linux/drivers/soc/ti/knav_qmss_queue.c

1845 lines
45 KiB
C

/*
* Keystone Queue Manager subsystem driver
*
* Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
* Authors: Sandeep Nair <sandeep_n@ti.com>
* Cyril Chemparathy <cyril@ti.com>
* Santosh Shilimkar <santosh.shilimkar@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include <linux/pm_runtime.h>
#include <linux/firmware.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/string.h>
#include <linux/soc/ti/knav_qmss.h>
#include "knav_qmss.h"
static struct knav_device *kdev;
static DEFINE_MUTEX(knav_dev_lock);
/* Queue manager register indices in DTS */
#define KNAV_QUEUE_PEEK_REG_INDEX 0
#define KNAV_QUEUE_STATUS_REG_INDEX 1
#define KNAV_QUEUE_CONFIG_REG_INDEX 2
#define KNAV_QUEUE_REGION_REG_INDEX 3
#define KNAV_QUEUE_PUSH_REG_INDEX 4
#define KNAV_QUEUE_POP_REG_INDEX 5
/* PDSP register indices in DTS */
#define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0
#define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1
#define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2
#define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3
#define knav_queue_idx_to_inst(kdev, idx) \
(kdev->instances + (idx << kdev->inst_shift))
#define for_each_handle_rcu(qh, inst) \
list_for_each_entry_rcu(qh, &inst->handles, list)
#define for_each_instance(idx, inst, kdev) \
for (idx = 0, inst = kdev->instances; \
idx < (kdev)->num_queues_in_use; \
idx++, inst = knav_queue_idx_to_inst(kdev, idx))
/* All firmware file names end up here. List the firmware file names below.
* Newest followed by older ones. Search is done from start of the array
* until a firmware file is found.
*/
const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
/**
* knav_queue_notify: qmss queue notfier call
*
* @inst: qmss queue instance like accumulator
*/
void knav_queue_notify(struct knav_queue_inst *inst)
{
struct knav_queue *qh;
if (!inst)
return;
rcu_read_lock();
for_each_handle_rcu(qh, inst) {
if (atomic_read(&qh->notifier_enabled) <= 0)
continue;
if (WARN_ON(!qh->notifier_fn))
continue;
atomic_inc(&qh->stats.notifies);
qh->notifier_fn(qh->notifier_fn_arg);
}
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(knav_queue_notify);
static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
{
struct knav_queue_inst *inst = _instdata;
knav_queue_notify(inst);
return IRQ_HANDLED;
}
static int knav_queue_setup_irq(struct knav_range_info *range,
struct knav_queue_inst *inst)
{
unsigned queue = inst->id - range->queue_base;
unsigned long cpu_map;
int ret = 0, irq;
if (range->flags & RANGE_HAS_IRQ) {
irq = range->irqs[queue].irq;
cpu_map = range->irqs[queue].cpu_map;
ret = request_irq(irq, knav_queue_int_handler, 0,
inst->irq_name, inst);
if (ret)
return ret;
disable_irq(irq);
if (cpu_map) {
ret = irq_set_affinity_hint(irq, to_cpumask(&cpu_map));
if (ret) {
dev_warn(range->kdev->dev,
"Failed to set IRQ affinity\n");
return ret;
}
}
}
return ret;
}
static void knav_queue_free_irq(struct knav_queue_inst *inst)
{
struct knav_range_info *range = inst->range;
unsigned queue = inst->id - inst->range->queue_base;
int irq;
if (range->flags & RANGE_HAS_IRQ) {
irq = range->irqs[queue].irq;
irq_set_affinity_hint(irq, NULL);
free_irq(irq, inst);
}
}
static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
{
return !list_empty(&inst->handles);
}
static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
{
return inst->range->flags & RANGE_RESERVED;
}
static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
{
struct knav_queue *tmp;
rcu_read_lock();
for_each_handle_rcu(tmp, inst) {
if (tmp->flags & KNAV_QUEUE_SHARED) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
unsigned type)
{
if ((type == KNAV_QUEUE_QPEND) &&
(inst->range->flags & RANGE_HAS_IRQ)) {
return true;
} else if ((type == KNAV_QUEUE_ACC) &&
(inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
return true;
} else if ((type == KNAV_QUEUE_GP) &&
!(inst->range->flags &
(RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
return true;
}
return false;
}
static inline struct knav_queue_inst *
knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
{
struct knav_queue_inst *inst;
int idx;
for_each_instance(idx, inst, kdev) {
if (inst->id == id)
return inst;
}
return NULL;
}
static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
{
if (kdev->base_id <= id &&
kdev->base_id + kdev->num_queues > id) {
id -= kdev->base_id;
return knav_queue_match_id_to_inst(kdev, id);
}
return NULL;
}
static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
const char *name, unsigned flags)
{
struct knav_queue *qh;
unsigned id;
int ret = 0;
qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
if (!qh)
return ERR_PTR(-ENOMEM);
qh->flags = flags;
qh->inst = inst;
id = inst->id - inst->qmgr->start_queue;
qh->reg_push = &inst->qmgr->reg_push[id];
qh->reg_pop = &inst->qmgr->reg_pop[id];
qh->reg_peek = &inst->qmgr->reg_peek[id];
/* first opener? */
if (!knav_queue_is_busy(inst)) {
struct knav_range_info *range = inst->range;
inst->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
if (range->ops && range->ops->open_queue)
ret = range->ops->open_queue(range, inst, flags);
if (ret) {
devm_kfree(inst->kdev->dev, qh);
return ERR_PTR(ret);
}
}
list_add_tail_rcu(&qh->list, &inst->handles);
return qh;
}
static struct knav_queue *
knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
{
struct knav_queue_inst *inst;
struct knav_queue *qh;
mutex_lock(&knav_dev_lock);
qh = ERR_PTR(-ENODEV);
inst = knav_queue_find_by_id(id);
if (!inst)
goto unlock_ret;
qh = ERR_PTR(-EEXIST);
if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
goto unlock_ret;
qh = ERR_PTR(-EBUSY);
if ((flags & KNAV_QUEUE_SHARED) &&
(knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
goto unlock_ret;
qh = __knav_queue_open(inst, name, flags);
unlock_ret:
mutex_unlock(&knav_dev_lock);
return qh;
}
static struct knav_queue *knav_queue_open_by_type(const char *name,
unsigned type, unsigned flags)
{
struct knav_queue_inst *inst;
struct knav_queue *qh = ERR_PTR(-EINVAL);
int idx;
mutex_lock(&knav_dev_lock);
for_each_instance(idx, inst, kdev) {
if (knav_queue_is_reserved(inst))
continue;
if (!knav_queue_match_type(inst, type))
continue;
if (knav_queue_is_busy(inst))
continue;
qh = __knav_queue_open(inst, name, flags);
goto unlock_ret;
}
unlock_ret:
mutex_unlock(&knav_dev_lock);
return qh;
}
static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
{
struct knav_range_info *range = inst->range;
if (range->ops && range->ops->set_notify)
range->ops->set_notify(range, inst, enabled);
}
static int knav_queue_enable_notifier(struct knav_queue *qh)
{
struct knav_queue_inst *inst = qh->inst;
bool first;
if (WARN_ON(!qh->notifier_fn))
return -EINVAL;
/* Adjust the per handle notifier count */
first = (atomic_inc_return(&qh->notifier_enabled) == 1);
if (!first)
return 0; /* nothing to do */
/* Now adjust the per instance notifier count */
first = (atomic_inc_return(&inst->num_notifiers) == 1);
if (first)
knav_queue_set_notify(inst, true);
return 0;
}
static int knav_queue_disable_notifier(struct knav_queue *qh)
{
struct knav_queue_inst *inst = qh->inst;
bool last;
last = (atomic_dec_return(&qh->notifier_enabled) == 0);
if (!last)
return 0; /* nothing to do */
last = (atomic_dec_return(&inst->num_notifiers) == 0);
if (last)
knav_queue_set_notify(inst, false);
return 0;
}
static int knav_queue_set_notifier(struct knav_queue *qh,
struct knav_queue_notify_config *cfg)
{
knav_queue_notify_fn old_fn = qh->notifier_fn;
if (!cfg)
return -EINVAL;
if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
return -ENOTSUPP;
if (!cfg->fn && old_fn)
knav_queue_disable_notifier(qh);
qh->notifier_fn = cfg->fn;
qh->notifier_fn_arg = cfg->fn_arg;
if (cfg->fn && !old_fn)
knav_queue_enable_notifier(qh);
return 0;
}
static int knav_gp_set_notify(struct knav_range_info *range,
struct knav_queue_inst *inst,
bool enabled)
{
unsigned queue;
if (range->flags & RANGE_HAS_IRQ) {
queue = inst->id - range->queue_base;
if (enabled)
enable_irq(range->irqs[queue].irq);
else
disable_irq_nosync(range->irqs[queue].irq);
}
return 0;
}
static int knav_gp_open_queue(struct knav_range_info *range,
struct knav_queue_inst *inst, unsigned flags)
{
return knav_queue_setup_irq(range, inst);
}
static int knav_gp_close_queue(struct knav_range_info *range,
struct knav_queue_inst *inst)
{
knav_queue_free_irq(inst);
return 0;
}
struct knav_range_ops knav_gp_range_ops = {
.set_notify = knav_gp_set_notify,
.open_queue = knav_gp_open_queue,
.close_queue = knav_gp_close_queue,
};
static int knav_queue_get_count(void *qhandle)
{
struct knav_queue *qh = qhandle;
struct knav_queue_inst *inst = qh->inst;
return readl_relaxed(&qh->reg_peek[0].entry_count) +
atomic_read(&inst->desc_count);
}
static void knav_queue_debug_show_instance(struct seq_file *s,
struct knav_queue_inst *inst)
{
struct knav_device *kdev = inst->kdev;
struct knav_queue *qh;
if (!knav_queue_is_busy(inst))
return;
seq_printf(s, "\tqueue id %d (%s)\n",
kdev->base_id + inst->id, inst->name);
for_each_handle_rcu(qh, inst) {
seq_printf(s, "\t\thandle %p: ", qh);
seq_printf(s, "pushes %8d, ",
atomic_read(&qh->stats.pushes));
seq_printf(s, "pops %8d, ",
atomic_read(&qh->stats.pops));
seq_printf(s, "count %8d, ",
knav_queue_get_count(qh));
seq_printf(s, "notifies %8d, ",
atomic_read(&qh->stats.notifies));
seq_printf(s, "push errors %8d, ",
atomic_read(&qh->stats.push_errors));
seq_printf(s, "pop errors %8d\n",
atomic_read(&qh->stats.pop_errors));
}
}
static int knav_queue_debug_show(struct seq_file *s, void *v)
{
struct knav_queue_inst *inst;
int idx;
mutex_lock(&knav_dev_lock);
seq_printf(s, "%s: %u-%u\n",
dev_name(kdev->dev), kdev->base_id,
kdev->base_id + kdev->num_queues - 1);
for_each_instance(idx, inst, kdev)
knav_queue_debug_show_instance(s, inst);
mutex_unlock(&knav_dev_lock);
return 0;
}
static int knav_queue_debug_open(struct inode *inode, struct file *file)
{
return single_open(file, knav_queue_debug_show, NULL);
}
static const struct file_operations knav_queue_debug_ops = {
.open = knav_queue_debug_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
u32 flags)
{
unsigned long end;
u32 val = 0;
end = jiffies + msecs_to_jiffies(timeout);
while (time_after(end, jiffies)) {
val = readl_relaxed(addr);
if (flags)
val &= flags;
if (!val)
break;
cpu_relax();
}
return val ? -ETIMEDOUT : 0;
}
static int knav_queue_flush(struct knav_queue *qh)
{
struct knav_queue_inst *inst = qh->inst;
unsigned id = inst->id - inst->qmgr->start_queue;
atomic_set(&inst->desc_count, 0);
writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
return 0;
}
/**
* knav_queue_open() - open a hardware queue
* @name - name to give the queue handle
* @id - desired queue number if any or specifes the type
* of queue
* @flags - the following flags are applicable to queues:
* KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
* exclusive by default.
* Subsequent attempts to open a shared queue should
* also have this flag.
*
* Returns a handle to the open hardware queue if successful. Use IS_ERR()
* to check the returned value for error codes.
*/
void *knav_queue_open(const char *name, unsigned id,
unsigned flags)
{
struct knav_queue *qh = ERR_PTR(-EINVAL);
switch (id) {
case KNAV_QUEUE_QPEND:
case KNAV_QUEUE_ACC:
case KNAV_QUEUE_GP:
qh = knav_queue_open_by_type(name, id, flags);
break;
default:
qh = knav_queue_open_by_id(name, id, flags);
break;
}
return qh;
}
EXPORT_SYMBOL_GPL(knav_queue_open);
/**
* knav_queue_close() - close a hardware queue handle
* @qh - handle to close
*/
void knav_queue_close(void *qhandle)
{
struct knav_queue *qh = qhandle;
struct knav_queue_inst *inst = qh->inst;
while (atomic_read(&qh->notifier_enabled) > 0)
knav_queue_disable_notifier(qh);
mutex_lock(&knav_dev_lock);
list_del_rcu(&qh->list);
mutex_unlock(&knav_dev_lock);
synchronize_rcu();
if (!knav_queue_is_busy(inst)) {
struct knav_range_info *range = inst->range;
if (range->ops && range->ops->close_queue)
range->ops->close_queue(range, inst);
}
devm_kfree(inst->kdev->dev, qh);
}
EXPORT_SYMBOL_GPL(knav_queue_close);
/**
* knav_queue_device_control() - Perform control operations on a queue
* @qh - queue handle
* @cmd - control commands
* @arg - command argument
*
* Returns 0 on success, errno otherwise.
*/
int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
unsigned long arg)
{
struct knav_queue *qh = qhandle;
struct knav_queue_notify_config *cfg;
int ret;
switch ((int)cmd) {
case KNAV_QUEUE_GET_ID:
ret = qh->inst->kdev->base_id + qh->inst->id;
break;
case KNAV_QUEUE_FLUSH:
ret = knav_queue_flush(qh);
break;
case KNAV_QUEUE_SET_NOTIFIER:
cfg = (void *)arg;
ret = knav_queue_set_notifier(qh, cfg);
break;
case KNAV_QUEUE_ENABLE_NOTIFY:
ret = knav_queue_enable_notifier(qh);
break;
case KNAV_QUEUE_DISABLE_NOTIFY:
ret = knav_queue_disable_notifier(qh);
break;
case KNAV_QUEUE_GET_COUNT:
ret = knav_queue_get_count(qh);
break;
default:
ret = -ENOTSUPP;
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(knav_queue_device_control);
/**
* knav_queue_push() - push data (or descriptor) to the tail of a queue
* @qh - hardware queue handle
* @data - data to push
* @size - size of data to push
* @flags - can be used to pass additional information
*
* Returns 0 on success, errno otherwise.
*/
int knav_queue_push(void *qhandle, dma_addr_t dma,
unsigned size, unsigned flags)
{
struct knav_queue *qh = qhandle;
u32 val;
val = (u32)dma | ((size / 16) - 1);
writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
atomic_inc(&qh->stats.pushes);
return 0;
}
EXPORT_SYMBOL_GPL(knav_queue_push);
/**
* knav_queue_pop() - pop data (or descriptor) from the head of a queue
* @qh - hardware queue handle
* @size - (optional) size of the data pop'ed.
*
* Returns a DMA address on success, 0 on failure.
*/
dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
{
struct knav_queue *qh = qhandle;
struct knav_queue_inst *inst = qh->inst;
dma_addr_t dma;
u32 val, idx;
/* are we accumulated? */
if (inst->descs) {
if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
atomic_inc(&inst->desc_count);
return 0;
}
idx = atomic_inc_return(&inst->desc_head);
idx &= ACC_DESCS_MASK;
val = inst->descs[idx];
} else {
val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
if (unlikely(!val))
return 0;
}
dma = val & DESC_PTR_MASK;
if (size)
*size = ((val & DESC_SIZE_MASK) + 1) * 16;
atomic_inc(&qh->stats.pops);
return dma;
}
EXPORT_SYMBOL_GPL(knav_queue_pop);
/* carve out descriptors and push into queue */
static void kdesc_fill_pool(struct knav_pool *pool)
{
struct knav_region *region;
int i;
region = pool->region;
pool->desc_size = region->desc_size;
for (i = 0; i < pool->num_desc; i++) {
int index = pool->region_offset + i;
dma_addr_t dma_addr;
unsigned dma_size;
dma_addr = region->dma_start + (region->desc_size * index);
dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
DMA_TO_DEVICE);
knav_queue_push(pool->queue, dma_addr, dma_size, 0);
}
}
/* pop out descriptors and close the queue */
static void kdesc_empty_pool(struct knav_pool *pool)
{
dma_addr_t dma;
unsigned size;
void *desc;
int i;
if (!pool->queue)
return;
for (i = 0;; i++) {
dma = knav_queue_pop(pool->queue, &size);
if (!dma)
break;
desc = knav_pool_desc_dma_to_virt(pool, dma);
if (!desc) {
dev_dbg(pool->kdev->dev,
"couldn't unmap desc, continuing\n");
continue;
}
}
WARN_ON(i != pool->num_desc);
knav_queue_close(pool->queue);
}
/* Get the DMA address of a descriptor */
dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
{
struct knav_pool *pool = ph;
return pool->region->dma_start + (virt - pool->region->virt_start);
}
EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
{
struct knav_pool *pool = ph;
return pool->region->virt_start + (dma - pool->region->dma_start);
}
EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
/**
* knav_pool_create() - Create a pool of descriptors
* @name - name to give the pool handle
* @num_desc - numbers of descriptors in the pool
* @region_id - QMSS region id from which the descriptors are to be
* allocated.
*
* Returns a pool handle on success.
* Use IS_ERR_OR_NULL() to identify error values on return.
*/
void *knav_pool_create(const char *name,
int num_desc, int region_id)
{
struct knav_region *reg_itr, *region = NULL;
struct knav_pool *pool, *pi;
struct list_head *node;
unsigned last_offset;
bool slot_found;
int ret;
if (!kdev->dev)
return ERR_PTR(-ENODEV);
pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
if (!pool) {
dev_err(kdev->dev, "out of memory allocating pool\n");
return ERR_PTR(-ENOMEM);
}
for_each_region(kdev, reg_itr) {
if (reg_itr->id != region_id)
continue;
region = reg_itr;
break;
}
if (!region) {
dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
ret = -EINVAL;
goto err;
}
pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
if (IS_ERR_OR_NULL(pool->queue)) {
dev_err(kdev->dev,
"failed to open queue for pool(%s), error %ld\n",
name, PTR_ERR(pool->queue));
ret = PTR_ERR(pool->queue);
goto err;
}
pool->name = kstrndup(name, KNAV_NAME_SIZE, GFP_KERNEL);
pool->kdev = kdev;
pool->dev = kdev->dev;
mutex_lock(&knav_dev_lock);
if (num_desc > (region->num_desc - region->used_desc)) {
dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
region_id, name);
ret = -ENOMEM;
goto err_unlock;
}
/* Region maintains a sorted (by region offset) list of pools
* use the first free slot which is large enough to accomodate
* the request
*/
last_offset = 0;
slot_found = false;
node = &region->pools;
list_for_each_entry(pi, &region->pools, region_inst) {
if ((pi->region_offset - last_offset) >= num_desc) {
slot_found = true;
break;
}
last_offset = pi->region_offset + pi->num_desc;
}
node = &pi->region_inst;
if (slot_found) {
pool->region = region;
pool->num_desc = num_desc;
pool->region_offset = last_offset;
region->used_desc += num_desc;
list_add_tail(&pool->list, &kdev->pools);
list_add_tail(&pool->region_inst, node);
} else {
dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
name, region_id);
ret = -ENOMEM;
goto err_unlock;
}
mutex_unlock(&knav_dev_lock);
kdesc_fill_pool(pool);
return pool;
err_unlock:
mutex_unlock(&knav_dev_lock);
err:
kfree(pool->name);
devm_kfree(kdev->dev, pool);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(knav_pool_create);
/**
* knav_pool_destroy() - Free a pool of descriptors
* @pool - pool handle
*/
void knav_pool_destroy(void *ph)
{
struct knav_pool *pool = ph;
if (!pool)
return;
if (!pool->region)
return;
kdesc_empty_pool(pool);
mutex_lock(&knav_dev_lock);
pool->region->used_desc -= pool->num_desc;
list_del(&pool->region_inst);
list_del(&pool->list);
mutex_unlock(&knav_dev_lock);
kfree(pool->name);
devm_kfree(kdev->dev, pool);
}
EXPORT_SYMBOL_GPL(knav_pool_destroy);
/**
* knav_pool_desc_get() - Get a descriptor from the pool
* @pool - pool handle
*
* Returns descriptor from the pool.
*/
void *knav_pool_desc_get(void *ph)
{
struct knav_pool *pool = ph;
dma_addr_t dma;
unsigned size;
void *data;
dma = knav_queue_pop(pool->queue, &size);
if (unlikely(!dma))
return ERR_PTR(-ENOMEM);
data = knav_pool_desc_dma_to_virt(pool, dma);
return data;
}
EXPORT_SYMBOL_GPL(knav_pool_desc_get);
/**
* knav_pool_desc_put() - return a descriptor to the pool
* @pool - pool handle
*/
void knav_pool_desc_put(void *ph, void *desc)
{
struct knav_pool *pool = ph;
dma_addr_t dma;
dma = knav_pool_desc_virt_to_dma(pool, desc);
knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
}
EXPORT_SYMBOL_GPL(knav_pool_desc_put);
/**
* knav_pool_desc_map() - Map descriptor for DMA transfer
* @pool - pool handle
* @desc - address of descriptor to map
* @size - size of descriptor to map
* @dma - DMA address return pointer
* @dma_sz - adjusted return pointer
*
* Returns 0 on success, errno otherwise.
*/
int knav_pool_desc_map(void *ph, void *desc, unsigned size,
dma_addr_t *dma, unsigned *dma_sz)
{
struct knav_pool *pool = ph;
*dma = knav_pool_desc_virt_to_dma(pool, desc);
size = min(size, pool->region->desc_size);
size = ALIGN(size, SMP_CACHE_BYTES);
*dma_sz = size;
dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
/* Ensure the descriptor reaches to the memory */
__iowmb();
return 0;
}
EXPORT_SYMBOL_GPL(knav_pool_desc_map);
/**
* knav_pool_desc_unmap() - Unmap descriptor after DMA transfer
* @pool - pool handle
* @dma - DMA address of descriptor to unmap
* @dma_sz - size of descriptor to unmap
*
* Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
* error values on return.
*/
void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
{
struct knav_pool *pool = ph;
unsigned desc_sz;
void *desc;
desc_sz = min(dma_sz, pool->region->desc_size);
desc = knav_pool_desc_dma_to_virt(pool, dma);
dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
prefetch(desc);
return desc;
}
EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
/**
* knav_pool_count() - Get the number of descriptors in pool.
* @pool - pool handle
* Returns number of elements in the pool.
*/
int knav_pool_count(void *ph)
{
struct knav_pool *pool = ph;
return knav_queue_get_count(pool->queue);
}
EXPORT_SYMBOL_GPL(knav_pool_count);
static void knav_queue_setup_region(struct knav_device *kdev,
struct knav_region *region)
{
unsigned hw_num_desc, hw_desc_size, size;
struct knav_reg_region __iomem *regs;
struct knav_qmgr_info *qmgr;
struct knav_pool *pool;
int id = region->id;
struct page *page;
/* unused region? */
if (!region->num_desc) {
dev_warn(kdev->dev, "unused region %s\n", region->name);
return;
}
/* get hardware descriptor value */
hw_num_desc = ilog2(region->num_desc - 1) + 1;
/* did we force fit ourselves into nothingness? */
if (region->num_desc < 32) {
region->num_desc = 0;
dev_warn(kdev->dev, "too few descriptors in region %s\n",
region->name);
return;
}
size = region->num_desc * region->desc_size;
region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
GFP_DMA32);
if (!region->virt_start) {
region->num_desc = 0;
dev_err(kdev->dev, "memory alloc failed for region %s\n",
region->name);
return;
}
region->virt_end = region->virt_start + size;
page = virt_to_page(region->virt_start);
region->dma_start = dma_map_page(kdev->dev, page, 0, size,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev->dev, region->dma_start)) {
dev_err(kdev->dev, "dma map failed for region %s\n",
region->name);
goto fail;
}
region->dma_end = region->dma_start + size;
pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
if (!pool) {
dev_err(kdev->dev, "out of memory allocating dummy pool\n");
goto fail;
}
pool->num_desc = 0;
pool->region_offset = region->num_desc;
list_add(&pool->region_inst, &region->pools);
dev_dbg(kdev->dev,
"region %s (%d): size:%d, link:%d@%d, phys:%08x-%08x, virt:%p-%p\n",
region->name, id, region->desc_size, region->num_desc,
region->link_index, region->dma_start, region->dma_end,
region->virt_start, region->virt_end);
hw_desc_size = (region->desc_size / 16) - 1;
hw_num_desc -= 5;
for_each_qmgr(kdev, qmgr) {
regs = qmgr->reg_region + id;
writel_relaxed(region->dma_start, &regs->base);
writel_relaxed(region->link_index, &regs->start_index);
writel_relaxed(hw_desc_size << 16 | hw_num_desc,
&regs->size_count);
}
return;
fail:
if (region->dma_start)
dma_unmap_page(kdev->dev, region->dma_start, size,
DMA_BIDIRECTIONAL);
if (region->virt_start)
free_pages_exact(region->virt_start, size);
region->num_desc = 0;
return;
}
static const char *knav_queue_find_name(struct device_node *node)
{
const char *name;
if (of_property_read_string(node, "label", &name) < 0)
name = node->name;
if (!name)
name = "unknown";
return name;
}
static int knav_queue_setup_regions(struct knav_device *kdev,
struct device_node *regions)
{
struct device *dev = kdev->dev;
struct knav_region *region;
struct device_node *child;
u32 temp[2];
int ret;
for_each_child_of_node(regions, child) {
region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
if (!region) {
dev_err(dev, "out of memory allocating region\n");
return -ENOMEM;
}
region->name = knav_queue_find_name(child);
of_property_read_u32(child, "id", &region->id);
ret = of_property_read_u32_array(child, "region-spec", temp, 2);
if (!ret) {
region->num_desc = temp[0];
region->desc_size = temp[1];
} else {
dev_err(dev, "invalid region info %s\n", region->name);
devm_kfree(dev, region);
continue;
}
if (!of_get_property(child, "link-index", NULL)) {
dev_err(dev, "No link info for %s\n", region->name);
devm_kfree(dev, region);
continue;
}
ret = of_property_read_u32(child, "link-index",
&region->link_index);
if (ret) {
dev_err(dev, "link index not found for %s\n",
region->name);
devm_kfree(dev, region);
continue;
}
INIT_LIST_HEAD(&region->pools);
list_add_tail(&region->list, &kdev->regions);
}
if (list_empty(&kdev->regions)) {
dev_err(dev, "no valid region information found\n");
return -ENODEV;
}
/* Next, we run through the regions and set things up */
for_each_region(kdev, region)
knav_queue_setup_region(kdev, region);
return 0;
}
static int knav_get_link_ram(struct knav_device *kdev,
const char *name,
struct knav_link_ram_block *block)
{
struct platform_device *pdev = to_platform_device(kdev->dev);
struct device_node *node = pdev->dev.of_node;
u32 temp[2];
/*
* Note: link ram resources are specified in "entry" sized units. In
* reality, although entries are ~40bits in hardware, we treat them as
* 64-bit entities here.
*
* For example, to specify the internal link ram for Keystone-I class
* devices, we would set the linkram0 resource to 0x80000-0x83fff.
*
* This gets a bit weird when other link rams are used. For example,
* if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
* in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
* which accounts for 64-bits per entry, for 16K entries.
*/
if (!of_property_read_u32_array(node, name , temp, 2)) {
if (temp[0]) {
/*
* queue_base specified => using internal or onchip
* link ram WARNING - we do not "reserve" this block
*/
block->phys = (dma_addr_t)temp[0];
block->virt = NULL;
block->size = temp[1];
} else {
block->size = temp[1];
/* queue_base not specific => allocate requested size */
block->virt = dmam_alloc_coherent(kdev->dev,
8 * block->size, &block->phys,
GFP_KERNEL);
if (!block->virt) {
dev_err(kdev->dev, "failed to alloc linkram\n");
return -ENOMEM;
}
}
} else {
return -ENODEV;
}
return 0;
}
static int knav_queue_setup_link_ram(struct knav_device *kdev)
{
struct knav_link_ram_block *block;
struct knav_qmgr_info *qmgr;
for_each_qmgr(kdev, qmgr) {
block = &kdev->link_rams[0];
dev_dbg(kdev->dev, "linkram0: phys:%x, virt:%p, size:%x\n",
block->phys, block->virt, block->size);
writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base0);
writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0);
block++;
if (!block->size)
return 0;
dev_dbg(kdev->dev, "linkram1: phys:%x, virt:%p, size:%x\n",
block->phys, block->virt, block->size);
writel_relaxed(block->phys, &qmgr->reg_config->link_ram_base1);
}
return 0;
}
static int knav_setup_queue_range(struct knav_device *kdev,
struct device_node *node)
{
struct device *dev = kdev->dev;
struct knav_range_info *range;
struct knav_qmgr_info *qmgr;
u32 temp[2], start, end, id, index;
int ret, i;
range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
if (!range) {
dev_err(dev, "out of memory allocating range\n");
return -ENOMEM;
}
range->kdev = kdev;
range->name = knav_queue_find_name(node);
ret = of_property_read_u32_array(node, "qrange", temp, 2);
if (!ret) {
range->queue_base = temp[0] - kdev->base_id;
range->num_queues = temp[1];
} else {
dev_err(dev, "invalid queue range %s\n", range->name);
devm_kfree(dev, range);
return -EINVAL;
}
for (i = 0; i < RANGE_MAX_IRQS; i++) {
struct of_phandle_args oirq;
if (of_irq_parse_one(node, i, &oirq))
break;
range->irqs[i].irq = irq_create_of_mapping(&oirq);
if (range->irqs[i].irq == IRQ_NONE)
break;
range->num_irqs++;
if (oirq.args_count == 3)
range->irqs[i].cpu_map =
(oirq.args[2] & 0x0000ff00) >> 8;
}
range->num_irqs = min(range->num_irqs, range->num_queues);
if (range->num_irqs)
range->flags |= RANGE_HAS_IRQ;
if (of_get_property(node, "qalloc-by-id", NULL))
range->flags |= RANGE_RESERVED;
if (of_get_property(node, "accumulator", NULL)) {
ret = knav_init_acc_range(kdev, node, range);
if (ret < 0) {
devm_kfree(dev, range);
return ret;
}
} else {
range->ops = &knav_gp_range_ops;
}
/* set threshold to 1, and flush out the queues */
for_each_qmgr(kdev, qmgr) {
start = max(qmgr->start_queue, range->queue_base);
end = min(qmgr->start_queue + qmgr->num_queues,
range->queue_base + range->num_queues);
for (id = start; id < end; id++) {
index = id - qmgr->start_queue;
writel_relaxed(THRESH_GTE | 1,
&qmgr->reg_peek[index].ptr_size_thresh);
writel_relaxed(0,
&qmgr->reg_push[index].ptr_size_thresh);
}
}
list_add_tail(&range->list, &kdev->queue_ranges);
dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
range->name, range->queue_base,
range->queue_base + range->num_queues - 1,
range->num_irqs,
(range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
(range->flags & RANGE_RESERVED) ? ", reserved" : "",
(range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
kdev->num_queues_in_use += range->num_queues;
return 0;
}
static int knav_setup_queue_pools(struct knav_device *kdev,
struct device_node *queue_pools)
{
struct device_node *type, *range;
int ret;
for_each_child_of_node(queue_pools, type) {
for_each_child_of_node(type, range) {
ret = knav_setup_queue_range(kdev, range);
/* return value ignored, we init the rest... */
}
}
/* ... and barf if they all failed! */
if (list_empty(&kdev->queue_ranges)) {
dev_err(kdev->dev, "no valid queue range found\n");
return -ENODEV;
}
return 0;
}
static void knav_free_queue_range(struct knav_device *kdev,
struct knav_range_info *range)
{
if (range->ops && range->ops->free_range)
range->ops->free_range(range);
list_del(&range->list);
devm_kfree(kdev->dev, range);
}
static void knav_free_queue_ranges(struct knav_device *kdev)
{
struct knav_range_info *range;
for (;;) {
range = first_queue_range(kdev);
if (!range)
break;
knav_free_queue_range(kdev, range);
}
}
static void knav_queue_free_regions(struct knav_device *kdev)
{
struct knav_region *region;
struct knav_pool *pool, *tmp;
unsigned size;
for (;;) {
region = first_region(kdev);
if (!region)
break;
list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
knav_pool_destroy(pool);
size = region->virt_end - region->virt_start;
if (size)
free_pages_exact(region->virt_start, size);
list_del(&region->list);
devm_kfree(kdev->dev, region);
}
}
static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
struct device_node *node, int index)
{
struct resource res;
void __iomem *regs;
int ret;
ret = of_address_to_resource(node, index, &res);
if (ret) {
dev_err(kdev->dev, "Can't translate of node(%s) address for index(%d)\n",
node->name, index);
return ERR_PTR(ret);
}
regs = devm_ioremap_resource(kdev->dev, &res);
if (IS_ERR(regs))
dev_err(kdev->dev, "Failed to map register base for index(%d) node(%s)\n",
index, node->name);
return regs;
}
static int knav_queue_init_qmgrs(struct knav_device *kdev,
struct device_node *qmgrs)
{
struct device *dev = kdev->dev;
struct knav_qmgr_info *qmgr;
struct device_node *child;
u32 temp[2];
int ret;
for_each_child_of_node(qmgrs, child) {
qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
if (!qmgr) {
dev_err(dev, "out of memory allocating qmgr\n");
return -ENOMEM;
}
ret = of_property_read_u32_array(child, "managed-queues",
temp, 2);
if (!ret) {
qmgr->start_queue = temp[0];
qmgr->num_queues = temp[1];
} else {
dev_err(dev, "invalid qmgr queue range\n");
devm_kfree(dev, qmgr);
continue;
}
dev_info(dev, "qmgr start queue %d, number of queues %d\n",
qmgr->start_queue, qmgr->num_queues);
qmgr->reg_peek =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PEEK_REG_INDEX);
qmgr->reg_status =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_STATUS_REG_INDEX);
qmgr->reg_config =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_CONFIG_REG_INDEX);
qmgr->reg_region =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_REGION_REG_INDEX);
qmgr->reg_push =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PUSH_REG_INDEX);
qmgr->reg_pop =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_POP_REG_INDEX);
if (IS_ERR(qmgr->reg_peek) || IS_ERR(qmgr->reg_status) ||
IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
IS_ERR(qmgr->reg_push) || IS_ERR(qmgr->reg_pop)) {
dev_err(dev, "failed to map qmgr regs\n");
if (!IS_ERR(qmgr->reg_peek))
devm_iounmap(dev, qmgr->reg_peek);
if (!IS_ERR(qmgr->reg_status))
devm_iounmap(dev, qmgr->reg_status);
if (!IS_ERR(qmgr->reg_config))
devm_iounmap(dev, qmgr->reg_config);
if (!IS_ERR(qmgr->reg_region))
devm_iounmap(dev, qmgr->reg_region);
if (!IS_ERR(qmgr->reg_push))
devm_iounmap(dev, qmgr->reg_push);
if (!IS_ERR(qmgr->reg_pop))
devm_iounmap(dev, qmgr->reg_pop);
devm_kfree(dev, qmgr);
continue;
}
list_add_tail(&qmgr->list, &kdev->qmgrs);
dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
qmgr->start_queue, qmgr->num_queues,
qmgr->reg_peek, qmgr->reg_status,
qmgr->reg_config, qmgr->reg_region,
qmgr->reg_push, qmgr->reg_pop);
}
return 0;
}
static int knav_queue_init_pdsps(struct knav_device *kdev,
struct device_node *pdsps)
{
struct device *dev = kdev->dev;
struct knav_pdsp_info *pdsp;
struct device_node *child;
for_each_child_of_node(pdsps, child) {
pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
if (!pdsp) {
dev_err(dev, "out of memory allocating pdsp\n");
return -ENOMEM;
}
pdsp->name = knav_queue_find_name(child);
pdsp->iram =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
pdsp->regs =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PDSP_REGS_REG_INDEX);
pdsp->intd =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PDSP_INTD_REG_INDEX);
pdsp->command =
knav_queue_map_reg(kdev, child,
KNAV_QUEUE_PDSP_CMD_REG_INDEX);
if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
dev_err(dev, "failed to map pdsp %s regs\n",
pdsp->name);
if (!IS_ERR(pdsp->command))
devm_iounmap(dev, pdsp->command);
if (!IS_ERR(pdsp->iram))
devm_iounmap(dev, pdsp->iram);
if (!IS_ERR(pdsp->regs))
devm_iounmap(dev, pdsp->regs);
if (!IS_ERR(pdsp->intd))
devm_iounmap(dev, pdsp->intd);
devm_kfree(dev, pdsp);
continue;
}
of_property_read_u32(child, "id", &pdsp->id);
list_add_tail(&pdsp->list, &kdev->pdsps);
dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
pdsp->intd);
}
return 0;
}
static int knav_queue_stop_pdsp(struct knav_device *kdev,
struct knav_pdsp_info *pdsp)
{
u32 val, timeout = 1000;
int ret;
val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
writel_relaxed(val, &pdsp->regs->control);
ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
PDSP_CTRL_RUNNING);
if (ret < 0) {
dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
return ret;
}
pdsp->loaded = false;
pdsp->started = false;
return 0;
}
static int knav_queue_load_pdsp(struct knav_device *kdev,
struct knav_pdsp_info *pdsp)
{
int i, ret, fwlen;
const struct firmware *fw;
bool found = false;
u32 *fwdata;
for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
if (knav_acc_firmwares[i]) {
ret = request_firmware(&fw,
knav_acc_firmwares[i],
kdev->dev);
if (!ret) {
found = true;
break;
}
}
}
if (!found) {
dev_err(kdev->dev, "failed to get firmware for pdsp\n");
return -ENODEV;
}
dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
knav_acc_firmwares[i]);
writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
/* download the firmware */
fwdata = (u32 *)fw->data;
fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
for (i = 0; i < fwlen; i++)
writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
release_firmware(fw);
return 0;
}
static int knav_queue_start_pdsp(struct knav_device *kdev,
struct knav_pdsp_info *pdsp)
{
u32 val, timeout = 1000;
int ret;
/* write a command for sync */
writel_relaxed(0xffffffff, pdsp->command);
while (readl_relaxed(pdsp->command) != 0xffffffff)
cpu_relax();
/* soft reset the PDSP */
val = readl_relaxed(&pdsp->regs->control);
val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
writel_relaxed(val, &pdsp->regs->control);
/* enable pdsp */
val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
writel_relaxed(val, &pdsp->regs->control);
/* wait for command register to clear */
ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
if (ret < 0) {
dev_err(kdev->dev,
"timed out on pdsp %s command register wait\n",
pdsp->name);
return ret;
}
return 0;
}
static void knav_queue_stop_pdsps(struct knav_device *kdev)
{
struct knav_pdsp_info *pdsp;
/* disable all pdsps */
for_each_pdsp(kdev, pdsp)
knav_queue_stop_pdsp(kdev, pdsp);
}
static int knav_queue_start_pdsps(struct knav_device *kdev)
{
struct knav_pdsp_info *pdsp;
int ret;
knav_queue_stop_pdsps(kdev);
/* now load them all. We return success even if pdsp
* is not loaded as acc channels are optional on having
* firmware availability in the system. We set the loaded
* and stated flag and when initialize the acc range, check
* it and init the range only if pdsp is started.
*/
for_each_pdsp(kdev, pdsp) {
ret = knav_queue_load_pdsp(kdev, pdsp);
if (!ret)
pdsp->loaded = true;
}
for_each_pdsp(kdev, pdsp) {
if (pdsp->loaded) {
ret = knav_queue_start_pdsp(kdev, pdsp);
if (!ret)
pdsp->started = true;
}
}
return 0;
}
static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
{
struct knav_qmgr_info *qmgr;
for_each_qmgr(kdev, qmgr) {
if ((id >= qmgr->start_queue) &&
(id < qmgr->start_queue + qmgr->num_queues))
return qmgr;
}
return NULL;
}
static int knav_queue_init_queue(struct knav_device *kdev,
struct knav_range_info *range,
struct knav_queue_inst *inst,
unsigned id)
{
char irq_name[KNAV_NAME_SIZE];
inst->qmgr = knav_find_qmgr(id);
if (!inst->qmgr)
return -1;
INIT_LIST_HEAD(&inst->handles);
inst->kdev = kdev;
inst->range = range;
inst->irq_num = -1;
inst->id = id;
scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
if (range->ops && range->ops->init_queue)
return range->ops->init_queue(range, inst);
else
return 0;
}
static int knav_queue_init_queues(struct knav_device *kdev)
{
struct knav_range_info *range;
int size, id, base_idx;
int idx = 0, ret = 0;
/* how much do we need for instance data? */
size = sizeof(struct knav_queue_inst);
/* round this up to a power of 2, keep the index to instance
* arithmetic fast.
* */
kdev->inst_shift = order_base_2(size);
size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
if (!kdev->instances)
return -ENOMEM;
for_each_queue_range(kdev, range) {
if (range->ops && range->ops->init_range)
range->ops->init_range(range);
base_idx = idx;
for (id = range->queue_base;
id < range->queue_base + range->num_queues; id++, idx++) {
ret = knav_queue_init_queue(kdev, range,
knav_queue_idx_to_inst(kdev, idx), id);
if (ret < 0)
return ret;
}
range->queue_base_inst =
knav_queue_idx_to_inst(kdev, base_idx);
}
return 0;
}
static int knav_queue_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
struct device *dev = &pdev->dev;
u32 temp[2];
int ret;
if (!node) {
dev_err(dev, "device tree info unavailable\n");
return -ENODEV;
}
kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
if (!kdev) {
dev_err(dev, "memory allocation failed\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, kdev);
kdev->dev = dev;
INIT_LIST_HEAD(&kdev->queue_ranges);
INIT_LIST_HEAD(&kdev->qmgrs);
INIT_LIST_HEAD(&kdev->pools);
INIT_LIST_HEAD(&kdev->regions);
INIT_LIST_HEAD(&kdev->pdsps);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) {
dev_err(dev, "Failed to enable QMSS\n");
return ret;
}
if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
dev_err(dev, "queue-range not specified\n");
ret = -ENODEV;
goto err;
}
kdev->base_id = temp[0];
kdev->num_queues = temp[1];
/* Initialize queue managers using device tree configuration */
qmgrs = of_get_child_by_name(node, "qmgrs");
if (!qmgrs) {
dev_err(dev, "queue manager info not specified\n");
ret = -ENODEV;
goto err;
}
ret = knav_queue_init_qmgrs(kdev, qmgrs);
of_node_put(qmgrs);
if (ret)
goto err;
/* get pdsp configuration values from device tree */
pdsps = of_get_child_by_name(node, "pdsps");
if (pdsps) {
ret = knav_queue_init_pdsps(kdev, pdsps);
if (ret)
goto err;
ret = knav_queue_start_pdsps(kdev);
if (ret)
goto err;
}
of_node_put(pdsps);
/* get usable queue range values from device tree */
queue_pools = of_get_child_by_name(node, "queue-pools");
if (!queue_pools) {
dev_err(dev, "queue-pools not specified\n");
ret = -ENODEV;
goto err;
}
ret = knav_setup_queue_pools(kdev, queue_pools);
of_node_put(queue_pools);
if (ret)
goto err;
ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
if (ret) {
dev_err(kdev->dev, "could not setup linking ram\n");
goto err;
}
ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
if (ret) {
/*
* nothing really, we have one linking ram already, so we just
* live within our means
*/
}
ret = knav_queue_setup_link_ram(kdev);
if (ret)
goto err;
regions = of_get_child_by_name(node, "descriptor-regions");
if (!regions) {
dev_err(dev, "descriptor-regions not specified\n");
goto err;
}
ret = knav_queue_setup_regions(kdev, regions);
of_node_put(regions);
if (ret)
goto err;
ret = knav_queue_init_queues(kdev);
if (ret < 0) {
dev_err(dev, "hwqueue initialization failed\n");
goto err;
}
debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
&knav_queue_debug_ops);
return 0;
err:
knav_queue_stop_pdsps(kdev);
knav_queue_free_regions(kdev);
knav_free_queue_ranges(kdev);
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return ret;
}
static int knav_queue_remove(struct platform_device *pdev)
{
/* TODO: Free resources */
pm_runtime_put_sync(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
/* Match table for of_platform binding */
static struct of_device_id keystone_qmss_of_match[] = {
{ .compatible = "ti,keystone-navigator-qmss", },
{},
};
MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
static struct platform_driver keystone_qmss_driver = {
.probe = knav_queue_probe,
.remove = knav_queue_remove,
.driver = {
.name = "keystone-navigator-qmss",
.of_match_table = keystone_qmss_of_match,
},
};
module_platform_driver(keystone_qmss_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com>");
MODULE_AUTHOR("Santosh Shilimkar <santosh.shilimkar@ti.com>");