mirror of https://gitee.com/openkylin/linux.git
410 lines
15 KiB
C
410 lines
15 KiB
C
/*
|
|
* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright © 2019 Intel Corporation
|
|
*/
|
|
|
|
#ifndef _I915_ACTIVE_H_
|
|
#define _I915_ACTIVE_H_
|
|
|
|
#include <linux/lockdep.h>
|
|
|
|
#include "i915_active_types.h"
|
|
#include "i915_request.h"
|
|
|
|
/*
|
|
* We treat requests as fences. This is not be to confused with our
|
|
* "fence registers" but pipeline synchronisation objects ala GL_ARB_sync.
|
|
* We use the fences to synchronize access from the CPU with activity on the
|
|
* GPU, for example, we should not rewrite an object's PTE whilst the GPU
|
|
* is reading them. We also track fences at a higher level to provide
|
|
* implicit synchronisation around GEM objects, e.g. set-domain will wait
|
|
* for outstanding GPU rendering before marking the object ready for CPU
|
|
* access, or a pageflip will wait until the GPU is complete before showing
|
|
* the frame on the scanout.
|
|
*
|
|
* In order to use a fence, the object must track the fence it needs to
|
|
* serialise with. For example, GEM objects want to track both read and
|
|
* write access so that we can perform concurrent read operations between
|
|
* the CPU and GPU engines, as well as waiting for all rendering to
|
|
* complete, or waiting for the last GPU user of a "fence register". The
|
|
* object then embeds a #i915_active_request to track the most recent (in
|
|
* retirement order) request relevant for the desired mode of access.
|
|
* The #i915_active_request is updated with i915_active_request_set() to
|
|
* track the most recent fence request, typically this is done as part of
|
|
* i915_vma_move_to_active().
|
|
*
|
|
* When the #i915_active_request completes (is retired), it will
|
|
* signal its completion to the owner through a callback as well as mark
|
|
* itself as idle (i915_active_request.request == NULL). The owner
|
|
* can then perform any action, such as delayed freeing of an active
|
|
* resource including itself.
|
|
*/
|
|
|
|
void i915_active_retire_noop(struct i915_active_request *active,
|
|
struct i915_request *request);
|
|
|
|
/**
|
|
* i915_active_request_init - prepares the activity tracker for use
|
|
* @active - the active tracker
|
|
* @rq - initial request to track, can be NULL
|
|
* @func - a callback when then the tracker is retired (becomes idle),
|
|
* can be NULL
|
|
*
|
|
* i915_active_request_init() prepares the embedded @active struct for use as
|
|
* an activity tracker, that is for tracking the last known active request
|
|
* associated with it. When the last request becomes idle, when it is retired
|
|
* after completion, the optional callback @func is invoked.
|
|
*/
|
|
static inline void
|
|
i915_active_request_init(struct i915_active_request *active,
|
|
struct i915_request *rq,
|
|
i915_active_retire_fn retire)
|
|
{
|
|
RCU_INIT_POINTER(active->request, rq);
|
|
INIT_LIST_HEAD(&active->link);
|
|
active->retire = retire ?: i915_active_retire_noop;
|
|
}
|
|
|
|
#define INIT_ACTIVE_REQUEST(name) i915_active_request_init((name), NULL, NULL)
|
|
|
|
/**
|
|
* i915_active_request_set - updates the tracker to watch the current request
|
|
* @active - the active tracker
|
|
* @request - the request to watch
|
|
*
|
|
* __i915_active_request_set() watches the given @request for completion. Whilst
|
|
* that @request is busy, the @active reports busy. When that @request is
|
|
* retired, the @active tracker is updated to report idle.
|
|
*/
|
|
static inline void
|
|
__i915_active_request_set(struct i915_active_request *active,
|
|
struct i915_request *request)
|
|
{
|
|
list_move(&active->link, &request->active_list);
|
|
rcu_assign_pointer(active->request, request);
|
|
}
|
|
|
|
int __must_check
|
|
i915_active_request_set(struct i915_active_request *active,
|
|
struct i915_request *rq);
|
|
|
|
/**
|
|
* i915_active_request_set_retire_fn - updates the retirement callback
|
|
* @active - the active tracker
|
|
* @fn - the routine called when the request is retired
|
|
* @mutex - struct_mutex used to guard retirements
|
|
*
|
|
* i915_active_request_set_retire_fn() updates the function pointer that
|
|
* is called when the final request associated with the @active tracker
|
|
* is retired.
|
|
*/
|
|
static inline void
|
|
i915_active_request_set_retire_fn(struct i915_active_request *active,
|
|
i915_active_retire_fn fn,
|
|
struct mutex *mutex)
|
|
{
|
|
lockdep_assert_held(mutex);
|
|
active->retire = fn ?: i915_active_retire_noop;
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_raw - return the active request
|
|
* @active - the active tracker
|
|
*
|
|
* i915_active_request_raw() returns the current request being tracked, or NULL.
|
|
* It does not obtain a reference on the request for the caller, so the caller
|
|
* must hold struct_mutex.
|
|
*/
|
|
static inline struct i915_request *
|
|
i915_active_request_raw(const struct i915_active_request *active,
|
|
struct mutex *mutex)
|
|
{
|
|
return rcu_dereference_protected(active->request,
|
|
lockdep_is_held(mutex));
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_peek - report the active request being monitored
|
|
* @active - the active tracker
|
|
*
|
|
* i915_active_request_peek() returns the current request being tracked if
|
|
* still active, or NULL. It does not obtain a reference on the request
|
|
* for the caller, so the caller must hold struct_mutex.
|
|
*/
|
|
static inline struct i915_request *
|
|
i915_active_request_peek(const struct i915_active_request *active,
|
|
struct mutex *mutex)
|
|
{
|
|
struct i915_request *request;
|
|
|
|
request = i915_active_request_raw(active, mutex);
|
|
if (!request || i915_request_completed(request))
|
|
return NULL;
|
|
|
|
return request;
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_get - return a reference to the active request
|
|
* @active - the active tracker
|
|
*
|
|
* i915_active_request_get() returns a reference to the active request, or NULL
|
|
* if the active tracker is idle. The caller must hold struct_mutex.
|
|
*/
|
|
static inline struct i915_request *
|
|
i915_active_request_get(const struct i915_active_request *active,
|
|
struct mutex *mutex)
|
|
{
|
|
return i915_request_get(i915_active_request_peek(active, mutex));
|
|
}
|
|
|
|
/**
|
|
* __i915_active_request_get_rcu - return a reference to the active request
|
|
* @active - the active tracker
|
|
*
|
|
* __i915_active_request_get() returns a reference to the active request,
|
|
* or NULL if the active tracker is idle. The caller must hold the RCU read
|
|
* lock, but the returned pointer is safe to use outside of RCU.
|
|
*/
|
|
static inline struct i915_request *
|
|
__i915_active_request_get_rcu(const struct i915_active_request *active)
|
|
{
|
|
/*
|
|
* Performing a lockless retrieval of the active request is super
|
|
* tricky. SLAB_TYPESAFE_BY_RCU merely guarantees that the backing
|
|
* slab of request objects will not be freed whilst we hold the
|
|
* RCU read lock. It does not guarantee that the request itself
|
|
* will not be freed and then *reused*. Viz,
|
|
*
|
|
* Thread A Thread B
|
|
*
|
|
* rq = active.request
|
|
* retire(rq) -> free(rq);
|
|
* (rq is now first on the slab freelist)
|
|
* active.request = NULL
|
|
*
|
|
* rq = new submission on a new object
|
|
* ref(rq)
|
|
*
|
|
* To prevent the request from being reused whilst the caller
|
|
* uses it, we take a reference like normal. Whilst acquiring
|
|
* the reference we check that it is not in a destroyed state
|
|
* (refcnt == 0). That prevents the request being reallocated
|
|
* whilst the caller holds on to it. To check that the request
|
|
* was not reallocated as we acquired the reference we have to
|
|
* check that our request remains the active request across
|
|
* the lookup, in the same manner as a seqlock. The visibility
|
|
* of the pointer versus the reference counting is controlled
|
|
* by using RCU barriers (rcu_dereference and rcu_assign_pointer).
|
|
*
|
|
* In the middle of all that, we inspect whether the request is
|
|
* complete. Retiring is lazy so the request may be completed long
|
|
* before the active tracker is updated. Querying whether the
|
|
* request is complete is far cheaper (as it involves no locked
|
|
* instructions setting cachelines to exclusive) than acquiring
|
|
* the reference, so we do it first. The RCU read lock ensures the
|
|
* pointer dereference is valid, but does not ensure that the
|
|
* seqno nor HWS is the right one! However, if the request was
|
|
* reallocated, that means the active tracker's request was complete.
|
|
* If the new request is also complete, then both are and we can
|
|
* just report the active tracker is idle. If the new request is
|
|
* incomplete, then we acquire a reference on it and check that
|
|
* it remained the active request.
|
|
*
|
|
* It is then imperative that we do not zero the request on
|
|
* reallocation, so that we can chase the dangling pointers!
|
|
* See i915_request_alloc().
|
|
*/
|
|
do {
|
|
struct i915_request *request;
|
|
|
|
request = rcu_dereference(active->request);
|
|
if (!request || i915_request_completed(request))
|
|
return NULL;
|
|
|
|
/*
|
|
* An especially silly compiler could decide to recompute the
|
|
* result of i915_request_completed, more specifically
|
|
* re-emit the load for request->fence.seqno. A race would catch
|
|
* a later seqno value, which could flip the result from true to
|
|
* false. Which means part of the instructions below might not
|
|
* be executed, while later on instructions are executed. Due to
|
|
* barriers within the refcounting the inconsistency can't reach
|
|
* past the call to i915_request_get_rcu, but not executing
|
|
* that while still executing i915_request_put() creates
|
|
* havoc enough. Prevent this with a compiler barrier.
|
|
*/
|
|
barrier();
|
|
|
|
request = i915_request_get_rcu(request);
|
|
|
|
/*
|
|
* What stops the following rcu_access_pointer() from occurring
|
|
* before the above i915_request_get_rcu()? If we were
|
|
* to read the value before pausing to get the reference to
|
|
* the request, we may not notice a change in the active
|
|
* tracker.
|
|
*
|
|
* The rcu_access_pointer() is a mere compiler barrier, which
|
|
* means both the CPU and compiler are free to perform the
|
|
* memory read without constraint. The compiler only has to
|
|
* ensure that any operations after the rcu_access_pointer()
|
|
* occur afterwards in program order. This means the read may
|
|
* be performed earlier by an out-of-order CPU, or adventurous
|
|
* compiler.
|
|
*
|
|
* The atomic operation at the heart of
|
|
* i915_request_get_rcu(), see dma_fence_get_rcu(), is
|
|
* atomic_inc_not_zero() which is only a full memory barrier
|
|
* when successful. That is, if i915_request_get_rcu()
|
|
* returns the request (and so with the reference counted
|
|
* incremented) then the following read for rcu_access_pointer()
|
|
* must occur after the atomic operation and so confirm
|
|
* that this request is the one currently being tracked.
|
|
*
|
|
* The corresponding write barrier is part of
|
|
* rcu_assign_pointer().
|
|
*/
|
|
if (!request || request == rcu_access_pointer(active->request))
|
|
return rcu_pointer_handoff(request);
|
|
|
|
i915_request_put(request);
|
|
} while (1);
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_get_unlocked - return a reference to the active request
|
|
* @active - the active tracker
|
|
*
|
|
* i915_active_request_get_unlocked() returns a reference to the active request,
|
|
* or NULL if the active tracker is idle. The reference is obtained under RCU,
|
|
* so no locking is required by the caller.
|
|
*
|
|
* The reference should be freed with i915_request_put().
|
|
*/
|
|
static inline struct i915_request *
|
|
i915_active_request_get_unlocked(const struct i915_active_request *active)
|
|
{
|
|
struct i915_request *request;
|
|
|
|
rcu_read_lock();
|
|
request = __i915_active_request_get_rcu(active);
|
|
rcu_read_unlock();
|
|
|
|
return request;
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_isset - report whether the active tracker is assigned
|
|
* @active - the active tracker
|
|
*
|
|
* i915_active_request_isset() returns true if the active tracker is currently
|
|
* assigned to a request. Due to the lazy retiring, that request may be idle
|
|
* and this may report stale information.
|
|
*/
|
|
static inline bool
|
|
i915_active_request_isset(const struct i915_active_request *active)
|
|
{
|
|
return rcu_access_pointer(active->request);
|
|
}
|
|
|
|
/**
|
|
* i915_active_request_retire - waits until the request is retired
|
|
* @active - the active request on which to wait
|
|
*
|
|
* i915_active_request_retire() waits until the request is completed,
|
|
* and then ensures that at least the retirement handler for this
|
|
* @active tracker is called before returning. If the @active
|
|
* tracker is idle, the function returns immediately.
|
|
*/
|
|
static inline int __must_check
|
|
i915_active_request_retire(struct i915_active_request *active,
|
|
struct mutex *mutex)
|
|
{
|
|
struct i915_request *request;
|
|
long ret;
|
|
|
|
request = i915_active_request_raw(active, mutex);
|
|
if (!request)
|
|
return 0;
|
|
|
|
ret = i915_request_wait(request,
|
|
I915_WAIT_INTERRUPTIBLE | I915_WAIT_LOCKED,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
list_del_init(&active->link);
|
|
RCU_INIT_POINTER(active->request, NULL);
|
|
|
|
active->retire(active, request);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* GPU activity tracking
|
|
*
|
|
* Each set of commands submitted to the GPU compromises a single request that
|
|
* signals a fence upon completion. struct i915_request combines the
|
|
* command submission, scheduling and fence signaling roles. If we want to see
|
|
* if a particular task is complete, we need to grab the fence (struct
|
|
* i915_request) for that task and check or wait for it to be signaled. More
|
|
* often though we want to track the status of a bunch of tasks, for example
|
|
* to wait for the GPU to finish accessing some memory across a variety of
|
|
* different command pipelines from different clients. We could choose to
|
|
* track every single request associated with the task, but knowing that
|
|
* each request belongs to an ordered timeline (later requests within a
|
|
* timeline must wait for earlier requests), we need only track the
|
|
* latest request in each timeline to determine the overall status of the
|
|
* task.
|
|
*
|
|
* struct i915_active provides this tracking across timelines. It builds a
|
|
* composite shared-fence, and is updated as new work is submitted to the task,
|
|
* forming a snapshot of the current status. It should be embedded into the
|
|
* different resources that need to track their associated GPU activity to
|
|
* provide a callback when that GPU activity has ceased, or otherwise to
|
|
* provide a serialisation point either for request submission or for CPU
|
|
* synchronisation.
|
|
*/
|
|
|
|
void i915_active_init(struct drm_i915_private *i915,
|
|
struct i915_active *ref,
|
|
void (*retire)(struct i915_active *ref));
|
|
|
|
int i915_active_ref(struct i915_active *ref,
|
|
u64 timeline,
|
|
struct i915_request *rq);
|
|
|
|
int i915_active_wait(struct i915_active *ref);
|
|
|
|
int i915_request_await_active(struct i915_request *rq,
|
|
struct i915_active *ref);
|
|
int i915_request_await_active_request(struct i915_request *rq,
|
|
struct i915_active_request *active);
|
|
|
|
bool i915_active_acquire(struct i915_active *ref);
|
|
|
|
static inline void i915_active_cancel(struct i915_active *ref)
|
|
{
|
|
GEM_BUG_ON(ref->count != 1);
|
|
ref->count = 0;
|
|
}
|
|
|
|
void i915_active_release(struct i915_active *ref);
|
|
|
|
static inline bool
|
|
i915_active_is_idle(const struct i915_active *ref)
|
|
{
|
|
return !ref->count;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
|
|
void i915_active_fini(struct i915_active *ref);
|
|
#else
|
|
static inline void i915_active_fini(struct i915_active *ref) { }
|
|
#endif
|
|
|
|
#endif /* _I915_ACTIVE_H_ */
|