mirror of https://gitee.com/openkylin/linux.git
1333 lines
37 KiB
C
1333 lines
37 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2005-2013 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <linux/tcp.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/in.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/slab.h>
|
|
#include <net/ipv6.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/cache.h>
|
|
#include "net_driver.h"
|
|
#include "efx.h"
|
|
#include "io.h"
|
|
#include "nic.h"
|
|
#include "workarounds.h"
|
|
#include "ef10_regs.h"
|
|
|
|
#ifdef EFX_USE_PIO
|
|
|
|
#define EFX_PIOBUF_SIZE_MAX ER_DZ_TX_PIOBUF_SIZE
|
|
#define EFX_PIOBUF_SIZE_DEF ALIGN(256, L1_CACHE_BYTES)
|
|
unsigned int efx_piobuf_size __read_mostly = EFX_PIOBUF_SIZE_DEF;
|
|
|
|
#endif /* EFX_USE_PIO */
|
|
|
|
static inline unsigned int
|
|
efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
|
|
{
|
|
return tx_queue->insert_count & tx_queue->ptr_mask;
|
|
}
|
|
|
|
static inline struct efx_tx_buffer *
|
|
__efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
|
{
|
|
return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
|
|
}
|
|
|
|
static inline struct efx_tx_buffer *
|
|
efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer =
|
|
__efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
EFX_BUG_ON_PARANOID(buffer->len);
|
|
EFX_BUG_ON_PARANOID(buffer->flags);
|
|
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
|
return buffer;
|
|
}
|
|
|
|
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer,
|
|
unsigned int *pkts_compl,
|
|
unsigned int *bytes_compl)
|
|
{
|
|
if (buffer->unmap_len) {
|
|
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
|
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
|
|
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
|
|
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
|
DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
|
DMA_TO_DEVICE);
|
|
buffer->unmap_len = 0;
|
|
}
|
|
|
|
if (buffer->flags & EFX_TX_BUF_SKB) {
|
|
(*pkts_compl)++;
|
|
(*bytes_compl) += buffer->skb->len;
|
|
dev_consume_skb_any((struct sk_buff *)buffer->skb);
|
|
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
|
|
"TX queue %d transmission id %x complete\n",
|
|
tx_queue->queue, tx_queue->read_count);
|
|
} else if (buffer->flags & EFX_TX_BUF_HEAP) {
|
|
kfree(buffer->heap_buf);
|
|
}
|
|
|
|
buffer->len = 0;
|
|
buffer->flags = 0;
|
|
}
|
|
|
|
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb);
|
|
|
|
static inline unsigned
|
|
efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
|
|
{
|
|
/* Depending on the NIC revision, we can use descriptor
|
|
* lengths up to 8K or 8K-1. However, since PCI Express
|
|
* devices must split read requests at 4K boundaries, there is
|
|
* little benefit from using descriptors that cross those
|
|
* boundaries and we keep things simple by not doing so.
|
|
*/
|
|
unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
|
|
|
|
/* Work around hardware bug for unaligned buffers. */
|
|
if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
|
|
len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
|
|
|
|
return len;
|
|
}
|
|
|
|
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
|
{
|
|
/* Header and payload descriptor for each output segment, plus
|
|
* one for every input fragment boundary within a segment
|
|
*/
|
|
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
|
|
|
/* Possibly one more per segment for the alignment workaround,
|
|
* or for option descriptors
|
|
*/
|
|
if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
|
max_descs += EFX_TSO_MAX_SEGS;
|
|
|
|
/* Possibly more for PCIe page boundaries within input fragments */
|
|
if (PAGE_SIZE > EFX_PAGE_SIZE)
|
|
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
|
|
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
|
|
|
|
return max_descs;
|
|
}
|
|
|
|
static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
|
|
{
|
|
/* We need to consider both queues that the net core sees as one */
|
|
struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
|
|
struct efx_nic *efx = txq1->efx;
|
|
unsigned int fill_level;
|
|
|
|
fill_level = max(txq1->insert_count - txq1->old_read_count,
|
|
txq2->insert_count - txq2->old_read_count);
|
|
if (likely(fill_level < efx->txq_stop_thresh))
|
|
return;
|
|
|
|
/* We used the stale old_read_count above, which gives us a
|
|
* pessimistic estimate of the fill level (which may even
|
|
* validly be >= efx->txq_entries). Now try again using
|
|
* read_count (more likely to be a cache miss).
|
|
*
|
|
* If we read read_count and then conditionally stop the
|
|
* queue, it is possible for the completion path to race with
|
|
* us and complete all outstanding descriptors in the middle,
|
|
* after which there will be no more completions to wake it.
|
|
* Therefore we stop the queue first, then read read_count
|
|
* (with a memory barrier to ensure the ordering), then
|
|
* restart the queue if the fill level turns out to be low
|
|
* enough.
|
|
*/
|
|
netif_tx_stop_queue(txq1->core_txq);
|
|
smp_mb();
|
|
txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
|
|
txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
|
|
|
|
fill_level = max(txq1->insert_count - txq1->old_read_count,
|
|
txq2->insert_count - txq2->old_read_count);
|
|
EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
|
|
if (likely(fill_level < efx->txq_stop_thresh)) {
|
|
smp_mb();
|
|
if (likely(!efx->loopback_selftest))
|
|
netif_tx_start_queue(txq1->core_txq);
|
|
}
|
|
}
|
|
|
|
#ifdef EFX_USE_PIO
|
|
|
|
struct efx_short_copy_buffer {
|
|
int used;
|
|
u8 buf[L1_CACHE_BYTES];
|
|
};
|
|
|
|
/* Copy to PIO, respecting that writes to PIO buffers must be dword aligned.
|
|
* Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
*/
|
|
static void efx_memcpy_toio_aligned(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
u8 *data, int len,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
int block_len = len & ~(sizeof(copy_buf->buf) - 1);
|
|
|
|
__iowrite64_copy(*piobuf, data, block_len >> 3);
|
|
*piobuf += block_len;
|
|
len -= block_len;
|
|
|
|
if (len) {
|
|
data += block_len;
|
|
BUG_ON(copy_buf->used);
|
|
BUG_ON(len > sizeof(copy_buf->buf));
|
|
memcpy(copy_buf->buf, data, len);
|
|
copy_buf->used = len;
|
|
}
|
|
}
|
|
|
|
/* Copy to PIO, respecting dword alignment, popping data from copy buffer first.
|
|
* Advances piobuf pointer. Leaves additional data in the copy buffer.
|
|
*/
|
|
static void efx_memcpy_toio_aligned_cb(struct efx_nic *efx, u8 __iomem **piobuf,
|
|
u8 *data, int len,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
if (copy_buf->used) {
|
|
/* if the copy buffer is partially full, fill it up and write */
|
|
int copy_to_buf =
|
|
min_t(int, sizeof(copy_buf->buf) - copy_buf->used, len);
|
|
|
|
memcpy(copy_buf->buf + copy_buf->used, data, copy_to_buf);
|
|
copy_buf->used += copy_to_buf;
|
|
|
|
/* if we didn't fill it up then we're done for now */
|
|
if (copy_buf->used < sizeof(copy_buf->buf))
|
|
return;
|
|
|
|
__iowrite64_copy(*piobuf, copy_buf->buf,
|
|
sizeof(copy_buf->buf) >> 3);
|
|
*piobuf += sizeof(copy_buf->buf);
|
|
data += copy_to_buf;
|
|
len -= copy_to_buf;
|
|
copy_buf->used = 0;
|
|
}
|
|
|
|
efx_memcpy_toio_aligned(efx, piobuf, data, len, copy_buf);
|
|
}
|
|
|
|
static void efx_flush_copy_buffer(struct efx_nic *efx, u8 __iomem *piobuf,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
/* if there's anything in it, write the whole buffer, including junk */
|
|
if (copy_buf->used)
|
|
__iowrite64_copy(piobuf, copy_buf->buf,
|
|
sizeof(copy_buf->buf) >> 3);
|
|
}
|
|
|
|
/* Traverse skb structure and copy fragments in to PIO buffer.
|
|
* Advances piobuf pointer.
|
|
*/
|
|
static void efx_skb_copy_bits_to_pio(struct efx_nic *efx, struct sk_buff *skb,
|
|
u8 __iomem **piobuf,
|
|
struct efx_short_copy_buffer *copy_buf)
|
|
{
|
|
int i;
|
|
|
|
efx_memcpy_toio_aligned(efx, piobuf, skb->data, skb_headlen(skb),
|
|
copy_buf);
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; ++i) {
|
|
skb_frag_t *f = &skb_shinfo(skb)->frags[i];
|
|
u8 *vaddr;
|
|
|
|
vaddr = kmap_atomic(skb_frag_page(f));
|
|
|
|
efx_memcpy_toio_aligned_cb(efx, piobuf, vaddr + f->page_offset,
|
|
skb_frag_size(f), copy_buf);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
|
|
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->frag_list);
|
|
}
|
|
|
|
static struct efx_tx_buffer *
|
|
efx_enqueue_skb_pio(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
struct efx_tx_buffer *buffer =
|
|
efx_tx_queue_get_insert_buffer(tx_queue);
|
|
u8 __iomem *piobuf = tx_queue->piobuf;
|
|
|
|
/* Copy to PIO buffer. Ensure the writes are padded to the end
|
|
* of a cache line, as this is required for write-combining to be
|
|
* effective on at least x86.
|
|
*/
|
|
|
|
if (skb_shinfo(skb)->nr_frags) {
|
|
/* The size of the copy buffer will ensure all writes
|
|
* are the size of a cache line.
|
|
*/
|
|
struct efx_short_copy_buffer copy_buf;
|
|
|
|
copy_buf.used = 0;
|
|
|
|
efx_skb_copy_bits_to_pio(tx_queue->efx, skb,
|
|
&piobuf, ©_buf);
|
|
efx_flush_copy_buffer(tx_queue->efx, piobuf, ©_buf);
|
|
} else {
|
|
/* Pad the write to the size of a cache line.
|
|
* We can do this because we know the skb_shared_info sruct is
|
|
* after the source, and the destination buffer is big enough.
|
|
*/
|
|
BUILD_BUG_ON(L1_CACHE_BYTES >
|
|
SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
|
|
__iowrite64_copy(tx_queue->piobuf, skb->data,
|
|
ALIGN(skb->len, L1_CACHE_BYTES) >> 3);
|
|
}
|
|
|
|
EFX_POPULATE_QWORD_5(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_PIO,
|
|
ESF_DZ_TX_PIO_CONT, 0,
|
|
ESF_DZ_TX_PIO_BYTE_CNT, skb->len,
|
|
ESF_DZ_TX_PIO_BUF_ADDR,
|
|
tx_queue->piobuf_offset);
|
|
++tx_queue->pio_packets;
|
|
++tx_queue->insert_count;
|
|
return buffer;
|
|
}
|
|
#endif /* EFX_USE_PIO */
|
|
|
|
/*
|
|
* Add a socket buffer to a TX queue
|
|
*
|
|
* This maps all fragments of a socket buffer for DMA and adds them to
|
|
* the TX queue. The queue's insert pointer will be incremented by
|
|
* the number of fragments in the socket buffer.
|
|
*
|
|
* If any DMA mapping fails, any mapped fragments will be unmapped,
|
|
* the queue's insert pointer will be restored to its original value.
|
|
*
|
|
* This function is split out from efx_hard_start_xmit to allow the
|
|
* loopback test to direct packets via specific TX queues.
|
|
*
|
|
* Returns NETDEV_TX_OK.
|
|
* You must hold netif_tx_lock() to call this function.
|
|
*/
|
|
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct device *dma_dev = &efx->pci_dev->dev;
|
|
struct efx_tx_buffer *buffer;
|
|
unsigned int old_insert_count = tx_queue->insert_count;
|
|
skb_frag_t *fragment;
|
|
unsigned int len, unmap_len = 0;
|
|
dma_addr_t dma_addr, unmap_addr = 0;
|
|
unsigned int dma_len;
|
|
unsigned short dma_flags;
|
|
int i = 0;
|
|
|
|
if (skb_shinfo(skb)->gso_size)
|
|
return efx_enqueue_skb_tso(tx_queue, skb);
|
|
|
|
/* Get size of the initial fragment */
|
|
len = skb_headlen(skb);
|
|
|
|
/* Pad if necessary */
|
|
if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
|
|
EFX_BUG_ON_PARANOID(skb->data_len);
|
|
len = 32 + 1;
|
|
if (skb_pad(skb, len - skb->len))
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Consider using PIO for short packets */
|
|
#ifdef EFX_USE_PIO
|
|
if (skb->len <= efx_piobuf_size && !skb->xmit_more &&
|
|
efx_nic_may_tx_pio(tx_queue)) {
|
|
buffer = efx_enqueue_skb_pio(tx_queue, skb);
|
|
dma_flags = EFX_TX_BUF_OPTION;
|
|
goto finish_packet;
|
|
}
|
|
#endif
|
|
|
|
/* Map for DMA. Use dma_map_single rather than dma_map_page
|
|
* since this is more efficient on machines with sparse
|
|
* memory.
|
|
*/
|
|
dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
|
|
|
|
/* Process all fragments */
|
|
while (1) {
|
|
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
|
goto dma_err;
|
|
|
|
/* Store fields for marking in the per-fragment final
|
|
* descriptor */
|
|
unmap_len = len;
|
|
unmap_addr = dma_addr;
|
|
|
|
/* Add to TX queue, splitting across DMA boundaries */
|
|
do {
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
if (likely(dma_len >= len))
|
|
dma_len = len;
|
|
|
|
/* Fill out per descriptor fields */
|
|
buffer->len = dma_len;
|
|
buffer->dma_addr = dma_addr;
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
len -= dma_len;
|
|
dma_addr += dma_len;
|
|
++tx_queue->insert_count;
|
|
} while (len);
|
|
|
|
/* Transfer ownership of the unmapping to the final buffer */
|
|
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
|
|
buffer->unmap_len = unmap_len;
|
|
buffer->dma_offset = buffer->dma_addr - unmap_addr;
|
|
unmap_len = 0;
|
|
|
|
/* Get address and size of next fragment */
|
|
if (i >= skb_shinfo(skb)->nr_frags)
|
|
break;
|
|
fragment = &skb_shinfo(skb)->frags[i];
|
|
len = skb_frag_size(fragment);
|
|
i++;
|
|
/* Map for DMA */
|
|
dma_flags = 0;
|
|
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Transfer ownership of the skb to the final buffer */
|
|
#ifdef EFX_USE_PIO
|
|
finish_packet:
|
|
#endif
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
|
|
|
|
netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
|
|
|
|
efx_tx_maybe_stop_queue(tx_queue);
|
|
|
|
/* Pass off to hardware */
|
|
if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
|
|
efx_nic_push_buffers(tx_queue);
|
|
|
|
tx_queue->tx_packets++;
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
dma_err:
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
" TX queue %d could not map skb with %d bytes %d "
|
|
"fragments for DMA\n", tx_queue->queue, skb->len,
|
|
skb_shinfo(skb)->nr_frags + 1);
|
|
|
|
/* Mark the packet as transmitted, and free the SKB ourselves */
|
|
dev_kfree_skb_any(skb);
|
|
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
while (tx_queue->insert_count != old_insert_count) {
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
--tx_queue->insert_count;
|
|
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
|
}
|
|
|
|
/* Free the fragment we were mid-way through pushing */
|
|
if (unmap_len) {
|
|
if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
|
|
dma_unmap_single(dma_dev, unmap_addr, unmap_len,
|
|
DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_page(dma_dev, unmap_addr, unmap_len,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
/* Remove packets from the TX queue
|
|
*
|
|
* This removes packets from the TX queue, up to and including the
|
|
* specified index.
|
|
*/
|
|
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
|
|
unsigned int index,
|
|
unsigned int *pkts_compl,
|
|
unsigned int *bytes_compl)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int stop_index, read_ptr;
|
|
|
|
stop_index = (index + 1) & tx_queue->ptr_mask;
|
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
|
|
|
while (read_ptr != stop_index) {
|
|
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
|
|
|
|
if (!(buffer->flags & EFX_TX_BUF_OPTION) &&
|
|
unlikely(buffer->len == 0)) {
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
"TX queue %d spurious TX completion id %x\n",
|
|
tx_queue->queue, read_ptr);
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
|
|
return;
|
|
}
|
|
|
|
efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
|
|
|
|
++tx_queue->read_count;
|
|
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
|
|
}
|
|
}
|
|
|
|
/* Initiate a packet transmission. We use one channel per CPU
|
|
* (sharing when we have more CPUs than channels). On Falcon, the TX
|
|
* completion events will be directed back to the CPU that transmitted
|
|
* the packet, which should be cache-efficient.
|
|
*
|
|
* Context: non-blocking.
|
|
* Note that returning anything other than NETDEV_TX_OK will cause the
|
|
* OS to free the skb.
|
|
*/
|
|
netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
|
|
struct net_device *net_dev)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned index, type;
|
|
|
|
EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
|
|
|
|
/* PTP "event" packet */
|
|
if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
|
|
unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
|
|
return efx_ptp_tx(efx, skb);
|
|
}
|
|
|
|
index = skb_get_queue_mapping(skb);
|
|
type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
|
|
if (index >= efx->n_tx_channels) {
|
|
index -= efx->n_tx_channels;
|
|
type |= EFX_TXQ_TYPE_HIGHPRI;
|
|
}
|
|
tx_queue = efx_get_tx_queue(efx, index, type);
|
|
|
|
return efx_enqueue_skb(tx_queue, skb);
|
|
}
|
|
|
|
void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
/* Must be inverse of queue lookup in efx_hard_start_xmit() */
|
|
tx_queue->core_txq =
|
|
netdev_get_tx_queue(efx->net_dev,
|
|
tx_queue->queue / EFX_TXQ_TYPES +
|
|
((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
|
|
efx->n_tx_channels : 0));
|
|
}
|
|
|
|
int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
struct efx_channel *channel;
|
|
struct efx_tx_queue *tx_queue;
|
|
unsigned tc;
|
|
int rc;
|
|
|
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
|
|
return -EINVAL;
|
|
|
|
if (num_tc == net_dev->num_tc)
|
|
return 0;
|
|
|
|
for (tc = 0; tc < num_tc; tc++) {
|
|
net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
|
|
net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
|
|
}
|
|
|
|
if (num_tc > net_dev->num_tc) {
|
|
/* Initialise high-priority queues as necessary */
|
|
efx_for_each_channel(channel, efx) {
|
|
efx_for_each_possible_channel_tx_queue(tx_queue,
|
|
channel) {
|
|
if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
|
|
continue;
|
|
if (!tx_queue->buffer) {
|
|
rc = efx_probe_tx_queue(tx_queue);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
if (!tx_queue->initialised)
|
|
efx_init_tx_queue(tx_queue);
|
|
efx_init_tx_queue_core_txq(tx_queue);
|
|
}
|
|
}
|
|
} else {
|
|
/* Reduce number of classes before number of queues */
|
|
net_dev->num_tc = num_tc;
|
|
}
|
|
|
|
rc = netif_set_real_num_tx_queues(net_dev,
|
|
max_t(int, num_tc, 1) *
|
|
efx->n_tx_channels);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Do not destroy high-priority queues when they become
|
|
* unused. We would have to flush them first, and it is
|
|
* fairly difficult to flush a subset of TX queues. Leave
|
|
* it to efx_fini_channels().
|
|
*/
|
|
|
|
net_dev->num_tc = num_tc;
|
|
return 0;
|
|
}
|
|
|
|
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
|
|
{
|
|
unsigned fill_level;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
struct efx_tx_queue *txq2;
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
|
|
EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
|
|
|
|
efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
|
|
netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
|
|
|
|
if (pkts_compl > 1)
|
|
++tx_queue->merge_events;
|
|
|
|
/* See if we need to restart the netif queue. This memory
|
|
* barrier ensures that we write read_count (inside
|
|
* efx_dequeue_buffers()) before reading the queue status.
|
|
*/
|
|
smp_mb();
|
|
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
|
|
likely(efx->port_enabled) &&
|
|
likely(netif_device_present(efx->net_dev))) {
|
|
txq2 = efx_tx_queue_partner(tx_queue);
|
|
fill_level = max(tx_queue->insert_count - tx_queue->read_count,
|
|
txq2->insert_count - txq2->read_count);
|
|
if (fill_level <= efx->txq_wake_thresh)
|
|
netif_tx_wake_queue(tx_queue->core_txq);
|
|
}
|
|
|
|
/* Check whether the hardware queue is now empty */
|
|
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
|
|
tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
|
|
if (tx_queue->read_count == tx_queue->old_write_count) {
|
|
smp_mb();
|
|
tx_queue->empty_read_count =
|
|
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Size of page-based TSO header buffers. Larger blocks must be
|
|
* allocated from the heap.
|
|
*/
|
|
#define TSOH_STD_SIZE 128
|
|
#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
|
|
|
|
/* At most half the descriptors in the queue at any time will refer to
|
|
* a TSO header buffer, since they must always be followed by a
|
|
* payload descriptor referring to an skb.
|
|
*/
|
|
static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
|
|
{
|
|
return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
|
|
}
|
|
|
|
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int entries;
|
|
int rc;
|
|
|
|
/* Create the smallest power-of-two aligned ring */
|
|
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
|
|
EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
|
|
tx_queue->ptr_mask = entries - 1;
|
|
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"creating TX queue %d size %#x mask %#x\n",
|
|
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
|
|
|
|
/* Allocate software ring */
|
|
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
|
|
GFP_KERNEL);
|
|
if (!tx_queue->buffer)
|
|
return -ENOMEM;
|
|
|
|
if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
|
|
tx_queue->tsoh_page =
|
|
kcalloc(efx_tsoh_page_count(tx_queue),
|
|
sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
|
|
if (!tx_queue->tsoh_page) {
|
|
rc = -ENOMEM;
|
|
goto fail1;
|
|
}
|
|
}
|
|
|
|
/* Allocate hardware ring */
|
|
rc = efx_nic_probe_tx(tx_queue);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
kfree(tx_queue->tsoh_page);
|
|
tx_queue->tsoh_page = NULL;
|
|
fail1:
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
return rc;
|
|
}
|
|
|
|
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
|
"initialising TX queue %d\n", tx_queue->queue);
|
|
|
|
tx_queue->insert_count = 0;
|
|
tx_queue->write_count = 0;
|
|
tx_queue->old_write_count = 0;
|
|
tx_queue->read_count = 0;
|
|
tx_queue->old_read_count = 0;
|
|
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
|
|
|
|
/* Set up TX descriptor ring */
|
|
efx_nic_init_tx(tx_queue);
|
|
|
|
tx_queue->initialised = true;
|
|
}
|
|
|
|
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
|
"shutting down TX queue %d\n", tx_queue->queue);
|
|
|
|
if (!tx_queue->buffer)
|
|
return;
|
|
|
|
/* Free any buffers left in the ring */
|
|
while (tx_queue->read_count != tx_queue->write_count) {
|
|
unsigned int pkts_compl = 0, bytes_compl = 0;
|
|
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
|
|
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
|
|
|
|
++tx_queue->read_count;
|
|
}
|
|
netdev_tx_reset_queue(tx_queue->core_txq);
|
|
}
|
|
|
|
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
int i;
|
|
|
|
if (!tx_queue->buffer)
|
|
return;
|
|
|
|
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
|
|
"destroying TX queue %d\n", tx_queue->queue);
|
|
efx_nic_remove_tx(tx_queue);
|
|
|
|
if (tx_queue->tsoh_page) {
|
|
for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
|
|
efx_nic_free_buffer(tx_queue->efx,
|
|
&tx_queue->tsoh_page[i]);
|
|
kfree(tx_queue->tsoh_page);
|
|
tx_queue->tsoh_page = NULL;
|
|
}
|
|
|
|
kfree(tx_queue->buffer);
|
|
tx_queue->buffer = NULL;
|
|
}
|
|
|
|
|
|
/* Efx TCP segmentation acceleration.
|
|
*
|
|
* Why? Because by doing it here in the driver we can go significantly
|
|
* faster than the GSO.
|
|
*
|
|
* Requires TX checksum offload support.
|
|
*/
|
|
|
|
#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
|
|
|
|
/**
|
|
* struct tso_state - TSO state for an SKB
|
|
* @out_len: Remaining length in current segment
|
|
* @seqnum: Current sequence number
|
|
* @ipv4_id: Current IPv4 ID, host endian
|
|
* @packet_space: Remaining space in current packet
|
|
* @dma_addr: DMA address of current position
|
|
* @in_len: Remaining length in current SKB fragment
|
|
* @unmap_len: Length of SKB fragment
|
|
* @unmap_addr: DMA address of SKB fragment
|
|
* @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
|
|
* @protocol: Network protocol (after any VLAN header)
|
|
* @ip_off: Offset of IP header
|
|
* @tcp_off: Offset of TCP header
|
|
* @header_len: Number of bytes of header
|
|
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
|
* @header_dma_addr: Header DMA address, when using option descriptors
|
|
* @header_unmap_len: Header DMA mapped length, or 0 if not using option
|
|
* descriptors
|
|
*
|
|
* The state used during segmentation. It is put into this data structure
|
|
* just to make it easy to pass into inline functions.
|
|
*/
|
|
struct tso_state {
|
|
/* Output position */
|
|
unsigned out_len;
|
|
unsigned seqnum;
|
|
u16 ipv4_id;
|
|
unsigned packet_space;
|
|
|
|
/* Input position */
|
|
dma_addr_t dma_addr;
|
|
unsigned in_len;
|
|
unsigned unmap_len;
|
|
dma_addr_t unmap_addr;
|
|
unsigned short dma_flags;
|
|
|
|
__be16 protocol;
|
|
unsigned int ip_off;
|
|
unsigned int tcp_off;
|
|
unsigned header_len;
|
|
unsigned int ip_base_len;
|
|
dma_addr_t header_dma_addr;
|
|
unsigned int header_unmap_len;
|
|
};
|
|
|
|
|
|
/*
|
|
* Verify that our various assumptions about sk_buffs and the conditions
|
|
* under which TSO will be attempted hold true. Return the protocol number.
|
|
*/
|
|
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
|
{
|
|
__be16 protocol = skb->protocol;
|
|
|
|
EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
|
|
protocol);
|
|
if (protocol == htons(ETH_P_8021Q)) {
|
|
struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
|
|
protocol = veh->h_vlan_encapsulated_proto;
|
|
}
|
|
|
|
if (protocol == htons(ETH_P_IP)) {
|
|
EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
|
|
} else {
|
|
EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
|
|
EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
|
|
}
|
|
EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
|
|
+ (tcp_hdr(skb)->doff << 2u)) >
|
|
skb_headlen(skb));
|
|
|
|
return protocol;
|
|
}
|
|
|
|
static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer, unsigned int len)
|
|
{
|
|
u8 *result;
|
|
|
|
EFX_BUG_ON_PARANOID(buffer->len);
|
|
EFX_BUG_ON_PARANOID(buffer->flags);
|
|
EFX_BUG_ON_PARANOID(buffer->unmap_len);
|
|
|
|
if (likely(len <= TSOH_STD_SIZE - NET_IP_ALIGN)) {
|
|
unsigned index =
|
|
(tx_queue->insert_count & tx_queue->ptr_mask) / 2;
|
|
struct efx_buffer *page_buf =
|
|
&tx_queue->tsoh_page[index / TSOH_PER_PAGE];
|
|
unsigned offset =
|
|
TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + NET_IP_ALIGN;
|
|
|
|
if (unlikely(!page_buf->addr) &&
|
|
efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE,
|
|
GFP_ATOMIC))
|
|
return NULL;
|
|
|
|
result = (u8 *)page_buf->addr + offset;
|
|
buffer->dma_addr = page_buf->dma_addr + offset;
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
} else {
|
|
tx_queue->tso_long_headers++;
|
|
|
|
buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
|
|
if (unlikely(!buffer->heap_buf))
|
|
return NULL;
|
|
result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
|
|
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
|
|
}
|
|
|
|
buffer->len = len;
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* efx_tx_queue_insert - push descriptors onto the TX queue
|
|
* @tx_queue: Efx TX queue
|
|
* @dma_addr: DMA address of fragment
|
|
* @len: Length of fragment
|
|
* @final_buffer: The final buffer inserted into the queue
|
|
*
|
|
* Push descriptors onto the TX queue.
|
|
*/
|
|
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
|
|
dma_addr_t dma_addr, unsigned len,
|
|
struct efx_tx_buffer **final_buffer)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned dma_len;
|
|
|
|
EFX_BUG_ON_PARANOID(len <= 0);
|
|
|
|
while (1) {
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
++tx_queue->insert_count;
|
|
|
|
EFX_BUG_ON_PARANOID(tx_queue->insert_count -
|
|
tx_queue->read_count >=
|
|
efx->txq_entries);
|
|
|
|
buffer->dma_addr = dma_addr;
|
|
|
|
dma_len = efx_max_tx_len(efx, dma_addr);
|
|
|
|
/* If there is enough space to send then do so */
|
|
if (dma_len >= len)
|
|
break;
|
|
|
|
buffer->len = dma_len;
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
dma_addr += dma_len;
|
|
len -= dma_len;
|
|
}
|
|
|
|
EFX_BUG_ON_PARANOID(!len);
|
|
buffer->len = len;
|
|
*final_buffer = buffer;
|
|
}
|
|
|
|
|
|
/*
|
|
* Put a TSO header into the TX queue.
|
|
*
|
|
* This is special-cased because we know that it is small enough to fit in
|
|
* a single fragment, and we know it doesn't cross a page boundary. It
|
|
* also allows us to not worry about end-of-packet etc.
|
|
*/
|
|
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
|
|
struct efx_tx_buffer *buffer, u8 *header)
|
|
{
|
|
if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
|
|
buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
|
|
header, buffer->len,
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
|
|
buffer->dma_addr))) {
|
|
kfree(buffer->heap_buf);
|
|
buffer->len = 0;
|
|
buffer->flags = 0;
|
|
return -ENOMEM;
|
|
}
|
|
buffer->unmap_len = buffer->len;
|
|
buffer->dma_offset = 0;
|
|
buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
|
|
}
|
|
|
|
++tx_queue->insert_count;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Remove buffers put into a tx_queue. None of the buffers must have
|
|
* an skb attached.
|
|
*/
|
|
static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
|
|
unsigned int insert_count)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
|
|
/* Work backwards until we hit the original insert pointer value */
|
|
while (tx_queue->insert_count != insert_count) {
|
|
--tx_queue->insert_count;
|
|
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
|
|
efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
/* Parse the SKB header and initialise state. */
|
|
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|
const struct sk_buff *skb)
|
|
{
|
|
bool use_opt_desc = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
|
|
struct device *dma_dev = &efx->pci_dev->dev;
|
|
unsigned int header_len, in_len;
|
|
dma_addr_t dma_addr;
|
|
|
|
st->ip_off = skb_network_header(skb) - skb->data;
|
|
st->tcp_off = skb_transport_header(skb) - skb->data;
|
|
header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
|
|
in_len = skb_headlen(skb) - header_len;
|
|
st->header_len = header_len;
|
|
st->in_len = in_len;
|
|
if (st->protocol == htons(ETH_P_IP)) {
|
|
st->ip_base_len = st->header_len - st->ip_off;
|
|
st->ipv4_id = ntohs(ip_hdr(skb)->id);
|
|
} else {
|
|
st->ip_base_len = st->header_len - st->tcp_off;
|
|
st->ipv4_id = 0;
|
|
}
|
|
st->seqnum = ntohl(tcp_hdr(skb)->seq);
|
|
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
|
|
EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
|
|
|
|
st->out_len = skb->len - header_len;
|
|
|
|
if (!use_opt_desc) {
|
|
st->header_unmap_len = 0;
|
|
|
|
if (likely(in_len == 0)) {
|
|
st->dma_flags = 0;
|
|
st->unmap_len = 0;
|
|
return 0;
|
|
}
|
|
|
|
dma_addr = dma_map_single(dma_dev, skb->data + header_len,
|
|
in_len, DMA_TO_DEVICE);
|
|
st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
|
st->dma_addr = dma_addr;
|
|
st->unmap_addr = dma_addr;
|
|
st->unmap_len = in_len;
|
|
} else {
|
|
dma_addr = dma_map_single(dma_dev, skb->data,
|
|
skb_headlen(skb), DMA_TO_DEVICE);
|
|
st->header_dma_addr = dma_addr;
|
|
st->header_unmap_len = skb_headlen(skb);
|
|
st->dma_flags = 0;
|
|
st->dma_addr = dma_addr + header_len;
|
|
st->unmap_len = 0;
|
|
}
|
|
|
|
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
|
}
|
|
|
|
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
|
skb_frag_t *frag)
|
|
{
|
|
st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
|
|
skb_frag_size(frag), DMA_TO_DEVICE);
|
|
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
|
st->dma_flags = 0;
|
|
st->unmap_len = skb_frag_size(frag);
|
|
st->in_len = skb_frag_size(frag);
|
|
st->dma_addr = st->unmap_addr;
|
|
return 0;
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
|
|
/**
|
|
* tso_fill_packet_with_fragment - form descriptors for the current fragment
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Form descriptors for the current fragment, until we reach the end
|
|
* of fragment or end-of-packet.
|
|
*/
|
|
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tx_buffer *buffer;
|
|
int n;
|
|
|
|
if (st->in_len == 0)
|
|
return;
|
|
if (st->packet_space == 0)
|
|
return;
|
|
|
|
EFX_BUG_ON_PARANOID(st->in_len <= 0);
|
|
EFX_BUG_ON_PARANOID(st->packet_space <= 0);
|
|
|
|
n = min(st->in_len, st->packet_space);
|
|
|
|
st->packet_space -= n;
|
|
st->out_len -= n;
|
|
st->in_len -= n;
|
|
|
|
efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
|
|
|
|
if (st->out_len == 0) {
|
|
/* Transfer ownership of the skb */
|
|
buffer->skb = skb;
|
|
buffer->flags = EFX_TX_BUF_SKB;
|
|
} else if (st->packet_space != 0) {
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
}
|
|
|
|
if (st->in_len == 0) {
|
|
/* Transfer ownership of the DMA mapping */
|
|
buffer->unmap_len = st->unmap_len;
|
|
buffer->dma_offset = buffer->unmap_len - buffer->len;
|
|
buffer->flags |= st->dma_flags;
|
|
st->unmap_len = 0;
|
|
}
|
|
|
|
st->dma_addr += n;
|
|
}
|
|
|
|
|
|
/**
|
|
* tso_start_new_packet - generate a new header and prepare for the new packet
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
* @st: TSO state
|
|
*
|
|
* Generate a new header and prepare for the new packet. Return 0 on
|
|
* success, or -%ENOMEM if failed to alloc header.
|
|
*/
|
|
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|
const struct sk_buff *skb,
|
|
struct tso_state *st)
|
|
{
|
|
struct efx_tx_buffer *buffer =
|
|
efx_tx_queue_get_insert_buffer(tx_queue);
|
|
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
|
u8 tcp_flags_clear;
|
|
|
|
if (!is_last) {
|
|
st->packet_space = skb_shinfo(skb)->gso_size;
|
|
tcp_flags_clear = 0x09; /* mask out FIN and PSH */
|
|
} else {
|
|
st->packet_space = st->out_len;
|
|
tcp_flags_clear = 0x00;
|
|
}
|
|
|
|
if (!st->header_unmap_len) {
|
|
/* Allocate and insert a DMA-mapped header buffer. */
|
|
struct tcphdr *tsoh_th;
|
|
unsigned ip_length;
|
|
u8 *header;
|
|
int rc;
|
|
|
|
header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
|
if (!header)
|
|
return -ENOMEM;
|
|
|
|
tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
|
|
|
/* Copy and update the headers. */
|
|
memcpy(header, skb->data, st->header_len);
|
|
|
|
tsoh_th->seq = htonl(st->seqnum);
|
|
((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
|
|
|
|
ip_length = st->ip_base_len + st->packet_space;
|
|
|
|
if (st->protocol == htons(ETH_P_IP)) {
|
|
struct iphdr *tsoh_iph =
|
|
(struct iphdr *)(header + st->ip_off);
|
|
|
|
tsoh_iph->tot_len = htons(ip_length);
|
|
tsoh_iph->id = htons(st->ipv4_id);
|
|
} else {
|
|
struct ipv6hdr *tsoh_iph =
|
|
(struct ipv6hdr *)(header + st->ip_off);
|
|
|
|
tsoh_iph->payload_len = htons(ip_length);
|
|
}
|
|
|
|
rc = efx_tso_put_header(tx_queue, buffer, header);
|
|
if (unlikely(rc))
|
|
return rc;
|
|
} else {
|
|
/* Send the original headers with a TSO option descriptor
|
|
* in front
|
|
*/
|
|
u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
|
|
|
|
buffer->flags = EFX_TX_BUF_OPTION;
|
|
buffer->len = 0;
|
|
buffer->unmap_len = 0;
|
|
EFX_POPULATE_QWORD_5(buffer->option,
|
|
ESF_DZ_TX_DESC_IS_OPT, 1,
|
|
ESF_DZ_TX_OPTION_TYPE,
|
|
ESE_DZ_TX_OPTION_DESC_TSO,
|
|
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
|
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
|
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
|
++tx_queue->insert_count;
|
|
|
|
/* We mapped the headers in tso_start(). Unmap them
|
|
* when the last segment is completed.
|
|
*/
|
|
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
|
|
buffer->dma_addr = st->header_dma_addr;
|
|
buffer->len = st->header_len;
|
|
if (is_last) {
|
|
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
|
buffer->unmap_len = st->header_unmap_len;
|
|
buffer->dma_offset = 0;
|
|
/* Ensure we only unmap them once in case of a
|
|
* later DMA mapping error and rollback
|
|
*/
|
|
st->header_unmap_len = 0;
|
|
} else {
|
|
buffer->flags = EFX_TX_BUF_CONT;
|
|
buffer->unmap_len = 0;
|
|
}
|
|
++tx_queue->insert_count;
|
|
}
|
|
|
|
st->seqnum += skb_shinfo(skb)->gso_size;
|
|
|
|
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
|
++st->ipv4_id;
|
|
|
|
++tx_queue->tso_packets;
|
|
|
|
++tx_queue->tx_packets;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
|
|
* @tx_queue: Efx TX queue
|
|
* @skb: Socket buffer
|
|
*
|
|
* Context: You must hold netif_tx_lock() to call this function.
|
|
*
|
|
* Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
|
|
* @skb was not enqueued. In all cases @skb is consumed. Return
|
|
* %NETDEV_TX_OK.
|
|
*/
|
|
static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
unsigned int old_insert_count = tx_queue->insert_count;
|
|
int frag_i, rc;
|
|
struct tso_state state;
|
|
|
|
/* Find the packet protocol and sanity-check it */
|
|
state.protocol = efx_tso_check_protocol(skb);
|
|
|
|
rc = tso_start(&state, efx, skb);
|
|
if (rc)
|
|
goto mem_err;
|
|
|
|
if (likely(state.in_len == 0)) {
|
|
/* Grab the first payload fragment. */
|
|
EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
|
|
frag_i = 0;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto mem_err;
|
|
} else {
|
|
/* Payload starts in the header area. */
|
|
frag_i = -1;
|
|
}
|
|
|
|
if (tso_start_new_packet(tx_queue, skb, &state) < 0)
|
|
goto mem_err;
|
|
|
|
while (1) {
|
|
tso_fill_packet_with_fragment(tx_queue, skb, &state);
|
|
|
|
/* Move onto the next fragment? */
|
|
if (state.in_len == 0) {
|
|
if (++frag_i >= skb_shinfo(skb)->nr_frags)
|
|
/* End of payload reached. */
|
|
break;
|
|
rc = tso_get_fragment(&state, efx,
|
|
skb_shinfo(skb)->frags + frag_i);
|
|
if (rc)
|
|
goto mem_err;
|
|
}
|
|
|
|
/* Start at new packet? */
|
|
if (state.packet_space == 0 &&
|
|
tso_start_new_packet(tx_queue, skb, &state) < 0)
|
|
goto mem_err;
|
|
}
|
|
|
|
netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
|
|
|
|
efx_tx_maybe_stop_queue(tx_queue);
|
|
|
|
/* Pass off to hardware */
|
|
if (!skb->xmit_more || netif_xmit_stopped(tx_queue->core_txq))
|
|
efx_nic_push_buffers(tx_queue);
|
|
|
|
tx_queue->tso_bursts++;
|
|
return NETDEV_TX_OK;
|
|
|
|
mem_err:
|
|
netif_err(efx, tx_err, efx->net_dev,
|
|
"Out of memory for TSO headers, or DMA mapping error\n");
|
|
dev_kfree_skb_any(skb);
|
|
|
|
/* Free the DMA mapping we were in the process of writing out */
|
|
if (state.unmap_len) {
|
|
if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
|
|
dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
|
|
state.unmap_len, DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
|
state.unmap_len, DMA_TO_DEVICE);
|
|
}
|
|
|
|
/* Free the header DMA mapping, if using option descriptors */
|
|
if (state.header_unmap_len)
|
|
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
|
state.header_unmap_len, DMA_TO_DEVICE);
|
|
|
|
efx_enqueue_unwind(tx_queue, old_insert_count);
|
|
return NETDEV_TX_OK;
|
|
}
|