linux/arch/x86/crypto/aesni-intel_glue.c

1550 lines
44 KiB
C

/*
* Support for Intel AES-NI instructions. This file contains glue
* code, the real AES implementation is in intel-aes_asm.S.
*
* Copyright (C) 2008, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
* interface for 64-bit kernels.
* Authors: Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Aidan O'Mahony (aidan.o.mahony@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/hardirq.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/module.h>
#include <linux/err.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/cryptd.h>
#include <crypto/ctr.h>
#include <crypto/b128ops.h>
#include <crypto/lrw.h>
#include <crypto/xts.h>
#include <asm/cpu_device_id.h>
#include <asm/i387.h>
#include <asm/crypto/aes.h>
#include <crypto/ablk_helper.h>
#include <crypto/scatterwalk.h>
#include <crypto/internal/aead.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#ifdef CONFIG_X86_64
#include <asm/crypto/glue_helper.h>
#endif
/* This data is stored at the end of the crypto_tfm struct.
* It's a type of per "session" data storage location.
* This needs to be 16 byte aligned.
*/
struct aesni_rfc4106_gcm_ctx {
u8 hash_subkey[16];
struct crypto_aes_ctx aes_key_expanded;
u8 nonce[4];
struct cryptd_aead *cryptd_tfm;
};
struct aesni_gcm_set_hash_subkey_result {
int err;
struct completion completion;
};
struct aesni_hash_subkey_req_data {
u8 iv[16];
struct aesni_gcm_set_hash_subkey_result result;
struct scatterlist sg;
};
#define AESNI_ALIGN (16)
#define AES_BLOCK_MASK (~(AES_BLOCK_SIZE-1))
#define RFC4106_HASH_SUBKEY_SIZE 16
struct aesni_lrw_ctx {
struct lrw_table_ctx lrw_table;
u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
};
struct aesni_xts_ctx {
u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
};
asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
unsigned int key_len);
asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in);
asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len);
asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
int crypto_fpu_init(void);
void crypto_fpu_exit(void);
#define AVX_GEN2_OPTSIZE 640
#define AVX_GEN4_OPTSIZE 4096
#ifdef CONFIG_X86_64
static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, bool enc, u8 *iv);
/* asmlinkage void aesni_gcm_enc()
* void *ctx, AES Key schedule. Starts on a 16 byte boundary.
* u8 *out, Ciphertext output. Encrypt in-place is allowed.
* const u8 *in, Plaintext input
* unsigned long plaintext_len, Length of data in bytes for encryption.
* u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
* concatenated with 8 byte Initialisation Vector (from IPSec ESP
* Payload) concatenated with 0x00000001. 16-byte aligned pointer.
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
* const u8 *aad, Additional Authentication Data (AAD)
* unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
* is going to be 8 or 12 bytes
* u8 *auth_tag, Authenticated Tag output.
* unsigned long auth_tag_len), Authenticated Tag Length in bytes.
* Valid values are 16 (most likely), 12 or 8.
*/
asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
/* asmlinkage void aesni_gcm_dec()
* void *ctx, AES Key schedule. Starts on a 16 byte boundary.
* u8 *out, Plaintext output. Decrypt in-place is allowed.
* const u8 *in, Ciphertext input
* unsigned long ciphertext_len, Length of data in bytes for decryption.
* u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
* concatenated with 8 byte Initialisation Vector (from IPSec ESP
* Payload) concatenated with 0x00000001. 16-byte aligned pointer.
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
* const u8 *aad, Additional Authentication Data (AAD)
* unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
* to be 8 or 12 bytes
* u8 *auth_tag, Authenticated Tag output.
* unsigned long auth_tag_len) Authenticated Tag Length in bytes.
* Valid values are 16 (most likely), 12 or 8.
*/
asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
#ifdef CONFIG_AS_AVX
asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
void *keys, u8 *out, unsigned int num_bytes);
/*
* asmlinkage void aesni_gcm_precomp_avx_gen2()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static void aesni_gcm_enc_avx(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
if (plaintext_len < AVX_GEN2_OPTSIZE) {
aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
static void aesni_gcm_dec_avx(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
if (ciphertext_len < AVX_GEN2_OPTSIZE) {
aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
#endif
#ifdef CONFIG_AS_AVX2
/*
* asmlinkage void aesni_gcm_precomp_avx_gen4()
* gcm_data *my_ctx_data, context data
* u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
*/
asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
if (plaintext_len < AVX_GEN2_OPTSIZE) {
aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
aad_len, auth_tag, auth_tag_len);
} else if (plaintext_len < AVX_GEN4_OPTSIZE) {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len)
{
if (ciphertext_len < AVX_GEN2_OPTSIZE) {
aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
aad, aad_len, auth_tag, auth_tag_len);
} else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
} else {
aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
aad_len, auth_tag, auth_tag_len);
}
}
#endif
static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
const u8 *in, unsigned long plaintext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
const u8 *in, unsigned long ciphertext_len, u8 *iv,
u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
u8 *auth_tag, unsigned long auth_tag_len);
static inline struct
aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
{
return
(struct aesni_rfc4106_gcm_ctx *)
PTR_ALIGN((u8 *)
crypto_tfm_ctx(crypto_aead_tfm(tfm)), AESNI_ALIGN);
}
#endif
static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
{
unsigned long addr = (unsigned long)raw_ctx;
unsigned long align = AESNI_ALIGN;
if (align <= crypto_tfm_ctx_alignment())
align = 1;
return (struct crypto_aes_ctx *)ALIGN(addr, align);
}
static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
const u8 *in_key, unsigned int key_len)
{
struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
u32 *flags = &tfm->crt_flags;
int err;
if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
key_len != AES_KEYSIZE_256) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
if (!irq_fpu_usable())
err = crypto_aes_expand_key(ctx, in_key, key_len);
else {
kernel_fpu_begin();
err = aesni_set_key(ctx, in_key, key_len);
kernel_fpu_end();
}
return err;
}
static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
}
static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!irq_fpu_usable())
crypto_aes_encrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_enc(ctx, dst, src);
kernel_fpu_end();
}
}
static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
if (!irq_fpu_usable())
crypto_aes_decrypt_x86(ctx, dst, src);
else {
kernel_fpu_begin();
aesni_dec(ctx, dst, src);
kernel_fpu_end();
}
}
static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
aesni_enc(ctx, dst, src);
}
static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
aesni_dec(ctx, dst, src);
}
static int ecb_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int ecb_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int cbc_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
static int cbc_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt(desc, &walk);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
while ((nbytes = walk.nbytes)) {
aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
kernel_fpu_end();
return err;
}
#ifdef CONFIG_X86_64
static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
struct blkcipher_walk *walk)
{
u8 *ctrblk = walk->iv;
u8 keystream[AES_BLOCK_SIZE];
u8 *src = walk->src.virt.addr;
u8 *dst = walk->dst.virt.addr;
unsigned int nbytes = walk->nbytes;
aesni_enc(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
}
#ifdef CONFIG_AS_AVX
static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv)
{
/*
* based on key length, override with the by8 version
* of ctr mode encryption/decryption for improved performance
* aes_set_key_common() ensures that key length is one of
* {128,192,256}
*/
if (ctx->key_length == AES_KEYSIZE_128)
aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
else if (ctx->key_length == AES_KEYSIZE_192)
aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
else
aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
}
#endif
static int ctr_crypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
struct blkcipher_walk walk;
int err;
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
nbytes & AES_BLOCK_MASK, walk.iv);
nbytes &= AES_BLOCK_SIZE - 1;
err = blkcipher_walk_done(desc, &walk, nbytes);
}
if (walk.nbytes) {
ctr_crypt_final(ctx, &walk);
err = blkcipher_walk_done(desc, &walk, 0);
}
kernel_fpu_end();
return err;
}
#endif
static int ablk_ecb_init(struct crypto_tfm *tfm)
{
return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
}
static int ablk_cbc_init(struct crypto_tfm *tfm)
{
return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
}
#ifdef CONFIG_X86_64
static int ablk_ctr_init(struct crypto_tfm *tfm)
{
return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
}
#endif
#if IS_ENABLED(CONFIG_CRYPTO_PCBC)
static int ablk_pcbc_init(struct crypto_tfm *tfm)
{
return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
}
#endif
static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
{
aesni_ecb_enc(ctx, blks, blks, nbytes);
}
static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
{
aesni_ecb_dec(ctx, blks, blks, nbytes);
}
static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
int err;
err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
keylen - AES_BLOCK_SIZE);
if (err)
return err;
return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
}
static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
{
struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
lrw_free_table(&ctx->lrw_table);
}
static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[8];
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
.crypt_fn = lrw_xts_encrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
ret = lrw_crypt(desc, dst, src, nbytes, &req);
kernel_fpu_end();
return ret;
}
static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[8];
struct lrw_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.table_ctx = &ctx->lrw_table,
.crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
.crypt_fn = lrw_xts_decrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
ret = lrw_crypt(desc, dst, src, nbytes, &req);
kernel_fpu_end();
return ret;
}
static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
{
struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
int err;
/* key consists of keys of equal size concatenated, therefore
* the length must be even
*/
if (keylen % 2) {
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/* first half of xts-key is for crypt */
err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
if (err)
return err;
/* second half of xts-key is for tweak */
return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
keylen / 2);
}
static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
{
aesni_enc(ctx, out, in);
}
#ifdef CONFIG_X86_64
static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
}
static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
}
static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
}
static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
{
aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
}
static const struct common_glue_ctx aesni_enc_xts = {
.num_funcs = 2,
.fpu_blocks_limit = 1,
.funcs = { {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
} }
};
static const struct common_glue_ctx aesni_dec_xts = {
.num_funcs = 2,
.fpu_blocks_limit = 1,
.funcs = { {
.num_blocks = 8,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
}, {
.num_blocks = 1,
.fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
} }
};
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(aesni_xts_tweak),
aes_ctx(ctx->raw_tweak_ctx),
aes_ctx(ctx->raw_crypt_ctx));
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
XTS_TWEAK_CAST(aesni_xts_tweak),
aes_ctx(ctx->raw_tweak_ctx),
aes_ctx(ctx->raw_crypt_ctx));
}
#else
static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[8];
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
.tweak_fn = aesni_xts_tweak,
.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
.crypt_fn = lrw_xts_encrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
ret = xts_crypt(desc, dst, src, nbytes, &req);
kernel_fpu_end();
return ret;
}
static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
be128 buf[8];
struct xts_crypt_req req = {
.tbuf = buf,
.tbuflen = sizeof(buf),
.tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
.tweak_fn = aesni_xts_tweak,
.crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
.crypt_fn = lrw_xts_decrypt_callback,
};
int ret;
desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
kernel_fpu_begin();
ret = xts_crypt(desc, dst, src, nbytes, &req);
kernel_fpu_end();
return ret;
}
#endif
#ifdef CONFIG_X86_64
static int rfc4106_init(struct crypto_tfm *tfm)
{
struct cryptd_aead *cryptd_tfm;
struct aesni_rfc4106_gcm_ctx *ctx = (struct aesni_rfc4106_gcm_ctx *)
PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
struct crypto_aead *cryptd_child;
struct aesni_rfc4106_gcm_ctx *child_ctx;
cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni", 0, 0);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
cryptd_child = cryptd_aead_child(cryptd_tfm);
child_ctx = aesni_rfc4106_gcm_ctx_get(cryptd_child);
memcpy(child_ctx, ctx, sizeof(*ctx));
ctx->cryptd_tfm = cryptd_tfm;
tfm->crt_aead.reqsize = sizeof(struct aead_request)
+ crypto_aead_reqsize(&cryptd_tfm->base);
return 0;
}
static void rfc4106_exit(struct crypto_tfm *tfm)
{
struct aesni_rfc4106_gcm_ctx *ctx =
(struct aesni_rfc4106_gcm_ctx *)
PTR_ALIGN((u8 *)crypto_tfm_ctx(tfm), AESNI_ALIGN);
if (!IS_ERR(ctx->cryptd_tfm))
cryptd_free_aead(ctx->cryptd_tfm);
return;
}
static void
rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
{
struct aesni_gcm_set_hash_subkey_result *result = req->data;
if (err == -EINPROGRESS)
return;
result->err = err;
complete(&result->completion);
}
static int
rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
{
struct crypto_ablkcipher *ctr_tfm;
struct ablkcipher_request *req;
int ret = -EINVAL;
struct aesni_hash_subkey_req_data *req_data;
ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
if (IS_ERR(ctr_tfm))
return PTR_ERR(ctr_tfm);
crypto_ablkcipher_clear_flags(ctr_tfm, ~0);
ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
if (ret)
goto out_free_ablkcipher;
ret = -ENOMEM;
req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
if (!req)
goto out_free_ablkcipher;
req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
if (!req_data)
goto out_free_request;
memset(req_data->iv, 0, sizeof(req_data->iv));
/* Clear the data in the hash sub key container to zero.*/
/* We want to cipher all zeros to create the hash sub key. */
memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
init_completion(&req_data->result.completion);
sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
ablkcipher_request_set_tfm(req, ctr_tfm);
ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
rfc4106_set_hash_subkey_done,
&req_data->result);
ablkcipher_request_set_crypt(req, &req_data->sg,
&req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
ret = crypto_ablkcipher_encrypt(req);
if (ret == -EINPROGRESS || ret == -EBUSY) {
ret = wait_for_completion_interruptible
(&req_data->result.completion);
if (!ret)
ret = req_data->result.err;
}
kfree(req_data);
out_free_request:
ablkcipher_request_free(req);
out_free_ablkcipher:
crypto_free_ablkcipher(ctr_tfm);
return ret;
}
static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
unsigned int key_len)
{
int ret = 0;
struct crypto_tfm *tfm = crypto_aead_tfm(parent);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
struct aesni_rfc4106_gcm_ctx *child_ctx =
aesni_rfc4106_gcm_ctx_get(cryptd_child);
u8 *new_key_align, *new_key_mem = NULL;
if (key_len < 4) {
crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/*Account for 4 byte nonce at the end.*/
key_len -= 4;
if (key_len != AES_KEYSIZE_128) {
crypto_tfm_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
/*This must be on a 16 byte boundary!*/
if ((unsigned long)(&(ctx->aes_key_expanded.key_enc[0])) % AESNI_ALIGN)
return -EINVAL;
if ((unsigned long)key % AESNI_ALIGN) {
/*key is not aligned: use an auxuliar aligned pointer*/
new_key_mem = kmalloc(key_len+AESNI_ALIGN, GFP_KERNEL);
if (!new_key_mem)
return -ENOMEM;
new_key_align = PTR_ALIGN(new_key_mem, AESNI_ALIGN);
memcpy(new_key_align, key, key_len);
key = new_key_align;
}
if (!irq_fpu_usable())
ret = crypto_aes_expand_key(&(ctx->aes_key_expanded),
key, key_len);
else {
kernel_fpu_begin();
ret = aesni_set_key(&(ctx->aes_key_expanded), key, key_len);
kernel_fpu_end();
}
/*This must be on a 16 byte boundary!*/
if ((unsigned long)(&(ctx->hash_subkey[0])) % AESNI_ALIGN) {
ret = -EINVAL;
goto exit;
}
ret = rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
memcpy(child_ctx, ctx, sizeof(*ctx));
exit:
kfree(new_key_mem);
return ret;
}
/* This is the Integrity Check Value (aka the authentication tag length and can
* be 8, 12 or 16 bytes long. */
static int rfc4106_set_authsize(struct crypto_aead *parent,
unsigned int authsize)
{
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(parent);
struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
crypto_aead_crt(parent)->authsize = authsize;
crypto_aead_crt(cryptd_child)->authsize = authsize;
return 0;
}
static int rfc4106_encrypt(struct aead_request *req)
{
int ret;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
if (!irq_fpu_usable()) {
struct aead_request *cryptd_req =
(struct aead_request *) aead_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));
aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
return crypto_aead_encrypt(cryptd_req);
} else {
struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
kernel_fpu_begin();
ret = cryptd_child->base.crt_aead.encrypt(req);
kernel_fpu_end();
return ret;
}
}
static int rfc4106_decrypt(struct aead_request *req)
{
int ret;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
if (!irq_fpu_usable()) {
struct aead_request *cryptd_req =
(struct aead_request *) aead_request_ctx(req);
memcpy(cryptd_req, req, sizeof(*req));
aead_request_set_tfm(cryptd_req, &ctx->cryptd_tfm->base);
return crypto_aead_decrypt(cryptd_req);
} else {
struct crypto_aead *cryptd_child = cryptd_aead_child(ctx->cryptd_tfm);
kernel_fpu_begin();
ret = cryptd_child->base.crt_aead.decrypt(req);
kernel_fpu_end();
return ret;
}
}
static int __driver_rfc4106_encrypt(struct aead_request *req)
{
u8 one_entry_in_sg = 0;
u8 *src, *dst, *assoc;
__be32 counter = cpu_to_be32(1);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
u8 iv_tab[16+AESNI_ALIGN];
u8* iv = (u8 *) PTR_ALIGN((u8 *)iv_tab, AESNI_ALIGN);
struct scatter_walk src_sg_walk;
struct scatter_walk assoc_sg_walk;
struct scatter_walk dst_sg_walk;
unsigned int i;
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length equal */
/* to 8 or 12 bytes */
if (unlikely(req->assoclen != 8 && req->assoclen != 12))
return -EINVAL;
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
one_entry_in_sg = 1;
scatterwalk_start(&src_sg_walk, req->src);
scatterwalk_start(&assoc_sg_walk, req->assoc);
src = scatterwalk_map(&src_sg_walk);
assoc = scatterwalk_map(&assoc_sg_walk);
dst = src;
if (unlikely(req->src != req->dst)) {
scatterwalk_start(&dst_sg_walk, req->dst);
dst = scatterwalk_map(&dst_sg_walk);
}
} else {
/* Allocate memory for src, dst, assoc */
src = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
GFP_ATOMIC);
if (unlikely(!src))
return -ENOMEM;
assoc = (src + req->cryptlen + auth_tag_len);
scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
scatterwalk_map_and_copy(assoc, req->assoc, 0,
req->assoclen, 0);
dst = src;
}
aesni_gcm_enc_tfm(aes_ctx, dst, src, (unsigned long)req->cryptlen, iv,
ctx->hash_subkey, assoc, (unsigned long)req->assoclen, dst
+ ((unsigned long)req->cryptlen), auth_tag_len);
/* The authTag (aka the Integrity Check Value) needs to be written
* back to the packet. */
if (one_entry_in_sg) {
if (unlikely(req->src != req->dst)) {
scatterwalk_unmap(dst);
scatterwalk_done(&dst_sg_walk, 0, 0);
}
scatterwalk_unmap(src);
scatterwalk_unmap(assoc);
scatterwalk_done(&src_sg_walk, 0, 0);
scatterwalk_done(&assoc_sg_walk, 0, 0);
} else {
scatterwalk_map_and_copy(dst, req->dst, 0,
req->cryptlen + auth_tag_len, 1);
kfree(src);
}
return 0;
}
static int __driver_rfc4106_decrypt(struct aead_request *req)
{
u8 one_entry_in_sg = 0;
u8 *src, *dst, *assoc;
unsigned long tempCipherLen = 0;
__be32 counter = cpu_to_be32(1);
int retval = 0;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
void *aes_ctx = &(ctx->aes_key_expanded);
unsigned long auth_tag_len = crypto_aead_authsize(tfm);
u8 iv_and_authTag[32+AESNI_ALIGN];
u8 *iv = (u8 *) PTR_ALIGN((u8 *)iv_and_authTag, AESNI_ALIGN);
u8 *authTag = iv + 16;
struct scatter_walk src_sg_walk;
struct scatter_walk assoc_sg_walk;
struct scatter_walk dst_sg_walk;
unsigned int i;
if (unlikely((req->cryptlen < auth_tag_len) ||
(req->assoclen != 8 && req->assoclen != 12)))
return -EINVAL;
/* Assuming we are supporting rfc4106 64-bit extended */
/* sequence numbers We need to have the AAD length */
/* equal to 8 or 12 bytes */
tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
/* IV below built */
for (i = 0; i < 4; i++)
*(iv+i) = ctx->nonce[i];
for (i = 0; i < 8; i++)
*(iv+4+i) = req->iv[i];
*((__be32 *)(iv+12)) = counter;
if ((sg_is_last(req->src)) && (sg_is_last(req->assoc))) {
one_entry_in_sg = 1;
scatterwalk_start(&src_sg_walk, req->src);
scatterwalk_start(&assoc_sg_walk, req->assoc);
src = scatterwalk_map(&src_sg_walk);
assoc = scatterwalk_map(&assoc_sg_walk);
dst = src;
if (unlikely(req->src != req->dst)) {
scatterwalk_start(&dst_sg_walk, req->dst);
dst = scatterwalk_map(&dst_sg_walk);
}
} else {
/* Allocate memory for src, dst, assoc */
src = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
if (!src)
return -ENOMEM;
assoc = (src + req->cryptlen + auth_tag_len);
scatterwalk_map_and_copy(src, req->src, 0, req->cryptlen, 0);
scatterwalk_map_and_copy(assoc, req->assoc, 0,
req->assoclen, 0);
dst = src;
}
aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
ctx->hash_subkey, assoc, (unsigned long)req->assoclen,
authTag, auth_tag_len);
/* Compare generated tag with passed in tag. */
retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
-EBADMSG : 0;
if (one_entry_in_sg) {
if (unlikely(req->src != req->dst)) {
scatterwalk_unmap(dst);
scatterwalk_done(&dst_sg_walk, 0, 0);
}
scatterwalk_unmap(src);
scatterwalk_unmap(assoc);
scatterwalk_done(&src_sg_walk, 0, 0);
scatterwalk_done(&assoc_sg_walk, 0, 0);
} else {
scatterwalk_map_and_copy(dst, req->dst, 0, req->cryptlen, 1);
kfree(src);
}
return retval;
}
#endif
static struct crypto_alg aesni_algs[] = { {
.cra_name = "aes",
.cra_driver_name = "aes-aesni",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = aes_encrypt,
.cia_decrypt = aes_decrypt
}
}
}, {
.cra_name = "__aes-aesni",
.cra_driver_name = "__driver-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_module = THIS_MODULE,
.cra_u = {
.cipher = {
.cia_min_keysize = AES_MIN_KEY_SIZE,
.cia_max_keysize = AES_MAX_KEY_SIZE,
.cia_setkey = aes_set_key,
.cia_encrypt = __aes_encrypt,
.cia_decrypt = __aes_decrypt
}
}
}, {
.cra_name = "__ecb-aes-aesni",
.cra_driver_name = "__driver-ecb-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = ecb_encrypt,
.decrypt = ecb_decrypt,
},
},
}, {
.cra_name = "__cbc-aes-aesni",
.cra_driver_name = "__driver-cbc-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = aes_set_key,
.encrypt = cbc_encrypt,
.decrypt = cbc_decrypt,
},
},
}, {
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_ecb_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_cbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#ifdef CONFIG_X86_64
}, {
.cra_name = "__ctr-aes-aesni",
.cra_driver_name = "__driver-ctr-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct crypto_aes_ctx) +
AESNI_ALIGN - 1,
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aes_set_key,
.encrypt = ctr_crypt,
.decrypt = ctr_crypt,
},
},
}, {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_ctr_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_encrypt,
.geniv = "chainiv",
},
},
}, {
.cra_name = "__gcm-aes-aesni",
.cra_driver_name = "__driver-gcm-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_AEAD,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) +
AESNI_ALIGN,
.cra_alignmask = 0,
.cra_type = &crypto_aead_type,
.cra_module = THIS_MODULE,
.cra_u = {
.aead = {
.encrypt = __driver_rfc4106_encrypt,
.decrypt = __driver_rfc4106_decrypt,
},
},
}, {
.cra_name = "rfc4106(gcm(aes))",
.cra_driver_name = "rfc4106-gcm-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx) +
AESNI_ALIGN,
.cra_alignmask = 0,
.cra_type = &crypto_nivaead_type,
.cra_module = THIS_MODULE,
.cra_init = rfc4106_init,
.cra_exit = rfc4106_exit,
.cra_u = {
.aead = {
.setkey = rfc4106_set_key,
.setauthsize = rfc4106_set_authsize,
.encrypt = rfc4106_encrypt,
.decrypt = rfc4106_decrypt,
.geniv = "seqiv",
.ivsize = 8,
.maxauthsize = 16,
},
},
#endif
#if IS_ENABLED(CONFIG_CRYPTO_PCBC)
}, {
.cra_name = "pcbc(aes)",
.cra_driver_name = "pcbc-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_pcbc_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
#endif
}, {
.cra_name = "__lrw-aes-aesni",
.cra_driver_name = "__driver-lrw-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aesni_lrw_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_exit = lrw_aesni_exit_tfm,
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = lrw_aesni_setkey,
.encrypt = lrw_encrypt,
.decrypt = lrw_decrypt,
},
},
}, {
.cra_name = "__xts-aes-aesni",
.cra_driver_name = "__driver-xts-aes-aesni",
.cra_priority = 0,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct aesni_xts_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_aesni_setkey,
.encrypt = xts_encrypt,
.decrypt = xts_decrypt,
},
},
}, {
.cra_name = "lrw(aes)",
.cra_driver_name = "lrw-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
}, {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-aesni",
.cra_priority = 400,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct async_helper_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = ablk_init,
.cra_exit = ablk_exit,
.cra_u = {
.ablkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ablk_set_key,
.encrypt = ablk_encrypt,
.decrypt = ablk_decrypt,
},
},
} };
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_AES),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init aesni_init(void)
{
int err;
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
#ifdef CONFIG_X86_64
#ifdef CONFIG_AS_AVX2
if (boot_cpu_has(X86_FEATURE_AVX2)) {
pr_info("AVX2 version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
} else
#endif
#ifdef CONFIG_AS_AVX
if (boot_cpu_has(X86_FEATURE_AVX)) {
pr_info("AVX version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
} else
#endif
{
pr_info("SSE version of gcm_enc/dec engaged.\n");
aesni_gcm_enc_tfm = aesni_gcm_enc;
aesni_gcm_dec_tfm = aesni_gcm_dec;
}
aesni_ctr_enc_tfm = aesni_ctr_enc;
#ifdef CONFIG_AS_AVX
if (cpu_has_avx) {
/* optimize performance of ctr mode encryption transform */
aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
pr_info("AES CTR mode by8 optimization enabled\n");
}
#endif
#endif
err = crypto_fpu_init();
if (err)
return err;
return crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
}
static void __exit aesni_exit(void)
{
crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
crypto_fpu_exit();
}
module_init(aesni_init);
module_exit(aesni_exit);
MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("aes");