mirror of https://gitee.com/openkylin/linux.git
927 lines
25 KiB
C
927 lines
25 KiB
C
/*
|
|
* Board setup routines for the Artesyn Katana cPCI boards.
|
|
*
|
|
* Author: Tim Montgomery <timm@artesyncp.com>
|
|
* Maintained by: Mark A. Greer <mgreer@mvista.com>
|
|
*
|
|
* Based on code done by Rabeeh Khoury - rabeeh@galileo.co.il
|
|
* Based on code done by - Mark A. Greer <mgreer@mvista.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*/
|
|
/*
|
|
* Supports the Artesyn 750i, 752i, and 3750. The 752i is virtually identical
|
|
* to the 750i except that it has an mv64460 bridge.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/kdev_t.h>
|
|
#include <linux/console.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/mtd/physmap.h>
|
|
#include <linux/mv643xx.h>
|
|
#include <linux/platform_device.h>
|
|
#ifdef CONFIG_BOOTIMG
|
|
#include <linux/bootimg.h>
|
|
#endif
|
|
#include <asm/io.h>
|
|
#include <asm/unistd.h>
|
|
#include <asm/page.h>
|
|
#include <asm/time.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/todc.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/ppcboot.h>
|
|
#include <asm/mv64x60.h>
|
|
#include <platforms/katana.h>
|
|
#include <asm/machdep.h>
|
|
|
|
static struct mv64x60_handle bh;
|
|
static katana_id_t katana_id;
|
|
static void __iomem *cpld_base;
|
|
static void __iomem *sram_base;
|
|
static u32 katana_flash_size_0;
|
|
static u32 katana_flash_size_1;
|
|
static u32 katana_bus_frequency;
|
|
static struct pci_controller katana_hose_a;
|
|
|
|
unsigned char __res[sizeof(bd_t)];
|
|
|
|
/* PCI Interrupt routing */
|
|
static int __init
|
|
katana_irq_lookup_750i(unsigned char idsel, unsigned char pin)
|
|
{
|
|
static char pci_irq_table[][4] = {
|
|
/*
|
|
* PCI IDSEL/INTPIN->INTLINE
|
|
* A B C D
|
|
*/
|
|
/* IDSEL 4 (PMC 1) */
|
|
{ KATANA_PCI_INTB_IRQ_750i, KATANA_PCI_INTC_IRQ_750i,
|
|
KATANA_PCI_INTD_IRQ_750i, KATANA_PCI_INTA_IRQ_750i },
|
|
/* IDSEL 5 (PMC 2) */
|
|
{ KATANA_PCI_INTC_IRQ_750i, KATANA_PCI_INTD_IRQ_750i,
|
|
KATANA_PCI_INTA_IRQ_750i, KATANA_PCI_INTB_IRQ_750i },
|
|
/* IDSEL 6 (T8110) */
|
|
{KATANA_PCI_INTD_IRQ_750i, 0, 0, 0 },
|
|
/* IDSEL 7 (unused) */
|
|
{0, 0, 0, 0 },
|
|
/* IDSEL 8 (Intel 82544) (752i only but doesn't harm 750i) */
|
|
{KATANA_PCI_INTD_IRQ_750i, 0, 0, 0 },
|
|
};
|
|
const long min_idsel = 4, max_idsel = 8, irqs_per_slot = 4;
|
|
|
|
return PCI_IRQ_TABLE_LOOKUP;
|
|
}
|
|
|
|
static int __init
|
|
katana_irq_lookup_3750(unsigned char idsel, unsigned char pin)
|
|
{
|
|
static char pci_irq_table[][4] = {
|
|
/*
|
|
* PCI IDSEL/INTPIN->INTLINE
|
|
* A B C D
|
|
*/
|
|
{ KATANA_PCI_INTA_IRQ_3750, 0, 0, 0 }, /* IDSEL 3 (BCM5691) */
|
|
{ KATANA_PCI_INTB_IRQ_3750, 0, 0, 0 }, /* IDSEL 4 (MV64360 #2)*/
|
|
{ KATANA_PCI_INTC_IRQ_3750, 0, 0, 0 }, /* IDSEL 5 (MV64360 #3)*/
|
|
};
|
|
const long min_idsel = 3, max_idsel = 5, irqs_per_slot = 4;
|
|
|
|
return PCI_IRQ_TABLE_LOOKUP;
|
|
}
|
|
|
|
static int __init
|
|
katana_map_irq(struct pci_dev *dev, unsigned char idsel, unsigned char pin)
|
|
{
|
|
switch (katana_id) {
|
|
case KATANA_ID_750I:
|
|
case KATANA_ID_752I:
|
|
return katana_irq_lookup_750i(idsel, pin);
|
|
|
|
case KATANA_ID_3750:
|
|
return katana_irq_lookup_3750(idsel, pin);
|
|
|
|
default:
|
|
printk(KERN_ERR "Bogus board ID\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Board info retrieval routines */
|
|
void __init
|
|
katana_get_board_id(void)
|
|
{
|
|
switch (in_8(cpld_base + KATANA_CPLD_PRODUCT_ID)) {
|
|
case KATANA_PRODUCT_ID_3750:
|
|
katana_id = KATANA_ID_3750;
|
|
break;
|
|
|
|
case KATANA_PRODUCT_ID_750i:
|
|
katana_id = KATANA_ID_750I;
|
|
break;
|
|
|
|
case KATANA_PRODUCT_ID_752i:
|
|
katana_id = KATANA_ID_752I;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "Unsupported board\n");
|
|
}
|
|
}
|
|
|
|
int __init
|
|
katana_get_proc_num(void)
|
|
{
|
|
u16 val;
|
|
u8 save_exclude;
|
|
static int proc = -1;
|
|
static u8 first_time = 1;
|
|
|
|
if (first_time) {
|
|
if (katana_id != KATANA_ID_3750)
|
|
proc = 0;
|
|
else {
|
|
save_exclude = mv64x60_pci_exclude_bridge;
|
|
mv64x60_pci_exclude_bridge = 0;
|
|
|
|
early_read_config_word(bh.hose_b, 0,
|
|
PCI_DEVFN(0,0), PCI_DEVICE_ID, &val);
|
|
|
|
mv64x60_pci_exclude_bridge = save_exclude;
|
|
|
|
switch(val) {
|
|
case PCI_DEVICE_ID_KATANA_3750_PROC0:
|
|
proc = 0;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_KATANA_3750_PROC1:
|
|
proc = 1;
|
|
break;
|
|
|
|
case PCI_DEVICE_ID_KATANA_3750_PROC2:
|
|
proc = 2;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "Bogus Device ID\n");
|
|
}
|
|
}
|
|
|
|
first_time = 0;
|
|
}
|
|
|
|
return proc;
|
|
}
|
|
|
|
static inline int
|
|
katana_is_monarch(void)
|
|
{
|
|
return in_8(cpld_base + KATANA_CPLD_BD_CFG_3) &
|
|
KATANA_CPLD_BD_CFG_3_MONARCH;
|
|
}
|
|
|
|
static void __init
|
|
katana_setup_bridge(void)
|
|
{
|
|
struct pci_controller hose;
|
|
struct mv64x60_setup_info si;
|
|
void __iomem *vaddr;
|
|
int i;
|
|
u32 v;
|
|
u16 val, type;
|
|
u8 save_exclude;
|
|
|
|
/*
|
|
* Some versions of the Katana firmware mistakenly change the vendor
|
|
* & device id fields in the bridge's pci device (visible via pci
|
|
* config accesses). This breaks mv64x60_init() because those values
|
|
* are used to identify the type of bridge that's there. Artesyn
|
|
* claims that the subsystem vendor/device id's will have the correct
|
|
* Marvell values so this code puts back the correct values from there.
|
|
*/
|
|
memset(&hose, 0, sizeof(hose));
|
|
vaddr = ioremap(CONFIG_MV64X60_NEW_BASE, MV64x60_INTERNAL_SPACE_SIZE);
|
|
setup_indirect_pci_nomap(&hose, vaddr + MV64x60_PCI0_CONFIG_ADDR,
|
|
vaddr + MV64x60_PCI0_CONFIG_DATA);
|
|
save_exclude = mv64x60_pci_exclude_bridge;
|
|
mv64x60_pci_exclude_bridge = 0;
|
|
|
|
early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), PCI_VENDOR_ID, &val);
|
|
|
|
if (val != PCI_VENDOR_ID_MARVELL) {
|
|
early_read_config_word(&hose, 0, PCI_DEVFN(0, 0),
|
|
PCI_SUBSYSTEM_VENDOR_ID, &val);
|
|
early_write_config_word(&hose, 0, PCI_DEVFN(0, 0),
|
|
PCI_VENDOR_ID, val);
|
|
early_read_config_word(&hose, 0, PCI_DEVFN(0, 0),
|
|
PCI_SUBSYSTEM_ID, &val);
|
|
early_write_config_word(&hose, 0, PCI_DEVFN(0, 0),
|
|
PCI_DEVICE_ID, val);
|
|
}
|
|
|
|
/*
|
|
* While we're in here, set the hotswap register correctly.
|
|
* Turn off blue LED; mask ENUM#, clear insertion & extraction bits.
|
|
*/
|
|
early_read_config_dword(&hose, 0, PCI_DEVFN(0, 0),
|
|
MV64360_PCICFG_CPCI_HOTSWAP, &v);
|
|
v &= ~(1<<19);
|
|
v |= ((1<<17) | (1<<22) | (1<<23));
|
|
early_write_config_dword(&hose, 0, PCI_DEVFN(0, 0),
|
|
MV64360_PCICFG_CPCI_HOTSWAP, v);
|
|
|
|
/* While we're at it, grab the bridge type for later */
|
|
early_read_config_word(&hose, 0, PCI_DEVFN(0, 0), PCI_DEVICE_ID, &type);
|
|
|
|
mv64x60_pci_exclude_bridge = save_exclude;
|
|
iounmap(vaddr);
|
|
|
|
memset(&si, 0, sizeof(si));
|
|
|
|
si.phys_reg_base = CONFIG_MV64X60_NEW_BASE;
|
|
|
|
si.pci_1.enable_bus = 1;
|
|
si.pci_1.pci_io.cpu_base = KATANA_PCI1_IO_START_PROC_ADDR;
|
|
si.pci_1.pci_io.pci_base_hi = 0;
|
|
si.pci_1.pci_io.pci_base_lo = KATANA_PCI1_IO_START_PCI_ADDR;
|
|
si.pci_1.pci_io.size = KATANA_PCI1_IO_SIZE;
|
|
si.pci_1.pci_io.swap = MV64x60_CPU2PCI_SWAP_NONE;
|
|
si.pci_1.pci_mem[0].cpu_base = KATANA_PCI1_MEM_START_PROC_ADDR;
|
|
si.pci_1.pci_mem[0].pci_base_hi = KATANA_PCI1_MEM_START_PCI_HI_ADDR;
|
|
si.pci_1.pci_mem[0].pci_base_lo = KATANA_PCI1_MEM_START_PCI_LO_ADDR;
|
|
si.pci_1.pci_mem[0].size = KATANA_PCI1_MEM_SIZE;
|
|
si.pci_1.pci_mem[0].swap = MV64x60_CPU2PCI_SWAP_NONE;
|
|
si.pci_1.pci_cmd_bits = 0;
|
|
si.pci_1.latency_timer = 0x80;
|
|
|
|
for (i = 0; i < MV64x60_CPU2MEM_WINDOWS; i++) {
|
|
#if defined(CONFIG_NOT_COHERENT_CACHE)
|
|
si.cpu_prot_options[i] = 0;
|
|
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_NONE;
|
|
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_NONE;
|
|
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_NONE;
|
|
|
|
si.pci_1.acc_cntl_options[i] =
|
|
MV64360_PCI_ACC_CNTL_SNOOP_NONE |
|
|
MV64360_PCI_ACC_CNTL_SWAP_NONE |
|
|
MV64360_PCI_ACC_CNTL_MBURST_128_BYTES |
|
|
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES;
|
|
#else
|
|
si.cpu_prot_options[i] = 0;
|
|
si.enet_options[i] = MV64360_ENET2MEM_SNOOP_WB;
|
|
si.mpsc_options[i] = MV64360_MPSC2MEM_SNOOP_WB;
|
|
si.idma_options[i] = MV64360_IDMA2MEM_SNOOP_WB;
|
|
|
|
si.pci_1.acc_cntl_options[i] =
|
|
MV64360_PCI_ACC_CNTL_SNOOP_WB |
|
|
MV64360_PCI_ACC_CNTL_SWAP_NONE |
|
|
MV64360_PCI_ACC_CNTL_MBURST_32_BYTES |
|
|
((type == PCI_DEVICE_ID_MARVELL_MV64360) ?
|
|
MV64360_PCI_ACC_CNTL_RDSIZE_32_BYTES :
|
|
MV64360_PCI_ACC_CNTL_RDSIZE_256_BYTES);
|
|
#endif
|
|
}
|
|
|
|
/* Lookup PCI host bridges */
|
|
if (mv64x60_init(&bh, &si))
|
|
printk(KERN_WARNING "Bridge initialization failed.\n");
|
|
|
|
pci_dram_offset = 0; /* sys mem at same addr on PCI & cpu bus */
|
|
ppc_md.pci_swizzle = common_swizzle;
|
|
ppc_md.pci_map_irq = katana_map_irq;
|
|
ppc_md.pci_exclude_device = mv64x60_pci_exclude_device;
|
|
|
|
mv64x60_set_bus(&bh, 1, 0);
|
|
bh.hose_b->first_busno = 0;
|
|
bh.hose_b->last_busno = 0xff;
|
|
|
|
/*
|
|
* Need to access hotswap reg which is in the pci config area of the
|
|
* bridge's hose 0. Note that pcibios_alloc_controller() can't be used
|
|
* to alloc hose_a b/c that would make hose 0 known to the generic
|
|
* pci code which we don't want.
|
|
*/
|
|
bh.hose_a = &katana_hose_a;
|
|
setup_indirect_pci_nomap(bh.hose_a,
|
|
bh.v_base + MV64x60_PCI0_CONFIG_ADDR,
|
|
bh.v_base + MV64x60_PCI0_CONFIG_DATA);
|
|
}
|
|
|
|
/* Bridge & platform setup routines */
|
|
void __init
|
|
katana_intr_setup(void)
|
|
{
|
|
if (bh.type == MV64x60_TYPE_MV64460) /* As per instns from Marvell */
|
|
mv64x60_clr_bits(&bh, MV64x60_CPU_MASTER_CNTL, 1 << 15);
|
|
|
|
/* MPP 8, 9, and 10 */
|
|
mv64x60_clr_bits(&bh, MV64x60_MPP_CNTL_1, 0xfff);
|
|
|
|
/* MPP 14 */
|
|
if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I))
|
|
mv64x60_clr_bits(&bh, MV64x60_MPP_CNTL_1, 0x0f000000);
|
|
|
|
/*
|
|
* Define GPP 8,9,and 10 interrupt polarity as active low
|
|
* input signal and level triggered
|
|
*/
|
|
mv64x60_set_bits(&bh, MV64x60_GPP_LEVEL_CNTL, 0x700);
|
|
mv64x60_clr_bits(&bh, MV64x60_GPP_IO_CNTL, 0x700);
|
|
|
|
if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I)) {
|
|
mv64x60_set_bits(&bh, MV64x60_GPP_LEVEL_CNTL, (1<<14));
|
|
mv64x60_clr_bits(&bh, MV64x60_GPP_IO_CNTL, (1<<14));
|
|
}
|
|
|
|
/* Config GPP intr ctlr to respond to level trigger */
|
|
mv64x60_set_bits(&bh, MV64x60_COMM_ARBITER_CNTL, (1<<10));
|
|
|
|
if (bh.type == MV64x60_TYPE_MV64360) {
|
|
/* Erratum FEr PCI-#9 */
|
|
mv64x60_clr_bits(&bh, MV64x60_PCI1_CMD,
|
|
(1<<4) | (1<<5) | (1<<6) | (1<<7));
|
|
mv64x60_set_bits(&bh, MV64x60_PCI1_CMD, (1<<8) | (1<<9));
|
|
} else {
|
|
mv64x60_clr_bits(&bh, MV64x60_PCI1_CMD, (1<<6) | (1<<7));
|
|
mv64x60_set_bits(&bh, MV64x60_PCI1_CMD,
|
|
(1<<4) | (1<<5) | (1<<8) | (1<<9));
|
|
}
|
|
|
|
/*
|
|
* Dismiss and then enable interrupt on GPP interrupt cause
|
|
* for CPU #0
|
|
*/
|
|
mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~0x700);
|
|
mv64x60_set_bits(&bh, MV64x60_GPP_INTR_MASK, 0x700);
|
|
|
|
if ((katana_id == KATANA_ID_750I) || (katana_id == KATANA_ID_752I)) {
|
|
mv64x60_write(&bh, MV64x60_GPP_INTR_CAUSE, ~(1<<14));
|
|
mv64x60_set_bits(&bh, MV64x60_GPP_INTR_MASK, (1<<14));
|
|
}
|
|
|
|
/*
|
|
* Dismiss and then enable interrupt on CPU #0 high cause reg
|
|
* BIT25 summarizes GPP interrupts 8-15
|
|
*/
|
|
mv64x60_set_bits(&bh, MV64360_IC_CPU0_INTR_MASK_HI, (1<<25));
|
|
}
|
|
|
|
void __init
|
|
katana_setup_peripherals(void)
|
|
{
|
|
u32 base;
|
|
|
|
/* Set up windows for boot CS, soldered & socketed flash, and CPLD */
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2BOOT_WIN,
|
|
KATANA_BOOT_WINDOW_BASE, KATANA_BOOT_WINDOW_SIZE, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2BOOT_WIN);
|
|
|
|
/* Assume firmware set up window sizes correctly for dev 0 & 1 */
|
|
mv64x60_get_32bit_window(&bh, MV64x60_CPU2DEV_0_WIN, &base,
|
|
&katana_flash_size_0);
|
|
|
|
if (katana_flash_size_0 > 0) {
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_0_WIN,
|
|
KATANA_SOLDERED_FLASH_BASE, katana_flash_size_0, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_0_WIN);
|
|
}
|
|
|
|
mv64x60_get_32bit_window(&bh, MV64x60_CPU2DEV_1_WIN, &base,
|
|
&katana_flash_size_1);
|
|
|
|
if (katana_flash_size_1 > 0) {
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_1_WIN,
|
|
(KATANA_SOLDERED_FLASH_BASE + katana_flash_size_0),
|
|
katana_flash_size_1, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_1_WIN);
|
|
}
|
|
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_2_WIN,
|
|
KATANA_SOCKET_BASE, KATANA_SOCKETED_FLASH_SIZE, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_2_WIN);
|
|
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2DEV_3_WIN,
|
|
KATANA_CPLD_BASE, KATANA_CPLD_SIZE, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2DEV_3_WIN);
|
|
cpld_base = ioremap(KATANA_CPLD_BASE, KATANA_CPLD_SIZE);
|
|
|
|
mv64x60_set_32bit_window(&bh, MV64x60_CPU2SRAM_WIN,
|
|
KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_CPU2SRAM_WIN);
|
|
sram_base = ioremap(KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE);
|
|
|
|
/* Set up Enet->SRAM window */
|
|
mv64x60_set_32bit_window(&bh, MV64x60_ENET2MEM_4_WIN,
|
|
KATANA_INTERNAL_SRAM_BASE, MV64360_SRAM_SIZE, 0x2);
|
|
bh.ci->enable_window_32bit(&bh, MV64x60_ENET2MEM_4_WIN);
|
|
|
|
/* Give enet r/w access to memory region */
|
|
mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_0, (0x3 << (4 << 1)));
|
|
mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_1, (0x3 << (4 << 1)));
|
|
mv64x60_set_bits(&bh, MV64360_ENET2MEM_ACC_PROT_2, (0x3 << (4 << 1)));
|
|
|
|
mv64x60_clr_bits(&bh, MV64x60_PCI1_PCI_DECODE_CNTL, (1 << 3));
|
|
mv64x60_clr_bits(&bh, MV64x60_TIMR_CNTR_0_3_CNTL,
|
|
((1 << 0) | (1 << 8) | (1 << 16) | (1 << 24)));
|
|
|
|
/* Must wait until window set up before retrieving board id */
|
|
katana_get_board_id();
|
|
|
|
/* Enumerate pci bus (must know board id before getting proc number) */
|
|
if (katana_get_proc_num() == 0)
|
|
bh.hose_b->last_busno = pciauto_bus_scan(bh.hose_b, 0);
|
|
|
|
#if defined(CONFIG_NOT_COHERENT_CACHE)
|
|
mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x00160000);
|
|
#else
|
|
mv64x60_write(&bh, MV64360_SRAM_CONFIG, 0x001600b2);
|
|
#endif
|
|
|
|
/*
|
|
* Setting the SRAM to 0. Note that this generates parity errors on
|
|
* internal data path in SRAM since it's first time accessing it
|
|
* while after reset it's not configured.
|
|
*/
|
|
memset(sram_base, 0, MV64360_SRAM_SIZE);
|
|
|
|
/* Only processor zero [on 3750] is an PCI interrupt controller */
|
|
if (katana_get_proc_num() == 0)
|
|
katana_intr_setup();
|
|
}
|
|
|
|
static void __init
|
|
katana_enable_ipmi(void)
|
|
{
|
|
u8 reset_out;
|
|
|
|
/* Enable access to IPMI ctlr by clearing IPMI PORTSEL bit in CPLD */
|
|
reset_out = in_8(cpld_base + KATANA_CPLD_RESET_OUT);
|
|
reset_out &= ~KATANA_CPLD_RESET_OUT_PORTSEL;
|
|
out_8(cpld_base + KATANA_CPLD_RESET_OUT, reset_out);
|
|
}
|
|
|
|
static void __init
|
|
katana_setup_arch(void)
|
|
{
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("katana_setup_arch: enter", 0);
|
|
|
|
set_tb(0, 0);
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (initrd_start)
|
|
ROOT_DEV = Root_RAM0;
|
|
else
|
|
#endif
|
|
#ifdef CONFIG_ROOT_NFS
|
|
ROOT_DEV = Root_NFS;
|
|
#else
|
|
ROOT_DEV = Root_SDA2;
|
|
#endif
|
|
|
|
/*
|
|
* Set up the L2CR register.
|
|
*
|
|
* 750FX has only L2E, L2PE (bits 2-8 are reserved)
|
|
* DD2.0 has bug that requires the L2 to be in WRT mode
|
|
* avoid dirty data in cache
|
|
*/
|
|
if (PVR_REV(mfspr(SPRN_PVR)) == 0x0200) {
|
|
printk(KERN_INFO "DD2.0 detected. Setting L2 cache"
|
|
"to Writethrough mode\n");
|
|
_set_L2CR(L2CR_L2E | L2CR_L2PE | L2CR_L2WT);
|
|
} else
|
|
_set_L2CR(L2CR_L2E | L2CR_L2PE);
|
|
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("katana_setup_arch: calling setup_bridge", 0);
|
|
|
|
katana_setup_bridge();
|
|
katana_setup_peripherals();
|
|
katana_enable_ipmi();
|
|
|
|
katana_bus_frequency = katana_bus_freq(cpld_base);
|
|
|
|
printk(KERN_INFO "Artesyn Communication Products, LLC - Katana(TM)\n");
|
|
if (ppc_md.progress)
|
|
ppc_md.progress("katana_setup_arch: exit", 0);
|
|
}
|
|
|
|
void
|
|
katana_fixup_resources(struct pci_dev *dev)
|
|
{
|
|
u16 v16;
|
|
|
|
pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, L1_CACHE_BYTES>>2);
|
|
|
|
pci_read_config_word(dev, PCI_COMMAND, &v16);
|
|
v16 |= PCI_COMMAND_INVALIDATE | PCI_COMMAND_FAST_BACK;
|
|
pci_write_config_word(dev, PCI_COMMAND, v16);
|
|
}
|
|
|
|
static const unsigned int cpu_750xx[32] = { /* 750FX & 750GX */
|
|
0, 0, 2, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,/* 0-15*/
|
|
16, 17, 18, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 0 /*16-31*/
|
|
};
|
|
|
|
static int
|
|
katana_get_cpu_freq(void)
|
|
{
|
|
unsigned long pll_cfg;
|
|
|
|
pll_cfg = (mfspr(SPRN_HID1) & 0xf8000000) >> 27;
|
|
return katana_bus_frequency * cpu_750xx[pll_cfg]/2;
|
|
}
|
|
|
|
/* Platform device data fixup routines. */
|
|
#if defined(CONFIG_SERIAL_MPSC)
|
|
static void __init
|
|
katana_fixup_mpsc_pdata(struct platform_device *pdev)
|
|
{
|
|
struct mpsc_pdata *pdata = (struct mpsc_pdata *)pdev->dev.platform_data;
|
|
bd_t *bdp = (bd_t *)__res;
|
|
|
|
if (bdp->bi_baudrate)
|
|
pdata->default_baud = bdp->bi_baudrate;
|
|
else
|
|
pdata->default_baud = KATANA_DEFAULT_BAUD;
|
|
|
|
pdata->max_idle = 40;
|
|
pdata->brg_clk_src = KATANA_MPSC_CLK_SRC;
|
|
/*
|
|
* TCLK (not SysCLk) is routed to BRG, then to the MPSC. On most parts,
|
|
* TCLK == SysCLK but on 64460, they are separate pins.
|
|
* SysCLK can go up to 200 MHz but TCLK can only go up to 133 MHz.
|
|
*/
|
|
pdata->brg_clk_freq = min(katana_bus_frequency, MV64x60_TCLK_FREQ_MAX);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_MV643XX_ETH)
|
|
static void __init
|
|
katana_fixup_eth_pdata(struct platform_device *pdev)
|
|
{
|
|
struct mv643xx_eth_platform_data *eth_pd;
|
|
static u16 phy_addr[] = {
|
|
KATANA_ETH0_PHY_ADDR,
|
|
KATANA_ETH1_PHY_ADDR,
|
|
KATANA_ETH2_PHY_ADDR,
|
|
};
|
|
|
|
eth_pd = pdev->dev.platform_data;
|
|
eth_pd->force_phy_addr = 1;
|
|
eth_pd->phy_addr = phy_addr[pdev->id];
|
|
eth_pd->tx_queue_size = KATANA_ETH_TX_QUEUE_SIZE;
|
|
eth_pd->rx_queue_size = KATANA_ETH_RX_QUEUE_SIZE;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_SYSFS)
|
|
static void __init
|
|
katana_fixup_mv64xxx_pdata(struct platform_device *pdev)
|
|
{
|
|
struct mv64xxx_pdata *pdata = (struct mv64xxx_pdata *)
|
|
pdev->dev.platform_data;
|
|
|
|
/* Katana supports the mv64xxx hotswap register */
|
|
pdata->hs_reg_valid = 1;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
katana_platform_notify(struct device *dev)
|
|
{
|
|
static struct {
|
|
char *bus_id;
|
|
void ((*rtn)(struct platform_device *pdev));
|
|
} dev_map[] = {
|
|
#if defined(CONFIG_SERIAL_MPSC)
|
|
{ MPSC_CTLR_NAME ".0", katana_fixup_mpsc_pdata },
|
|
{ MPSC_CTLR_NAME ".1", katana_fixup_mpsc_pdata },
|
|
#endif
|
|
#if defined(CONFIG_MV643XX_ETH)
|
|
{ MV643XX_ETH_NAME ".0", katana_fixup_eth_pdata },
|
|
{ MV643XX_ETH_NAME ".1", katana_fixup_eth_pdata },
|
|
{ MV643XX_ETH_NAME ".2", katana_fixup_eth_pdata },
|
|
#endif
|
|
#if defined(CONFIG_SYSFS)
|
|
{ MV64XXX_DEV_NAME ".0", katana_fixup_mv64xxx_pdata },
|
|
#endif
|
|
};
|
|
struct platform_device *pdev;
|
|
int i;
|
|
|
|
if (dev && dev->bus_id)
|
|
for (i=0; i<ARRAY_SIZE(dev_map); i++)
|
|
if (!strncmp(dev->bus_id, dev_map[i].bus_id,
|
|
BUS_ID_SIZE)) {
|
|
pdev = container_of(dev,
|
|
struct platform_device, dev);
|
|
dev_map[i].rtn(pdev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_PHYSMAP
|
|
|
|
#ifndef MB
|
|
#define MB (1 << 20)
|
|
#endif
|
|
|
|
/*
|
|
* MTD Layout depends on amount of soldered FLASH in system. Sizes in MB.
|
|
*
|
|
* FLASH Amount: 128 64 32 16
|
|
* ------------- --- -- -- --
|
|
* Monitor: 1 1 1 1
|
|
* Primary Kernel: 1.5 1.5 1.5 1.5
|
|
* Primary fs: 30 30 <end> <end>
|
|
* Secondary Kernel: 1.5 1.5 N/A N/A
|
|
* Secondary fs: <end> <end> N/A N/A
|
|
* User: <overlays entire FLASH except for "Monitor" section>
|
|
*/
|
|
static int __init
|
|
katana_setup_mtd(void)
|
|
{
|
|
u32 size;
|
|
int ptbl_entries;
|
|
static struct mtd_partition *ptbl;
|
|
|
|
size = katana_flash_size_0 + katana_flash_size_1;
|
|
if (!size)
|
|
return -ENOMEM;
|
|
|
|
ptbl_entries = (size >= (64*MB)) ? 6 : 4;
|
|
|
|
if ((ptbl = kcalloc(ptbl_entries, sizeof(struct mtd_partition),
|
|
GFP_KERNEL)) == NULL) {
|
|
printk(KERN_WARNING "Can't alloc MTD partition table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ptbl[0].name = "Monitor";
|
|
ptbl[0].size = KATANA_MTD_MONITOR_SIZE;
|
|
ptbl[1].name = "Primary Kernel";
|
|
ptbl[1].offset = MTDPART_OFS_NXTBLK;
|
|
ptbl[1].size = 0x00180000; /* 1.5 MB */
|
|
ptbl[2].name = "Primary Filesystem";
|
|
ptbl[2].offset = MTDPART_OFS_APPEND;
|
|
ptbl[2].size = MTDPART_SIZ_FULL; /* Correct for 16 & 32 MB */
|
|
ptbl[ptbl_entries-1].name = "User FLASH";
|
|
ptbl[ptbl_entries-1].offset = KATANA_MTD_MONITOR_SIZE;
|
|
ptbl[ptbl_entries-1].size = MTDPART_SIZ_FULL;
|
|
|
|
if (size >= (64*MB)) {
|
|
ptbl[2].size = 30*MB;
|
|
ptbl[3].name = "Secondary Kernel";
|
|
ptbl[3].offset = MTDPART_OFS_NXTBLK;
|
|
ptbl[3].size = 0x00180000; /* 1.5 MB */
|
|
ptbl[4].name = "Secondary Filesystem";
|
|
ptbl[4].offset = MTDPART_OFS_APPEND;
|
|
ptbl[4].size = MTDPART_SIZ_FULL;
|
|
}
|
|
|
|
physmap_map.size = size;
|
|
physmap_set_partitions(ptbl, ptbl_entries);
|
|
return 0;
|
|
}
|
|
arch_initcall(katana_setup_mtd);
|
|
#endif
|
|
|
|
static void
|
|
katana_restart(char *cmd)
|
|
{
|
|
ulong i = 10000000;
|
|
|
|
/* issue hard reset to the reset command register */
|
|
out_8(cpld_base + KATANA_CPLD_RST_CMD, KATANA_CPLD_RST_CMD_HR);
|
|
|
|
while (i-- > 0) ;
|
|
panic("restart failed\n");
|
|
}
|
|
|
|
static void
|
|
katana_halt(void)
|
|
{
|
|
u8 v;
|
|
|
|
/* Turn on blue LED to indicate its okay to remove */
|
|
if (katana_id == KATANA_ID_750I) {
|
|
u32 v;
|
|
u8 save_exclude;
|
|
|
|
/* Set LOO bit in cPCI HotSwap reg of hose 0 to turn on LED. */
|
|
save_exclude = mv64x60_pci_exclude_bridge;
|
|
mv64x60_pci_exclude_bridge = 0;
|
|
early_read_config_dword(bh.hose_a, 0, PCI_DEVFN(0, 0),
|
|
MV64360_PCICFG_CPCI_HOTSWAP, &v);
|
|
v &= 0xff;
|
|
v |= (1 << 19);
|
|
early_write_config_dword(bh.hose_a, 0, PCI_DEVFN(0, 0),
|
|
MV64360_PCICFG_CPCI_HOTSWAP, v);
|
|
mv64x60_pci_exclude_bridge = save_exclude;
|
|
} else if (katana_id == KATANA_ID_752I) {
|
|
v = in_8(cpld_base + HSL_PLD_BASE + HSL_PLD_HOT_SWAP_OFF);
|
|
v |= HSL_PLD_HOT_SWAP_LED_BIT;
|
|
out_8(cpld_base + HSL_PLD_BASE + HSL_PLD_HOT_SWAP_OFF, v);
|
|
}
|
|
|
|
while (1) ;
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
static void
|
|
katana_power_off(void)
|
|
{
|
|
katana_halt();
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
static int
|
|
katana_show_cpuinfo(struct seq_file *m)
|
|
{
|
|
char *s;
|
|
|
|
seq_printf(m, "cpu freq\t: %dMHz\n",
|
|
(katana_get_cpu_freq() + 500000) / 1000000);
|
|
seq_printf(m, "bus freq\t: %ldMHz\n",
|
|
((long)katana_bus_frequency + 500000) / 1000000);
|
|
seq_printf(m, "vendor\t\t: Artesyn Communication Products, LLC\n");
|
|
|
|
seq_printf(m, "board\t\t: ");
|
|
switch (katana_id) {
|
|
case KATANA_ID_3750:
|
|
seq_printf(m, "Katana 3750");
|
|
break;
|
|
|
|
case KATANA_ID_750I:
|
|
seq_printf(m, "Katana 750i");
|
|
break;
|
|
|
|
case KATANA_ID_752I:
|
|
seq_printf(m, "Katana 752i");
|
|
break;
|
|
|
|
default:
|
|
seq_printf(m, "Unknown");
|
|
break;
|
|
}
|
|
seq_printf(m, " (product id: 0x%x)\n",
|
|
in_8(cpld_base + KATANA_CPLD_PRODUCT_ID));
|
|
|
|
seq_printf(m, "pci mode\t: %sMonarch\n",
|
|
katana_is_monarch()? "" : "Non-");
|
|
seq_printf(m, "hardware rev\t: 0x%x\n",
|
|
in_8(cpld_base+KATANA_CPLD_HARDWARE_VER));
|
|
seq_printf(m, "pld rev\t\t: 0x%x\n",
|
|
in_8(cpld_base + KATANA_CPLD_PLD_VER));
|
|
|
|
switch(bh.type) {
|
|
case MV64x60_TYPE_GT64260A:
|
|
s = "gt64260a";
|
|
break;
|
|
case MV64x60_TYPE_GT64260B:
|
|
s = "gt64260b";
|
|
break;
|
|
case MV64x60_TYPE_MV64360:
|
|
s = "mv64360";
|
|
break;
|
|
case MV64x60_TYPE_MV64460:
|
|
s = "mv64460";
|
|
break;
|
|
default:
|
|
s = "Unknown";
|
|
}
|
|
seq_printf(m, "bridge type\t: %s\n", s);
|
|
seq_printf(m, "bridge rev\t: 0x%x\n", bh.rev);
|
|
#if defined(CONFIG_NOT_COHERENT_CACHE)
|
|
seq_printf(m, "coherency\t: %s\n", "off");
|
|
#else
|
|
seq_printf(m, "coherency\t: %s\n", "on");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init
|
|
katana_calibrate_decr(void)
|
|
{
|
|
u32 freq;
|
|
|
|
freq = katana_bus_frequency / 4;
|
|
|
|
printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
|
|
(long)freq / 1000000, (long)freq % 1000000);
|
|
|
|
tb_ticks_per_jiffy = freq / HZ;
|
|
tb_to_us = mulhwu_scale_factor(freq, 1000000);
|
|
}
|
|
|
|
/*
|
|
* The katana supports both uImage and zImage. If uImage, get the mem size
|
|
* from the bd info. If zImage, the bootwrapper adds a BI_MEMSIZE entry in
|
|
* the bi_rec data which is sucked out and put into boot_mem_size by
|
|
* parse_bootinfo(). MMU_init() will then use the boot_mem_size for the mem
|
|
* size and not call this routine. The only way this will fail is when a uImage
|
|
* is used but the fw doesn't pass in a valid bi_memsize. This should never
|
|
* happen, though.
|
|
*/
|
|
unsigned long __init
|
|
katana_find_end_of_memory(void)
|
|
{
|
|
bd_t *bdp = (bd_t *)__res;
|
|
return bdp->bi_memsize;
|
|
}
|
|
|
|
#if defined(CONFIG_I2C_MV64XXX) && defined(CONFIG_SENSORS_M41T00)
|
|
extern ulong m41t00_get_rtc_time(void);
|
|
extern int m41t00_set_rtc_time(ulong);
|
|
|
|
static int __init
|
|
katana_rtc_hookup(void)
|
|
{
|
|
struct timespec tv;
|
|
|
|
ppc_md.get_rtc_time = m41t00_get_rtc_time;
|
|
ppc_md.set_rtc_time = m41t00_set_rtc_time;
|
|
|
|
tv.tv_nsec = 0;
|
|
tv.tv_sec = (ppc_md.get_rtc_time)();
|
|
do_settimeofday(&tv);
|
|
|
|
return 0;
|
|
}
|
|
late_initcall(katana_rtc_hookup);
|
|
#endif
|
|
|
|
#if defined(CONFIG_SERIAL_TEXT_DEBUG) && defined(CONFIG_SERIAL_MPSC_CONSOLE)
|
|
static void __init
|
|
katana_map_io(void)
|
|
{
|
|
io_block_mapping(0xf8100000, 0xf8100000, 0x00020000, _PAGE_IO);
|
|
}
|
|
#endif
|
|
|
|
void __init
|
|
platform_init(unsigned long r3, unsigned long r4, unsigned long r5,
|
|
unsigned long r6, unsigned long r7)
|
|
{
|
|
parse_bootinfo(find_bootinfo());
|
|
|
|
/* ASSUMPTION: If both r3 (bd_t pointer) and r6 (cmdline pointer)
|
|
* are non-zero, then we should use the board info from the bd_t
|
|
* structure and the cmdline pointed to by r6 instead of the
|
|
* information from birecs, if any. Otherwise, use the information
|
|
* from birecs as discovered by the preceding call to
|
|
* parse_bootinfo(). This rule should work with both PPCBoot, which
|
|
* uses a bd_t board info structure, and the kernel boot wrapper,
|
|
* which uses birecs.
|
|
*/
|
|
if (r3 && r6) {
|
|
/* copy board info structure */
|
|
memcpy((void *)__res, (void *)(r3+KERNELBASE), sizeof(bd_t));
|
|
/* copy command line */
|
|
*(char *)(r7+KERNELBASE) = 0;
|
|
strcpy(cmd_line, (char *)(r6+KERNELBASE));
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/* take care of initrd if we have one */
|
|
if (r4) {
|
|
initrd_start = r4 + KERNELBASE;
|
|
initrd_end = r5 + KERNELBASE;
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
isa_mem_base = 0;
|
|
|
|
ppc_md.setup_arch = katana_setup_arch;
|
|
ppc_md.pcibios_fixup_resources = katana_fixup_resources;
|
|
ppc_md.show_cpuinfo = katana_show_cpuinfo;
|
|
ppc_md.init_IRQ = mv64360_init_irq;
|
|
ppc_md.get_irq = mv64360_get_irq;
|
|
ppc_md.restart = katana_restart;
|
|
ppc_md.power_off = katana_power_off;
|
|
ppc_md.halt = katana_halt;
|
|
ppc_md.find_end_of_memory = katana_find_end_of_memory;
|
|
ppc_md.calibrate_decr = katana_calibrate_decr;
|
|
|
|
#if defined(CONFIG_SERIAL_TEXT_DEBUG) && defined(CONFIG_SERIAL_MPSC_CONSOLE)
|
|
ppc_md.setup_io_mappings = katana_map_io;
|
|
ppc_md.progress = mv64x60_mpsc_progress;
|
|
mv64x60_progress_init(CONFIG_MV64X60_NEW_BASE);
|
|
#endif
|
|
|
|
#if defined(CONFIG_SERIAL_MPSC) || defined(CONFIG_MV643XX_ETH)
|
|
platform_notify = katana_platform_notify;
|
|
#endif
|
|
}
|