mirror of https://gitee.com/openkylin/linux.git
712 lines
17 KiB
C
712 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* S390 kdump implementation
|
|
*
|
|
* Copyright IBM Corp. 2011
|
|
* Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#include <linux/crash_dump.h>
|
|
#include <asm/lowcore.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/elf.h>
|
|
#include <asm/asm-offsets.h>
|
|
#include <asm/os_info.h>
|
|
#include <asm/elf.h>
|
|
#include <asm/ipl.h>
|
|
#include <asm/sclp.h>
|
|
|
|
#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
|
|
#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
|
|
#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
|
|
|
|
static struct memblock_region oldmem_region;
|
|
|
|
static struct memblock_type oldmem_type = {
|
|
.cnt = 1,
|
|
.max = 1,
|
|
.total_size = 0,
|
|
.regions = &oldmem_region,
|
|
.name = "oldmem",
|
|
};
|
|
|
|
struct save_area {
|
|
struct list_head list;
|
|
u64 psw[2];
|
|
u64 ctrs[16];
|
|
u64 gprs[16];
|
|
u32 acrs[16];
|
|
u64 fprs[16];
|
|
u32 fpc;
|
|
u32 prefix;
|
|
u64 todpreg;
|
|
u64 timer;
|
|
u64 todcmp;
|
|
u64 vxrs_low[16];
|
|
__vector128 vxrs_high[16];
|
|
};
|
|
|
|
static LIST_HEAD(dump_save_areas);
|
|
|
|
/*
|
|
* Allocate a save area
|
|
*/
|
|
struct save_area * __init save_area_alloc(bool is_boot_cpu)
|
|
{
|
|
struct save_area *sa;
|
|
|
|
sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
|
|
if (!sa)
|
|
panic("Failed to allocate save area\n");
|
|
|
|
if (is_boot_cpu)
|
|
list_add(&sa->list, &dump_save_areas);
|
|
else
|
|
list_add_tail(&sa->list, &dump_save_areas);
|
|
return sa;
|
|
}
|
|
|
|
/*
|
|
* Return the address of the save area for the boot CPU
|
|
*/
|
|
struct save_area * __init save_area_boot_cpu(void)
|
|
{
|
|
return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
|
|
}
|
|
|
|
/*
|
|
* Copy CPU registers into the save area
|
|
*/
|
|
void __init save_area_add_regs(struct save_area *sa, void *regs)
|
|
{
|
|
struct lowcore *lc;
|
|
|
|
lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
|
|
memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
|
|
memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
|
|
memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
|
|
memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
|
|
memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
|
|
memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
|
|
memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
|
|
memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
|
|
memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
|
|
memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
|
|
}
|
|
|
|
/*
|
|
* Copy vector registers into the save area
|
|
*/
|
|
void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
|
|
{
|
|
int i;
|
|
|
|
/* Copy lower halves of vector registers 0-15 */
|
|
for (i = 0; i < 16; i++)
|
|
memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
|
|
/* Copy vector registers 16-31 */
|
|
memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
|
|
}
|
|
|
|
/*
|
|
* Return physical address for virtual address
|
|
*/
|
|
static inline void *load_real_addr(void *addr)
|
|
{
|
|
unsigned long real_addr;
|
|
|
|
asm volatile(
|
|
" lra %0,0(%1)\n"
|
|
" jz 0f\n"
|
|
" la %0,0\n"
|
|
"0:"
|
|
: "=a" (real_addr) : "a" (addr) : "cc");
|
|
return (void *)real_addr;
|
|
}
|
|
|
|
/*
|
|
* Copy memory of the old, dumped system to a kernel space virtual address
|
|
*/
|
|
int copy_oldmem_kernel(void *dst, void *src, size_t count)
|
|
{
|
|
unsigned long from, len;
|
|
void *ra;
|
|
int rc;
|
|
|
|
while (count) {
|
|
from = __pa(src);
|
|
if (!OLDMEM_BASE && from < sclp.hsa_size) {
|
|
/* Copy from zfcp/nvme dump HSA area */
|
|
len = min(count, sclp.hsa_size - from);
|
|
rc = memcpy_hsa_kernel(dst, from, len);
|
|
if (rc)
|
|
return rc;
|
|
} else {
|
|
/* Check for swapped kdump oldmem areas */
|
|
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
|
|
from -= OLDMEM_BASE;
|
|
len = min(count, OLDMEM_SIZE - from);
|
|
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
|
|
len = min(count, OLDMEM_SIZE - from);
|
|
from += OLDMEM_BASE;
|
|
} else {
|
|
len = count;
|
|
}
|
|
if (is_vmalloc_or_module_addr(dst)) {
|
|
ra = load_real_addr(dst);
|
|
len = min(PAGE_SIZE - offset_in_page(ra), len);
|
|
} else {
|
|
ra = dst;
|
|
}
|
|
if (memcpy_real(ra, (void *) from, len))
|
|
return -EFAULT;
|
|
}
|
|
dst += len;
|
|
src += len;
|
|
count -= len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy memory of the old, dumped system to a user space virtual address
|
|
*/
|
|
static int copy_oldmem_user(void __user *dst, void *src, size_t count)
|
|
{
|
|
unsigned long from, len;
|
|
int rc;
|
|
|
|
while (count) {
|
|
from = __pa(src);
|
|
if (!OLDMEM_BASE && from < sclp.hsa_size) {
|
|
/* Copy from zfcp/nvme dump HSA area */
|
|
len = min(count, sclp.hsa_size - from);
|
|
rc = memcpy_hsa_user(dst, from, len);
|
|
if (rc)
|
|
return rc;
|
|
} else {
|
|
/* Check for swapped kdump oldmem areas */
|
|
if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
|
|
from -= OLDMEM_BASE;
|
|
len = min(count, OLDMEM_SIZE - from);
|
|
} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
|
|
len = min(count, OLDMEM_SIZE - from);
|
|
from += OLDMEM_BASE;
|
|
} else {
|
|
len = count;
|
|
}
|
|
rc = copy_to_user_real(dst, (void *) from, count);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
dst += len;
|
|
src += len;
|
|
count -= len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy one page from "oldmem"
|
|
*/
|
|
ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
|
|
unsigned long offset, int userbuf)
|
|
{
|
|
void *src;
|
|
int rc;
|
|
|
|
if (!csize)
|
|
return 0;
|
|
src = (void *) (pfn << PAGE_SHIFT) + offset;
|
|
if (userbuf)
|
|
rc = copy_oldmem_user((void __force __user *) buf, src, csize);
|
|
else
|
|
rc = copy_oldmem_kernel((void *) buf, src, csize);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for kdump
|
|
*
|
|
* For the kdump reserved memory this functions performs a swap operation:
|
|
* [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
|
|
*/
|
|
static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
|
|
unsigned long from, unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long size_old;
|
|
int rc;
|
|
|
|
if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
|
|
size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
|
|
rc = remap_pfn_range(vma, from,
|
|
pfn + (OLDMEM_BASE >> PAGE_SHIFT),
|
|
size_old, prot);
|
|
if (rc || size == size_old)
|
|
return rc;
|
|
size -= size_old;
|
|
from += size_old;
|
|
pfn += size_old >> PAGE_SHIFT;
|
|
}
|
|
return remap_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for zfcp/nvme dump
|
|
*
|
|
* We only map available memory above HSA size. Memory below HSA size
|
|
* is read on demand using the copy_oldmem_page() function.
|
|
*/
|
|
static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
|
|
unsigned long from,
|
|
unsigned long pfn,
|
|
unsigned long size, pgprot_t prot)
|
|
{
|
|
unsigned long hsa_end = sclp.hsa_size;
|
|
unsigned long size_hsa;
|
|
|
|
if (pfn < hsa_end >> PAGE_SHIFT) {
|
|
size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
|
|
if (size == size_hsa)
|
|
return 0;
|
|
size -= size_hsa;
|
|
from += size_hsa;
|
|
pfn += size_hsa >> PAGE_SHIFT;
|
|
}
|
|
return remap_pfn_range(vma, from, pfn, size, prot);
|
|
}
|
|
|
|
/*
|
|
* Remap "oldmem" for kdump or zfcp/nvme dump
|
|
*/
|
|
int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
|
|
unsigned long pfn, unsigned long size, pgprot_t prot)
|
|
{
|
|
if (OLDMEM_BASE)
|
|
return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
|
|
else
|
|
return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
|
|
prot);
|
|
}
|
|
|
|
static const char *nt_name(Elf64_Word type)
|
|
{
|
|
const char *name = "LINUX";
|
|
|
|
if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
|
|
name = KEXEC_CORE_NOTE_NAME;
|
|
return name;
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF note
|
|
*/
|
|
static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
|
|
const char *name)
|
|
{
|
|
Elf64_Nhdr *note;
|
|
u64 len;
|
|
|
|
note = (Elf64_Nhdr *)buf;
|
|
note->n_namesz = strlen(name) + 1;
|
|
note->n_descsz = d_len;
|
|
note->n_type = type;
|
|
len = sizeof(Elf64_Nhdr);
|
|
|
|
memcpy(buf + len, name, note->n_namesz);
|
|
len = roundup(len + note->n_namesz, 4);
|
|
|
|
memcpy(buf + len, desc, note->n_descsz);
|
|
len = roundup(len + note->n_descsz, 4);
|
|
|
|
return PTR_ADD(buf, len);
|
|
}
|
|
|
|
static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
|
|
{
|
|
return nt_init_name(buf, type, desc, d_len, nt_name(type));
|
|
}
|
|
|
|
/*
|
|
* Calculate the size of ELF note
|
|
*/
|
|
static size_t nt_size_name(int d_len, const char *name)
|
|
{
|
|
size_t size;
|
|
|
|
size = sizeof(Elf64_Nhdr);
|
|
size += roundup(strlen(name) + 1, 4);
|
|
size += roundup(d_len, 4);
|
|
|
|
return size;
|
|
}
|
|
|
|
static inline size_t nt_size(Elf64_Word type, int d_len)
|
|
{
|
|
return nt_size_name(d_len, nt_name(type));
|
|
}
|
|
|
|
/*
|
|
* Fill ELF notes for one CPU with save area registers
|
|
*/
|
|
static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
|
|
{
|
|
struct elf_prstatus nt_prstatus;
|
|
elf_fpregset_t nt_fpregset;
|
|
|
|
/* Prepare prstatus note */
|
|
memset(&nt_prstatus, 0, sizeof(nt_prstatus));
|
|
memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
|
|
memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
|
|
memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
|
|
nt_prstatus.pr_pid = cpu;
|
|
/* Prepare fpregset (floating point) note */
|
|
memset(&nt_fpregset, 0, sizeof(nt_fpregset));
|
|
memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
|
|
memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
|
|
/* Create ELF notes for the CPU */
|
|
ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
|
|
ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
|
|
ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
|
|
ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
|
|
ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
|
|
ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
|
|
ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
|
|
if (MACHINE_HAS_VX) {
|
|
ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
|
|
&sa->vxrs_high, sizeof(sa->vxrs_high));
|
|
ptr = nt_init(ptr, NT_S390_VXRS_LOW,
|
|
&sa->vxrs_low, sizeof(sa->vxrs_low));
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
/*
|
|
* Calculate size of ELF notes per cpu
|
|
*/
|
|
static size_t get_cpu_elf_notes_size(void)
|
|
{
|
|
struct save_area *sa = NULL;
|
|
size_t size;
|
|
|
|
size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
|
|
size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
|
|
size += nt_size(NT_S390_TIMER, sizeof(sa->timer));
|
|
size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
|
|
size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
|
|
size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
|
|
size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
|
|
if (MACHINE_HAS_VX) {
|
|
size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
|
|
size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Initialize prpsinfo note (new kernel)
|
|
*/
|
|
static void *nt_prpsinfo(void *ptr)
|
|
{
|
|
struct elf_prpsinfo prpsinfo;
|
|
|
|
memset(&prpsinfo, 0, sizeof(prpsinfo));
|
|
prpsinfo.pr_sname = 'R';
|
|
strcpy(prpsinfo.pr_fname, "vmlinux");
|
|
return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
|
|
}
|
|
|
|
/*
|
|
* Get vmcoreinfo using lowcore->vmcore_info (new kernel)
|
|
*/
|
|
static void *get_vmcoreinfo_old(unsigned long *size)
|
|
{
|
|
char nt_name[11], *vmcoreinfo;
|
|
Elf64_Nhdr note;
|
|
void *addr;
|
|
|
|
if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
|
|
return NULL;
|
|
memset(nt_name, 0, sizeof(nt_name));
|
|
if (copy_oldmem_kernel(¬e, addr, sizeof(note)))
|
|
return NULL;
|
|
if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
|
|
sizeof(nt_name) - 1))
|
|
return NULL;
|
|
if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
|
|
return NULL;
|
|
vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
|
|
if (!vmcoreinfo)
|
|
return NULL;
|
|
if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
|
|
kfree(vmcoreinfo);
|
|
return NULL;
|
|
}
|
|
*size = note.n_descsz;
|
|
return vmcoreinfo;
|
|
}
|
|
|
|
/*
|
|
* Initialize vmcoreinfo note (new kernel)
|
|
*/
|
|
static void *nt_vmcoreinfo(void *ptr)
|
|
{
|
|
const char *name = VMCOREINFO_NOTE_NAME;
|
|
unsigned long size;
|
|
void *vmcoreinfo;
|
|
|
|
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
|
|
if (vmcoreinfo)
|
|
return nt_init_name(ptr, 0, vmcoreinfo, size, name);
|
|
|
|
vmcoreinfo = get_vmcoreinfo_old(&size);
|
|
if (!vmcoreinfo)
|
|
return ptr;
|
|
ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
|
|
kfree(vmcoreinfo);
|
|
return ptr;
|
|
}
|
|
|
|
static size_t nt_vmcoreinfo_size(void)
|
|
{
|
|
const char *name = VMCOREINFO_NOTE_NAME;
|
|
unsigned long size;
|
|
void *vmcoreinfo;
|
|
|
|
vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
|
|
if (vmcoreinfo)
|
|
return nt_size_name(size, name);
|
|
|
|
vmcoreinfo = get_vmcoreinfo_old(&size);
|
|
if (!vmcoreinfo)
|
|
return 0;
|
|
|
|
kfree(vmcoreinfo);
|
|
return nt_size_name(size, name);
|
|
}
|
|
|
|
/*
|
|
* Initialize final note (needed for /proc/vmcore code)
|
|
*/
|
|
static void *nt_final(void *ptr)
|
|
{
|
|
Elf64_Nhdr *note;
|
|
|
|
note = (Elf64_Nhdr *) ptr;
|
|
note->n_namesz = 0;
|
|
note->n_descsz = 0;
|
|
note->n_type = 0;
|
|
return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF header (new kernel)
|
|
*/
|
|
static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
|
|
{
|
|
memset(ehdr, 0, sizeof(*ehdr));
|
|
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
|
|
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
|
|
ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
|
|
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
|
|
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
|
|
ehdr->e_type = ET_CORE;
|
|
ehdr->e_machine = EM_S390;
|
|
ehdr->e_version = EV_CURRENT;
|
|
ehdr->e_phoff = sizeof(Elf64_Ehdr);
|
|
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
|
|
ehdr->e_phentsize = sizeof(Elf64_Phdr);
|
|
ehdr->e_phnum = mem_chunk_cnt + 1;
|
|
return ehdr + 1;
|
|
}
|
|
|
|
/*
|
|
* Return CPU count for ELF header (new kernel)
|
|
*/
|
|
static int get_cpu_cnt(void)
|
|
{
|
|
struct save_area *sa;
|
|
int cpus = 0;
|
|
|
|
list_for_each_entry(sa, &dump_save_areas, list)
|
|
if (sa->prefix != 0)
|
|
cpus++;
|
|
return cpus;
|
|
}
|
|
|
|
/*
|
|
* Return memory chunk count for ELF header (new kernel)
|
|
*/
|
|
static int get_mem_chunk_cnt(void)
|
|
{
|
|
int cnt = 0;
|
|
u64 idx;
|
|
|
|
for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
|
|
cnt++;
|
|
return cnt;
|
|
}
|
|
|
|
/*
|
|
* Initialize ELF loads (new kernel)
|
|
*/
|
|
static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
|
|
{
|
|
phys_addr_t start, end;
|
|
u64 idx;
|
|
|
|
for_each_physmem_range(idx, &oldmem_type, &start, &end) {
|
|
phdr->p_filesz = end - start;
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_offset = start;
|
|
phdr->p_vaddr = start;
|
|
phdr->p_paddr = start;
|
|
phdr->p_memsz = end - start;
|
|
phdr->p_flags = PF_R | PF_W | PF_X;
|
|
phdr->p_align = PAGE_SIZE;
|
|
phdr++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize notes (new kernel)
|
|
*/
|
|
static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
|
|
{
|
|
struct save_area *sa;
|
|
void *ptr_start = ptr;
|
|
int cpu;
|
|
|
|
ptr = nt_prpsinfo(ptr);
|
|
|
|
cpu = 1;
|
|
list_for_each_entry(sa, &dump_save_areas, list)
|
|
if (sa->prefix != 0)
|
|
ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
|
|
ptr = nt_vmcoreinfo(ptr);
|
|
ptr = nt_final(ptr);
|
|
memset(phdr, 0, sizeof(*phdr));
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = notes_offset;
|
|
phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
|
|
phdr->p_memsz = phdr->p_filesz;
|
|
return ptr;
|
|
}
|
|
|
|
static size_t get_elfcorehdr_size(int mem_chunk_cnt)
|
|
{
|
|
size_t size;
|
|
|
|
size = sizeof(Elf64_Ehdr);
|
|
/* PT_NOTES */
|
|
size += sizeof(Elf64_Phdr);
|
|
/* nt_prpsinfo */
|
|
size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
|
|
/* regsets */
|
|
size += get_cpu_cnt() * get_cpu_elf_notes_size();
|
|
/* nt_vmcoreinfo */
|
|
size += nt_vmcoreinfo_size();
|
|
/* nt_final */
|
|
size += sizeof(Elf64_Nhdr);
|
|
/* PT_LOADS */
|
|
size += mem_chunk_cnt * sizeof(Elf64_Phdr);
|
|
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Create ELF core header (new kernel)
|
|
*/
|
|
int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
|
|
{
|
|
Elf64_Phdr *phdr_notes, *phdr_loads;
|
|
int mem_chunk_cnt;
|
|
void *ptr, *hdr;
|
|
u32 alloc_size;
|
|
u64 hdr_off;
|
|
|
|
/* If we are not in kdump or zfcp/nvme dump mode return */
|
|
if (!OLDMEM_BASE && !is_ipl_type_dump())
|
|
return 0;
|
|
/* If we cannot get HSA size for zfcp/nvme dump return error */
|
|
if (is_ipl_type_dump() && !sclp.hsa_size)
|
|
return -ENODEV;
|
|
|
|
/* For kdump, exclude previous crashkernel memory */
|
|
if (OLDMEM_BASE) {
|
|
oldmem_region.base = OLDMEM_BASE;
|
|
oldmem_region.size = OLDMEM_SIZE;
|
|
oldmem_type.total_size = OLDMEM_SIZE;
|
|
}
|
|
|
|
mem_chunk_cnt = get_mem_chunk_cnt();
|
|
|
|
alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
|
|
|
|
hdr = kzalloc(alloc_size, GFP_KERNEL);
|
|
|
|
/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
|
|
* a dump with this crash kernel will fail. Panic now to allow other
|
|
* dump mechanisms to take over.
|
|
*/
|
|
if (!hdr)
|
|
panic("s390 kdump allocating elfcorehdr failed");
|
|
|
|
/* Init elf header */
|
|
ptr = ehdr_init(hdr, mem_chunk_cnt);
|
|
/* Init program headers */
|
|
phdr_notes = ptr;
|
|
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
|
|
phdr_loads = ptr;
|
|
ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
|
|
/* Init notes */
|
|
hdr_off = PTR_DIFF(ptr, hdr);
|
|
ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
|
|
/* Init loads */
|
|
hdr_off = PTR_DIFF(ptr, hdr);
|
|
loads_init(phdr_loads, hdr_off);
|
|
*addr = (unsigned long long) hdr;
|
|
*size = (unsigned long long) hdr_off;
|
|
BUG_ON(elfcorehdr_size > alloc_size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free ELF core header (new kernel)
|
|
*/
|
|
void elfcorehdr_free(unsigned long long addr)
|
|
{
|
|
kfree((void *)(unsigned long)addr);
|
|
}
|
|
|
|
/*
|
|
* Read from ELF header
|
|
*/
|
|
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
void *src = (void *)(unsigned long)*ppos;
|
|
|
|
memcpy(buf, src, count);
|
|
*ppos += count;
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Read from ELF notes data
|
|
*/
|
|
ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
|
|
{
|
|
void *src = (void *)(unsigned long)*ppos;
|
|
|
|
memcpy(buf, src, count);
|
|
*ppos += count;
|
|
return count;
|
|
}
|