linux/drivers/infiniband/hw/hfi1/tid_rdma.h

320 lines
10 KiB
C

/* SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause) */
/*
* Copyright(c) 2018 Intel Corporation.
*
*/
#ifndef HFI1_TID_RDMA_H
#define HFI1_TID_RDMA_H
#include <linux/circ_buf.h>
#include "common.h"
/* Add a convenience helper */
#define CIRC_ADD(val, add, size) (((val) + (add)) & ((size) - 1))
#define CIRC_NEXT(val, size) CIRC_ADD(val, 1, size)
#define CIRC_PREV(val, size) CIRC_ADD(val, -1, size)
#define TID_RDMA_MIN_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
#define TID_RDMA_MAX_SEGMENT_SIZE BIT(18) /* 256 KiB (for now) */
#define TID_RDMA_MAX_PAGES (BIT(18) >> PAGE_SHIFT)
#define TID_RDMA_SEGMENT_SHIFT 18
/*
* Bit definitions for priv->s_flags.
* These bit flags overload the bit flags defined for the QP's s_flags.
* Due to the fact that these bit fields are used only for the QP priv
* s_flags, there are no collisions.
*
* HFI1_S_TID_WAIT_INTERLCK - QP is waiting for requester interlock
* HFI1_R_TID_WAIT_INTERLCK - QP is waiting for responder interlock
*/
#define HFI1_S_TID_BUSY_SET BIT(0)
/* BIT(1) reserved for RVT_S_BUSY. */
#define HFI1_R_TID_RSC_TIMER BIT(2)
/* BIT(3) reserved for RVT_S_RESP_PENDING. */
/* BIT(4) reserved for RVT_S_ACK_PENDING. */
#define HFI1_S_TID_WAIT_INTERLCK BIT(5)
#define HFI1_R_TID_WAIT_INTERLCK BIT(6)
/* BIT(7) - BIT(15) reserved for RVT_S_WAIT_*. */
/* BIT(16) reserved for RVT_S_SEND_ONE */
#define HFI1_S_TID_RETRY_TIMER BIT(17)
/* BIT(18) reserved for RVT_S_ECN. */
#define HFI1_R_TID_SW_PSN BIT(19)
/* BIT(26) reserved for HFI1_S_WAIT_HALT */
/* BIT(27) reserved for HFI1_S_WAIT_TID_RESP */
/* BIT(28) reserved for HFI1_S_WAIT_TID_SPACE */
/*
* Unlike regular IB RDMA VERBS, which do not require an entry
* in the s_ack_queue, TID RDMA WRITE requests do because they
* generate responses.
* Therefore, the s_ack_queue needs to be extended by a certain
* amount. The key point is that the queue needs to be extended
* without letting the "user" know so they user doesn't end up
* using these extra entries.
*/
#define HFI1_TID_RDMA_WRITE_CNT 8
struct tid_rdma_params {
struct rcu_head rcu_head;
u32 qp;
u32 max_len;
u16 jkey;
u8 max_read;
u8 max_write;
u8 timeout;
u8 urg;
u8 version;
};
struct tid_rdma_qp_params {
struct work_struct trigger_work;
struct tid_rdma_params local;
struct tid_rdma_params __rcu *remote;
};
/* Track state for each hardware flow */
struct tid_flow_state {
u32 generation;
u32 psn;
u8 index;
u8 last_index;
};
enum tid_rdma_req_state {
TID_REQUEST_INACTIVE = 0,
TID_REQUEST_INIT,
TID_REQUEST_INIT_RESEND,
TID_REQUEST_ACTIVE,
TID_REQUEST_RESEND,
TID_REQUEST_RESEND_ACTIVE,
TID_REQUEST_QUEUED,
TID_REQUEST_SYNC,
TID_REQUEST_RNR_NAK,
TID_REQUEST_COMPLETE,
};
struct tid_rdma_request {
struct rvt_qp *qp;
struct hfi1_ctxtdata *rcd;
union {
struct rvt_swqe *swqe;
struct rvt_ack_entry *ack;
} e;
struct tid_rdma_flow *flows; /* array of tid flows */
struct rvt_sge_state ss; /* SGE state for TID RDMA requests */
u16 n_flows; /* size of the flow buffer window */
u16 setup_head; /* flow index we are setting up */
u16 clear_tail; /* flow index we are clearing */
u16 flow_idx; /* flow index most recently set up */
u16 acked_tail;
u32 seg_len;
u32 total_len;
u32 r_ack_psn; /* next expected ack PSN */
u32 r_flow_psn; /* IB PSN of next segment start */
u32 r_last_acked; /* IB PSN of last ACK'ed packet */
u32 s_next_psn; /* IB PSN of next segment start for read */
u32 total_segs; /* segments required to complete a request */
u32 cur_seg; /* index of current segment */
u32 comp_seg; /* index of last completed segment */
u32 ack_seg; /* index of last ack'ed segment */
u32 alloc_seg; /* index of next segment to be allocated */
u32 isge; /* index of "current" sge */
u32 ack_pending; /* num acks pending for this request */
enum tid_rdma_req_state state;
};
/*
* When header suppression is used, PSNs associated with a "flow" are
* relevant (and not the PSNs maintained by verbs). Track per-flow
* PSNs here for a TID RDMA segment.
*
*/
struct flow_state {
u32 flags;
u32 resp_ib_psn; /* The IB PSN of the response for this flow */
u32 generation; /* generation of flow */
u32 spsn; /* starting PSN in TID space */
u32 lpsn; /* last PSN in TID space */
u32 r_next_psn; /* next PSN to be received (in TID space) */
/* For tid rdma read */
u32 ib_spsn; /* starting PSN in Verbs space */
u32 ib_lpsn; /* last PSn in Verbs space */
};
struct tid_rdma_pageset {
dma_addr_t addr : 48; /* Only needed for the first page */
u8 idx: 8;
u8 count : 7;
u8 mapped: 1;
};
/**
* kern_tid_node - used for managing TID's in TID groups
*
* @grp_idx: rcd relative index to tid_group
* @map: grp->map captured prior to programming this TID group in HW
* @cnt: Only @cnt of available group entries are actually programmed
*/
struct kern_tid_node {
struct tid_group *grp;
u8 map;
u8 cnt;
};
/* Overall info for a TID RDMA segment */
struct tid_rdma_flow {
/*
* While a TID RDMA segment is being transferred, it uses a QP number
* from the "KDETH section of QP numbers" (which is different from the
* QP number that originated the request). Bits 11-15 of these QP
* numbers identify the "TID flow" for the segment.
*/
struct flow_state flow_state;
struct tid_rdma_request *req;
u32 tid_qpn;
u32 tid_offset;
u32 length;
u32 sent;
u8 tnode_cnt;
u8 tidcnt;
u8 tid_idx;
u8 idx;
u8 npagesets;
u8 npkts;
u8 pkt;
u8 resync_npkts;
struct kern_tid_node tnode[TID_RDMA_MAX_PAGES];
struct tid_rdma_pageset pagesets[TID_RDMA_MAX_PAGES];
u32 tid_entry[TID_RDMA_MAX_PAGES];
};
enum tid_rnr_nak_state {
TID_RNR_NAK_INIT = 0,
TID_RNR_NAK_SEND,
TID_RNR_NAK_SENT,
};
bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data);
bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data);
bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data);
void tid_rdma_conn_error(struct rvt_qp *qp);
void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p);
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit);
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
struct rvt_sge_state *ss, bool *last);
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req);
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req);
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
/**
* trdma_clean_swqe - clean flows for swqe if large send queue
* @qp: the qp
* @wqe: the send wqe
*/
static inline void trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
if (!wqe->priv)
return;
__trdma_clean_swqe(qp, wqe);
}
void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp);
int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
struct ib_qp_init_attr *init_attr);
void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp);
void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp);
int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp);
void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd);
struct cntr_entry;
u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data);
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
struct ib_other_headers *ohdr,
u32 *bth1, u32 *bth2, u32 *len);
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr, u32 *bth1,
u32 *bth2, u32 *len);
void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet);
u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
struct ib_other_headers *ohdr, u32 *bth0,
u32 *bth1, u32 *bth2, u32 *len, bool *last);
void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet);
bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
struct hfi1_pportdata *ppd,
struct hfi1_packet *packet);
void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
u32 *bth2);
void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp);
bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe);
void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe);
static inline void hfi1_setup_tid_rdma_wqe(struct rvt_qp *qp,
struct rvt_swqe *wqe)
{
if (wqe->priv &&
(wqe->wr.opcode == IB_WR_RDMA_READ ||
wqe->wr.opcode == IB_WR_RDMA_WRITE) &&
wqe->length >= TID_RDMA_MIN_SEGMENT_SIZE)
setup_tid_rdma_wqe(qp, wqe);
}
u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr,
u32 *bth1, u32 *bth2, u32 *len);
void hfi1_rc_rcv_tid_rdma_write_req(struct hfi1_packet *packet);
u32 hfi1_build_tid_rdma_write_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
struct ib_other_headers *ohdr, u32 *bth1,
u32 bth2, u32 *len,
struct rvt_sge_state **ss);
void hfi1_del_tid_reap_timer(struct rvt_qp *qp);
void hfi1_rc_rcv_tid_rdma_write_resp(struct hfi1_packet *packet);
bool hfi1_build_tid_rdma_packet(struct rvt_swqe *wqe,
struct ib_other_headers *ohdr,
u32 *bth1, u32 *bth2, u32 *len);
void hfi1_rc_rcv_tid_rdma_write_data(struct hfi1_packet *packet);
u32 hfi1_build_tid_rdma_write_ack(struct rvt_qp *qp, struct rvt_ack_entry *e,
struct ib_other_headers *ohdr, u16 iflow,
u32 *bth1, u32 *bth2);
void hfi1_rc_rcv_tid_rdma_ack(struct hfi1_packet *packet);
void hfi1_add_tid_retry_timer(struct rvt_qp *qp);
void hfi1_del_tid_retry_timer(struct rvt_qp *qp);
u32 hfi1_build_tid_rdma_resync(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr, u32 *bth1,
u32 *bth2, u16 fidx);
void hfi1_rc_rcv_tid_rdma_resync(struct hfi1_packet *packet);
struct hfi1_pkt_state;
int hfi1_make_tid_rdma_pkt(struct rvt_qp *qp, struct hfi1_pkt_state *ps);
void _hfi1_do_tid_send(struct work_struct *work);
bool hfi1_schedule_tid_send(struct rvt_qp *qp);
bool hfi1_tid_rdma_ack_interlock(struct rvt_qp *qp, struct rvt_ack_entry *e);
#endif /* HFI1_TID_RDMA_H */