|
|
/* Skip the automatic BBT scan so we can run it manually */
|
|
nand->options |= NAND_SKIP_BBTSCAN;
|
|
|
|
doc->physadr = physadr;
|
|
doc->virtadr = virtadr;
|
|
doc->ChipID = ChipID;
|
|
doc->curfloor = -1;
|
|
doc->curchip = -1;
|
|
doc->mh0_page = -1;
|
|
doc->mh1_page = -1;
|
|
doc->nextdoc = doclist;
|
|
|
|
if (ChipID == DOC_ChipID_Doc2k)
|
|
numchips = doc2000_init(mtd);
|
|
else if (ChipID == DOC_ChipID_DocMilPlus16)
|
|
numchips = doc2001plus_init(mtd);
|
|
else
|
|
numchips = doc2001_init(mtd);
|
|
|
|
if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) {
|
|
/* DBB note: i believe nand_release is necessary here, as
|
|
buffers may have been allocated in nand_base. Check with
|
|
Thomas. FIX ME! */
|
|
/* nand_release will call mtd_device_unregister, but we
|
|
haven't yet added it. This is handled without incident by
|
|
mtd_device_unregister, as far as I can tell. */
|
|
nand_release(mtd);
|
|
kfree(mtd);
|
|
goto fail;
|
|
}
|
|
|
|
/* Success! */
|
|
doclist = mtd;
|
|
return 0;
|
|
|
|
notfound:
|
|
/* Put back the contents of the DOCControl register, in case it's not
|
|
actually a DiskOnChip. */
|
|
WriteDOC(save_control, virtadr, DOCControl);
|
|
fail:
|
|
iounmap(virtadr);
|
|
|
|
error_ioremap:
|
|
release_mem_region(physadr, DOC_IOREMAP_LEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void release_nanddoc(void)
|
|
{
|
|
struct mtd_info *mtd, *nextmtd;
|
|
struct nand_chip *nand;
|
|
struct doc_priv *doc;
|
|
|
|
for (mtd = doclist; mtd; mtd = nextmtd) {
|
|
nand = mtd->priv;
|
|
doc = nand->priv;
|
|
|
|
nextmtd = doc->nextdoc;
|
|
nand_release(mtd);
|
|
iounmap(doc->virtadr);
|
|
release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
|
|
kfree(mtd);
|
|
}
|
|
}
|
|
|
|
static int __init init_nanddoc(void)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
/* We could create the decoder on demand, if memory is a concern.
|
|
* This way we have it handy, if an error happens
|
|
*
|
|
* Symbolsize is 10 (bits)
|
|
* Primitve polynomial is x^10+x^3+1
|
|
* first consecutive root is 510
|
|
* primitve element to generate roots = 1
|
|
* generator polinomial degree = 4
|
|
*/
|
|
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
|
|
if (!rs_decoder) {
|
|
printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (doc_config_location) {
|
|
printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
|
|
ret = doc_probe(doc_config_location);
|
|
if (ret < 0)
|
|
goto outerr;
|
|
} else {
|
|
for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
|
|
doc_probe(doc_locations[i]);
|
|
}
|
|
}
|
|
/* No banner message any more. Print a message if no DiskOnChip
|
|
found, so the user knows we at least tried. */
|
|
if (!doclist) {
|
|
printk(KERN_INFO "No valid DiskOnChip devices found\n");
|
|
ret = -ENODEV;
|
|
goto outerr;
|
|
}
|
|
return 0;
|
|
outerr:
|
|
free_rs(rs_decoder);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit cleanup_nanddoc(void)
|
|
{
|
|
/* Cleanup the nand/DoC resources */
|
|
release_nanddoc();
|
|
|
|
/* Free the reed solomon resources */
|
|
if (rs_decoder) {
|
|
free_rs(rs_decoder);
|
|
}
|
|
}
|
|
|
|
module_init(init_nanddoc);
|
|
module_exit(cleanup_nanddoc);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
|
MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
|