mirror of https://gitee.com/openkylin/linux.git
584 lines
16 KiB
C
584 lines
16 KiB
C
/*
|
|
* SN2 Platform specific SMP Support
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/module.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/nodemask.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/delay.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/hw_irq.h>
|
|
#include <asm/current.h>
|
|
#include <asm/sn/sn_cpuid.h>
|
|
#include <asm/sn/sn_sal.h>
|
|
#include <asm/sn/addrs.h>
|
|
#include <asm/sn/shub_mmr.h>
|
|
#include <asm/sn/nodepda.h>
|
|
#include <asm/sn/rw_mmr.h>
|
|
#include <asm/sn/sn_feature_sets.h>
|
|
|
|
DEFINE_PER_CPU(struct ptc_stats, ptcstats);
|
|
DECLARE_PER_CPU(struct ptc_stats, ptcstats);
|
|
|
|
static __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
|
|
|
|
/* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
|
|
static int sn2_flush_opt = 0;
|
|
|
|
extern unsigned long
|
|
sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
|
|
volatile unsigned long *, unsigned long,
|
|
volatile unsigned long *, unsigned long);
|
|
void
|
|
sn2_ptc_deadlock_recovery(nodemask_t, short, short, int,
|
|
volatile unsigned long *, unsigned long,
|
|
volatile unsigned long *, unsigned long);
|
|
|
|
/*
|
|
* Note: some is the following is captured here to make degugging easier
|
|
* (the macros make more sense if you see the debug patch - not posted)
|
|
*/
|
|
#define sn2_ptctest 0
|
|
#define local_node_uses_ptc_ga(sh1) ((sh1) ? 1 : 0)
|
|
#define max_active_pio(sh1) ((sh1) ? 32 : 7)
|
|
#define reset_max_active_on_deadlock() 1
|
|
#define PTC_LOCK(sh1) ((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
|
|
|
|
struct ptc_stats {
|
|
unsigned long ptc_l;
|
|
unsigned long change_rid;
|
|
unsigned long shub_ptc_flushes;
|
|
unsigned long nodes_flushed;
|
|
unsigned long deadlocks;
|
|
unsigned long deadlocks2;
|
|
unsigned long lock_itc_clocks;
|
|
unsigned long shub_itc_clocks;
|
|
unsigned long shub_itc_clocks_max;
|
|
unsigned long shub_ptc_flushes_not_my_mm;
|
|
unsigned long shub_ipi_flushes;
|
|
unsigned long shub_ipi_flushes_itc_clocks;
|
|
};
|
|
|
|
#define sn2_ptctest 0
|
|
|
|
static inline unsigned long wait_piowc(void)
|
|
{
|
|
volatile unsigned long *piows;
|
|
unsigned long zeroval, ws;
|
|
|
|
piows = pda->pio_write_status_addr;
|
|
zeroval = pda->pio_write_status_val;
|
|
do {
|
|
cpu_relax();
|
|
} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
|
|
return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
|
|
}
|
|
|
|
/**
|
|
* sn_migrate - SN-specific task migration actions
|
|
* @task: Task being migrated to new CPU
|
|
*
|
|
* SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
|
|
* Context switching user threads which have memory-mapped MMIO may cause
|
|
* PIOs to issue from separate CPUs, thus the PIO writes must be drained
|
|
* from the previous CPU's Shub before execution resumes on the new CPU.
|
|
*/
|
|
void sn_migrate(struct task_struct *task)
|
|
{
|
|
pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
|
|
volatile unsigned long *adr = last_pda->pio_write_status_addr;
|
|
unsigned long val = last_pda->pio_write_status_val;
|
|
|
|
/* Drain PIO writes from old CPU's Shub */
|
|
while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
|
|
!= val))
|
|
cpu_relax();
|
|
}
|
|
|
|
void sn_tlb_migrate_finish(struct mm_struct *mm)
|
|
{
|
|
/* flush_tlb_mm is inefficient if more than 1 users of mm */
|
|
if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
|
|
flush_tlb_mm(mm);
|
|
}
|
|
|
|
static void
|
|
sn2_ipi_flush_all_tlb(struct mm_struct *mm)
|
|
{
|
|
unsigned long itc;
|
|
|
|
itc = ia64_get_itc();
|
|
smp_flush_tlb_cpumask(*mm_cpumask(mm));
|
|
itc = ia64_get_itc() - itc;
|
|
__this_cpu_add(ptcstats.shub_ipi_flushes_itc_clocks, itc);
|
|
__this_cpu_inc(ptcstats.shub_ipi_flushes);
|
|
}
|
|
|
|
/**
|
|
* sn2_global_tlb_purge - globally purge translation cache of virtual address range
|
|
* @mm: mm_struct containing virtual address range
|
|
* @start: start of virtual address range
|
|
* @end: end of virtual address range
|
|
* @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
|
|
*
|
|
* Purges the translation caches of all processors of the given virtual address
|
|
* range.
|
|
*
|
|
* Note:
|
|
* - cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
|
|
* - cpu_vm_mask is converted into a nodemask of the nodes containing the
|
|
* cpus in cpu_vm_mask.
|
|
* - if only one bit is set in cpu_vm_mask & it is the current cpu & the
|
|
* process is purging its own virtual address range, then only the
|
|
* local TLB needs to be flushed. This flushing can be done using
|
|
* ptc.l. This is the common case & avoids the global spinlock.
|
|
* - if multiple cpus have loaded the context, then flushing has to be
|
|
* done with ptc.g/MMRs under protection of the global ptc_lock.
|
|
*/
|
|
|
|
void
|
|
sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, unsigned long nbits)
|
|
{
|
|
int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
|
|
int mymm = (mm == current->active_mm && mm == current->mm);
|
|
int use_cpu_ptcga;
|
|
volatile unsigned long *ptc0, *ptc1;
|
|
unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
|
|
short nix;
|
|
nodemask_t nodes_flushed;
|
|
int active, max_active, deadlock, flush_opt = sn2_flush_opt;
|
|
|
|
if (flush_opt > 2) {
|
|
sn2_ipi_flush_all_tlb(mm);
|
|
return;
|
|
}
|
|
|
|
nodes_clear(nodes_flushed);
|
|
i = 0;
|
|
|
|
for_each_cpu(cpu, mm_cpumask(mm)) {
|
|
cnode = cpu_to_node(cpu);
|
|
node_set(cnode, nodes_flushed);
|
|
lcpu = cpu;
|
|
i++;
|
|
}
|
|
|
|
if (i == 0)
|
|
return;
|
|
|
|
preempt_disable();
|
|
|
|
if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
|
|
do {
|
|
ia64_ptcl(start, nbits << 2);
|
|
start += (1UL << nbits);
|
|
} while (start < end);
|
|
ia64_srlz_i();
|
|
__this_cpu_inc(ptcstats.ptc_l);
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
|
|
if (atomic_read(&mm->mm_users) == 1 && mymm) {
|
|
flush_tlb_mm(mm);
|
|
__this_cpu_inc(ptcstats.change_rid);
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
|
|
if (flush_opt == 2) {
|
|
sn2_ipi_flush_all_tlb(mm);
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
|
|
itc = ia64_get_itc();
|
|
nix = nodes_weight(nodes_flushed);
|
|
|
|
rr_value = (mm->context << 3) | REGION_NUMBER(start);
|
|
|
|
shub1 = is_shub1();
|
|
if (shub1) {
|
|
data0 = (1UL << SH1_PTC_0_A_SHFT) |
|
|
(nbits << SH1_PTC_0_PS_SHFT) |
|
|
(rr_value << SH1_PTC_0_RID_SHFT) |
|
|
(1UL << SH1_PTC_0_START_SHFT);
|
|
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
|
|
ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
|
|
} else {
|
|
data0 = (1UL << SH2_PTC_A_SHFT) |
|
|
(nbits << SH2_PTC_PS_SHFT) |
|
|
(1UL << SH2_PTC_START_SHFT);
|
|
ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
|
|
(rr_value << SH2_PTC_RID_SHFT));
|
|
ptc1 = NULL;
|
|
}
|
|
|
|
|
|
mynasid = get_nasid();
|
|
use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
|
|
max_active = max_active_pio(shub1);
|
|
|
|
itc = ia64_get_itc();
|
|
spin_lock_irqsave(PTC_LOCK(shub1), flags);
|
|
itc2 = ia64_get_itc();
|
|
|
|
__this_cpu_add(ptcstats.lock_itc_clocks, itc2 - itc);
|
|
__this_cpu_inc(ptcstats.shub_ptc_flushes);
|
|
__this_cpu_add(ptcstats.nodes_flushed, nix);
|
|
if (!mymm)
|
|
__this_cpu_inc(ptcstats.shub_ptc_flushes_not_my_mm);
|
|
|
|
if (use_cpu_ptcga && !mymm) {
|
|
old_rr = ia64_get_rr(start);
|
|
ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
|
|
ia64_srlz_d();
|
|
}
|
|
|
|
wait_piowc();
|
|
do {
|
|
if (shub1)
|
|
data1 = start | (1UL << SH1_PTC_1_START_SHFT);
|
|
else
|
|
data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
|
|
deadlock = 0;
|
|
active = 0;
|
|
ibegin = 0;
|
|
i = 0;
|
|
for_each_node_mask(cnode, nodes_flushed) {
|
|
nasid = cnodeid_to_nasid(cnode);
|
|
if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
|
|
ia64_ptcga(start, nbits << 2);
|
|
ia64_srlz_i();
|
|
} else {
|
|
ptc0 = CHANGE_NASID(nasid, ptc0);
|
|
if (ptc1)
|
|
ptc1 = CHANGE_NASID(nasid, ptc1);
|
|
pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
|
|
active++;
|
|
}
|
|
if (active >= max_active || i == (nix - 1)) {
|
|
if ((deadlock = wait_piowc())) {
|
|
if (flush_opt == 1)
|
|
goto done;
|
|
sn2_ptc_deadlock_recovery(nodes_flushed, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
|
|
if (reset_max_active_on_deadlock())
|
|
max_active = 1;
|
|
}
|
|
active = 0;
|
|
ibegin = i + 1;
|
|
}
|
|
i++;
|
|
}
|
|
start += (1UL << nbits);
|
|
} while (start < end);
|
|
|
|
done:
|
|
itc2 = ia64_get_itc() - itc2;
|
|
__this_cpu_add(ptcstats.shub_itc_clocks, itc2);
|
|
if (itc2 > __this_cpu_read(ptcstats.shub_itc_clocks_max))
|
|
__this_cpu_write(ptcstats.shub_itc_clocks_max, itc2);
|
|
|
|
if (old_rr) {
|
|
ia64_set_rr(start, old_rr);
|
|
ia64_srlz_d();
|
|
}
|
|
|
|
spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
|
|
|
|
if (flush_opt == 1 && deadlock) {
|
|
__this_cpu_inc(ptcstats.deadlocks);
|
|
sn2_ipi_flush_all_tlb(mm);
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* sn2_ptc_deadlock_recovery
|
|
*
|
|
* Recover from PTC deadlocks conditions. Recovery requires stepping thru each
|
|
* TLB flush transaction. The recovery sequence is somewhat tricky & is
|
|
* coded in assembly language.
|
|
*/
|
|
|
|
void
|
|
sn2_ptc_deadlock_recovery(nodemask_t nodes, short ib, short ie, int mynasid,
|
|
volatile unsigned long *ptc0, unsigned long data0,
|
|
volatile unsigned long *ptc1, unsigned long data1)
|
|
{
|
|
short nasid, i;
|
|
int cnode;
|
|
unsigned long *piows, zeroval, n;
|
|
|
|
__this_cpu_inc(ptcstats.deadlocks);
|
|
|
|
piows = (unsigned long *) pda->pio_write_status_addr;
|
|
zeroval = pda->pio_write_status_val;
|
|
|
|
i = 0;
|
|
for_each_node_mask(cnode, nodes) {
|
|
if (i < ib)
|
|
goto next;
|
|
|
|
if (i > ie)
|
|
break;
|
|
|
|
nasid = cnodeid_to_nasid(cnode);
|
|
if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
|
|
goto next;
|
|
|
|
ptc0 = CHANGE_NASID(nasid, ptc0);
|
|
if (ptc1)
|
|
ptc1 = CHANGE_NASID(nasid, ptc1);
|
|
|
|
n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
|
|
__this_cpu_add(ptcstats.deadlocks2, n);
|
|
next:
|
|
i++;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* sn_send_IPI_phys - send an IPI to a Nasid and slice
|
|
* @nasid: nasid to receive the interrupt (may be outside partition)
|
|
* @physid: physical cpuid to receive the interrupt.
|
|
* @vector: command to send
|
|
* @delivery_mode: delivery mechanism
|
|
*
|
|
* Sends an IPI (interprocessor interrupt) to the processor specified by
|
|
* @physid
|
|
*
|
|
* @delivery_mode can be one of the following
|
|
*
|
|
* %IA64_IPI_DM_INT - pend an interrupt
|
|
* %IA64_IPI_DM_PMI - pend a PMI
|
|
* %IA64_IPI_DM_NMI - pend an NMI
|
|
* %IA64_IPI_DM_INIT - pend an INIT interrupt
|
|
*/
|
|
void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
|
|
{
|
|
long val;
|
|
unsigned long flags = 0;
|
|
volatile long *p;
|
|
|
|
p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
|
|
val = (1UL << SH_IPI_INT_SEND_SHFT) |
|
|
(physid << SH_IPI_INT_PID_SHFT) |
|
|
((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
|
|
((long)vector << SH_IPI_INT_IDX_SHFT) |
|
|
(0x000feeUL << SH_IPI_INT_BASE_SHFT);
|
|
|
|
mb();
|
|
if (enable_shub_wars_1_1()) {
|
|
spin_lock_irqsave(&sn2_global_ptc_lock, flags);
|
|
}
|
|
pio_phys_write_mmr(p, val);
|
|
if (enable_shub_wars_1_1()) {
|
|
wait_piowc();
|
|
spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL(sn_send_IPI_phys);
|
|
|
|
/**
|
|
* sn2_send_IPI - send an IPI to a processor
|
|
* @cpuid: target of the IPI
|
|
* @vector: command to send
|
|
* @delivery_mode: delivery mechanism
|
|
* @redirect: redirect the IPI?
|
|
*
|
|
* Sends an IPI (InterProcessor Interrupt) to the processor specified by
|
|
* @cpuid. @vector specifies the command to send, while @delivery_mode can
|
|
* be one of the following
|
|
*
|
|
* %IA64_IPI_DM_INT - pend an interrupt
|
|
* %IA64_IPI_DM_PMI - pend a PMI
|
|
* %IA64_IPI_DM_NMI - pend an NMI
|
|
* %IA64_IPI_DM_INIT - pend an INIT interrupt
|
|
*/
|
|
void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
|
|
{
|
|
long physid;
|
|
int nasid;
|
|
|
|
physid = cpu_physical_id(cpuid);
|
|
nasid = cpuid_to_nasid(cpuid);
|
|
|
|
/* the following is used only when starting cpus at boot time */
|
|
if (unlikely(nasid == -1))
|
|
ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
|
|
|
|
sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/**
|
|
* sn_cpu_disable_allowed - Determine if a CPU can be disabled.
|
|
* @cpu - CPU that is requested to be disabled.
|
|
*
|
|
* CPU disable is only allowed on SHub2 systems running with a PROM
|
|
* that supports CPU disable. It is not permitted to disable the boot processor.
|
|
*/
|
|
bool sn_cpu_disable_allowed(int cpu)
|
|
{
|
|
if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
|
|
if (cpu != 0)
|
|
return true;
|
|
else
|
|
printk(KERN_WARNING
|
|
"Disabling the boot processor is not allowed.\n");
|
|
|
|
} else
|
|
printk(KERN_WARNING
|
|
"CPU disable is not supported on this system.\n");
|
|
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
|
|
#define PTC_BASENAME "sgi_sn/ptc_statistics"
|
|
|
|
static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
|
|
{
|
|
if (*offset < nr_cpu_ids)
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
|
|
{
|
|
(*offset)++;
|
|
if (*offset < nr_cpu_ids)
|
|
return offset;
|
|
return NULL;
|
|
}
|
|
|
|
static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
|
|
{
|
|
}
|
|
|
|
static int sn2_ptc_seq_show(struct seq_file *file, void *data)
|
|
{
|
|
struct ptc_stats *stat;
|
|
int cpu;
|
|
|
|
cpu = *(loff_t *) data;
|
|
|
|
if (!cpu) {
|
|
seq_printf(file,
|
|
"# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
|
|
seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
|
|
}
|
|
|
|
if (cpu < nr_cpu_ids && cpu_online(cpu)) {
|
|
stat = &per_cpu(ptcstats, cpu);
|
|
seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
|
|
stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
|
|
stat->deadlocks,
|
|
1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
|
|
1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
|
|
1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
|
|
stat->shub_ptc_flushes_not_my_mm,
|
|
stat->deadlocks2,
|
|
stat->shub_ipi_flushes,
|
|
1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
|
|
{
|
|
int cpu;
|
|
char optstr[64];
|
|
|
|
if (count == 0 || count > sizeof(optstr))
|
|
return -EINVAL;
|
|
if (copy_from_user(optstr, user, count))
|
|
return -EFAULT;
|
|
optstr[count - 1] = '\0';
|
|
sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
|
|
|
|
for_each_online_cpu(cpu)
|
|
memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct seq_operations sn2_ptc_seq_ops = {
|
|
.start = sn2_ptc_seq_start,
|
|
.next = sn2_ptc_seq_next,
|
|
.stop = sn2_ptc_seq_stop,
|
|
.show = sn2_ptc_seq_show
|
|
};
|
|
|
|
static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return seq_open(file, &sn2_ptc_seq_ops);
|
|
}
|
|
|
|
static const struct file_operations proc_sn2_ptc_operations = {
|
|
.open = sn2_ptc_proc_open,
|
|
.read = seq_read,
|
|
.write = sn2_ptc_proc_write,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release,
|
|
};
|
|
|
|
static struct proc_dir_entry *proc_sn2_ptc;
|
|
|
|
static int __init sn2_ptc_init(void)
|
|
{
|
|
if (!ia64_platform_is("sn2"))
|
|
return 0;
|
|
|
|
proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
|
|
NULL, &proc_sn2_ptc_operations);
|
|
if (!proc_sn2_ptc) {
|
|
printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
|
|
return -EINVAL;
|
|
}
|
|
spin_lock_init(&sn2_global_ptc_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void __exit sn2_ptc_exit(void)
|
|
{
|
|
remove_proc_entry(PTC_BASENAME, NULL);
|
|
}
|
|
|
|
module_init(sn2_ptc_init);
|
|
module_exit(sn2_ptc_exit);
|
|
#endif /* CONFIG_PROC_FS */
|
|
|