linux/drivers/gpu/drm/i915/intel_dp.c

7463 lines
208 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/notifier.h>
#include <linux/reboot.h>
#include <asm/byteorder.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_dp_helper.h>
#include <drm/drm_edid.h>
#include <drm/drm_hdcp.h>
#include <drm/drm_probe_helper.h>
#include "intel_drv.h"
#include <drm/i915_drm.h>
#include "i915_drv.h"
#define DP_DPRX_ESI_LEN 14
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440
#define DP_DSC_MIN_SUPPORTED_BPC 8
#define DP_DSC_MAX_SUPPORTED_BPC 10
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE 2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
#define DP_DSC_FEC_OVERHEAD_FACTOR 976
/* Compliance test status bits */
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
struct dp_link_dpll {
int clock;
struct dpll dpll;
};
static const struct dp_link_dpll g4x_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};
static const struct dp_link_dpll pch_dpll[] = {
{ 162000,
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
{ 270000,
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};
static const struct dp_link_dpll vlv_dpll[] = {
{ 162000,
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
{ 270000,
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};
/*
* CHV supports eDP 1.4 that have more link rates.
* Below only provides the fixed rate but exclude variable rate.
*/
static const struct dp_link_dpll chv_dpll[] = {
/*
* CHV requires to program fractional division for m2.
* m2 is stored in fixed point format using formula below
* (m2_int << 22) | m2_fraction
*/
{ 162000, /* m2_int = 32, m2_fraction = 1677722 */
{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
{ 270000, /* m2_int = 27, m2_fraction = 0 */
{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
/* With Single pipe configuration, HW is capable of supporting maximum
* of 4 slices per line.
*/
static const u8 valid_dsc_slicecount[] = {1, 2, 4};
/**
* intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
bool intel_dp_is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}
static void intel_dp_link_down(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state);
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state);
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
enum pipe pipe);
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
static const int dp_rates[] = {
162000, 270000, 540000, 810000
};
int i, max_rate;
max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
if (dp_rates[i] > max_rate)
break;
intel_dp->sink_rates[i] = dp_rates[i];
}
intel_dp->num_sink_rates = i;
}
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
int i;
/* Limit results by potentially reduced max rate */
for (i = 0; i < len; i++) {
if (rates[len - i - 1] <= max_rate)
return len - i;
}
return 0;
}
/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
int max_rate)
{
return intel_dp_rate_limit_len(intel_dp->common_rates,
intel_dp->num_common_rates, max_rate);
}
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
{
return intel_dp->common_rates[intel_dp->num_common_rates - 1];
}
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
u32 lane_info;
if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
return 4;
lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
DP_LANE_ASSIGNMENT_SHIFT(tc_port);
switch (lane_info) {
default:
MISSING_CASE(lane_info);
case 1:
case 2:
case 4:
case 8:
return 1;
case 3:
case 12:
return 2;
case 15:
return 4;
}
}
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
int source_max = intel_dig_port->max_lanes;
int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
return min3(source_max, sink_max, fia_max);
}
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
return intel_dp->max_link_lane_count;
}
int
intel_dp_link_required(int pixel_clock, int bpp)
{
/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
return DIV_ROUND_UP(pixel_clock * bpp, 8);
}
int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
* link rate that is generally expressed in Gbps. Since, 8 bits of data
* is transmitted every LS_Clk per lane, there is no need to account for
* the channel encoding that is done in the PHY layer here.
*/
return max_link_clock * max_lanes;
}
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &intel_dig_port->base;
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int max_dotclk = dev_priv->max_dotclk_freq;
int ds_max_dotclk;
int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type != DP_DS_PORT_TYPE_VGA)
return max_dotclk;
ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
intel_dp->downstream_ports);
if (ds_max_dotclk != 0)
max_dotclk = min(max_dotclk, ds_max_dotclk);
return max_dotclk;
}
static int cnl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
/* Low voltage SKUs are limited to max of 5.4G */
if (voltage == VOLTAGE_INFO_0_85V)
return 540000;
/* For this SKU 8.1G is supported in all ports */
if (IS_CNL_WITH_PORT_F(dev_priv))
return 810000;
/* For other SKUs, max rate on ports A and D is 5.4G */
if (port == PORT_A || port == PORT_D)
return 540000;
return 810000;
}
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
enum port port = dig_port->base.port;
if (intel_port_is_combophy(dev_priv, port) &&
!intel_dp_is_edp(intel_dp))
return 540000;
return 810000;
}
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
{
/* The values must be in increasing order */
static const int cnl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
};
static const int bxt_rates[] = {
162000, 216000, 243000, 270000, 324000, 432000, 540000
};
static const int skl_rates[] = {
162000, 216000, 270000, 324000, 432000, 540000
};
static const int hsw_rates[] = {
162000, 270000, 540000
};
static const int g4x_rates[] = {
162000, 270000
};
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
const struct ddi_vbt_port_info *info =
&dev_priv->vbt.ddi_port_info[dig_port->base.port];
const int *source_rates;
int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
/* This should only be done once */
WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
if (INTEL_GEN(dev_priv) >= 10) {
source_rates = cnl_rates;
size = ARRAY_SIZE(cnl_rates);
if (IS_GEN(dev_priv, 10))
max_rate = cnl_max_source_rate(intel_dp);
else
max_rate = icl_max_source_rate(intel_dp);
} else if (IS_GEN9_LP(dev_priv)) {
source_rates = bxt_rates;
size = ARRAY_SIZE(bxt_rates);
} else if (IS_GEN9_BC(dev_priv)) {
source_rates = skl_rates;
size = ARRAY_SIZE(skl_rates);
} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
IS_BROADWELL(dev_priv)) {
source_rates = hsw_rates;
size = ARRAY_SIZE(hsw_rates);
} else {
source_rates = g4x_rates;
size = ARRAY_SIZE(g4x_rates);
}
if (max_rate && vbt_max_rate)
max_rate = min(max_rate, vbt_max_rate);
else if (vbt_max_rate)
max_rate = vbt_max_rate;
if (max_rate)
size = intel_dp_rate_limit_len(source_rates, size, max_rate);
intel_dp->source_rates = source_rates;
intel_dp->num_source_rates = size;
}
static int intersect_rates(const int *source_rates, int source_len,
const int *sink_rates, int sink_len,
int *common_rates)
{
int i = 0, j = 0, k = 0;
while (i < source_len && j < sink_len) {
if (source_rates[i] == sink_rates[j]) {
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
return k;
common_rates[k] = source_rates[i];
++k;
++i;
++j;
} else if (source_rates[i] < sink_rates[j]) {
++i;
} else {
++j;
}
}
return k;
}
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
int i;
for (i = 0; i < len; i++)
if (rate == rates[i])
return i;
return -1;
}
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
{
WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
intel_dp->num_source_rates,
intel_dp->sink_rates,
intel_dp->num_sink_rates,
intel_dp->common_rates);
/* Paranoia, there should always be something in common. */
if (WARN_ON(intel_dp->num_common_rates == 0)) {
intel_dp->common_rates[0] = 162000;
intel_dp->num_common_rates = 1;
}
}
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
u8 lane_count)
{
/*
* FIXME: we need to synchronize the current link parameters with
* hardware readout. Currently fast link training doesn't work on
* boot-up.
*/
if (link_rate == 0 ||
link_rate > intel_dp->max_link_rate)
return false;
if (lane_count == 0 ||
lane_count > intel_dp_max_lane_count(intel_dp))
return false;
return true;
}
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
int link_rate,
u8 lane_count)
{
const struct drm_display_mode *fixed_mode =
intel_dp->attached_connector->panel.fixed_mode;
int mode_rate, max_rate;
mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
max_rate = intel_dp_max_data_rate(link_rate, lane_count);
if (mode_rate > max_rate)
return false;
return true;
}
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
int link_rate, u8 lane_count)
{
int index;
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
link_rate);
if (index > 0) {
if (intel_dp_is_edp(intel_dp) &&
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
intel_dp->common_rates[index - 1],
lane_count)) {
DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
return 0;
}
intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
intel_dp->max_link_lane_count = lane_count;
} else if (lane_count > 1) {
if (intel_dp_is_edp(intel_dp) &&
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
intel_dp_max_common_rate(intel_dp),
lane_count >> 1)) {
DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
return 0;
}
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->max_link_lane_count = lane_count >> 1;
} else {
DRM_ERROR("Link Training Unsuccessful\n");
return -1;
}
return 0;
}
static enum drm_mode_status
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
struct drm_i915_private *dev_priv = to_i915(connector->dev);
int target_clock = mode->clock;
int max_rate, mode_rate, max_lanes, max_link_clock;
int max_dotclk;
u16 dsc_max_output_bpp = 0;
u8 dsc_slice_count = 0;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
return MODE_NO_DBLESCAN;
max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
if (mode->hdisplay > fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > fixed_mode->vdisplay)
return MODE_PANEL;
target_clock = fixed_mode->clock;
}
max_link_clock = intel_dp_max_link_rate(intel_dp);
max_lanes = intel_dp_max_lane_count(intel_dp);
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
mode_rate = intel_dp_link_required(target_clock, 18);
/*
* Output bpp is stored in 6.4 format so right shift by 4 to get the
* integer value since we support only integer values of bpp.
*/
if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
if (intel_dp_is_edp(intel_dp)) {
dsc_max_output_bpp =
drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
dsc_slice_count =
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
true);
} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
dsc_max_output_bpp =
intel_dp_dsc_get_output_bpp(max_link_clock,
max_lanes,
target_clock,
mode->hdisplay) >> 4;
dsc_slice_count =
intel_dp_dsc_get_slice_count(intel_dp,
target_clock,
mode->hdisplay);
}
}
if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
target_clock > max_dotclk)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
return MODE_OK;
}
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
{
int i;
u32 v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((u32)src[i]) << ((3 - i) * 8);
return v;
}
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
bool force_disable_vdd);
static void
intel_dp_pps_init(struct intel_dp *intel_dp);
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_wakeref_t wakeref;
/*
* See intel_power_sequencer_reset() why we need
* a power domain reference here.
*/
wakeref = intel_display_power_get(dev_priv,
intel_aux_power_domain(dp_to_dig_port(intel_dp)));
mutex_lock(&dev_priv->pps_mutex);
return wakeref;
}
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
mutex_unlock(&dev_priv->pps_mutex);
intel_display_power_put(dev_priv,
intel_aux_power_domain(dp_to_dig_port(intel_dp)),
wakeref);
return 0;
}
#define with_pps_lock(dp, wf) \
for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum pipe pipe = intel_dp->pps_pipe;
bool pll_enabled, release_cl_override = false;
enum dpio_phy phy = DPIO_PHY(pipe);
enum dpio_channel ch = vlv_pipe_to_channel(pipe);
u32 DP;
if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
"skipping pipe %c power sequencer kick due to port %c being active\n",
pipe_name(pipe), port_name(intel_dig_port->base.port)))
return;
DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
pipe_name(pipe), port_name(intel_dig_port->base.port));
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
DP |= DP_PORT_WIDTH(1);
DP |= DP_LINK_TRAIN_PAT_1;
if (IS_CHERRYVIEW(dev_priv))
DP |= DP_PIPE_SEL_CHV(pipe);
else
DP |= DP_PIPE_SEL(pipe);
pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
/*
* The DPLL for the pipe must be enabled for this to work.
* So enable temporarily it if it's not already enabled.
*/
if (!pll_enabled) {
release_cl_override = IS_CHERRYVIEW(dev_priv) &&
!chv_phy_powergate_ch(dev_priv, phy, ch, true);
if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
&chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
DRM_ERROR("Failed to force on pll for pipe %c!\n",
pipe_name(pipe));
return;
}
}
/*
* Similar magic as in intel_dp_enable_port().
* We _must_ do this port enable + disable trick
* to make this power sequencer lock onto the port.
* Otherwise even VDD force bit won't work.
*/
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
if (!pll_enabled) {
vlv_force_pll_off(dev_priv, pipe);
if (release_cl_override)
chv_phy_powergate_ch(dev_priv, phy, ch, false);
}
}
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
/*
* We don't have power sequencer currently.
* Pick one that's not used by other ports.
*/
for_each_intel_dp(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
if (encoder->type == INTEL_OUTPUT_EDP) {
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
intel_dp->active_pipe != intel_dp->pps_pipe);
if (intel_dp->pps_pipe != INVALID_PIPE)
pipes &= ~(1 << intel_dp->pps_pipe);
} else {
WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
if (intel_dp->active_pipe != INVALID_PIPE)
pipes &= ~(1 << intel_dp->active_pipe);
}
}
if (pipes == 0)
return INVALID_PIPE;
return ffs(pipes) - 1;
}
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum pipe pipe;
lockdep_assert_held(&dev_priv->pps_mutex);
/* We should never land here with regular DP ports */
WARN_ON(!intel_dp_is_edp(intel_dp));
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
intel_dp->active_pipe != intel_dp->pps_pipe);
if (intel_dp->pps_pipe != INVALID_PIPE)
return intel_dp->pps_pipe;
pipe = vlv_find_free_pps(dev_priv);
/*
* Didn't find one. This should not happen since there
* are two power sequencers and up to two eDP ports.
*/
if (WARN_ON(pipe == INVALID_PIPE))
pipe = PIPE_A;
vlv_steal_power_sequencer(dev_priv, pipe);
intel_dp->pps_pipe = pipe;
DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe),
port_name(intel_dig_port->base.port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
/*
* Even vdd force doesn't work until we've made
* the power sequencer lock in on the port.
*/
vlv_power_sequencer_kick(intel_dp);
return intel_dp->pps_pipe;
}
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
int backlight_controller = dev_priv->vbt.backlight.controller;
lockdep_assert_held(&dev_priv->pps_mutex);
/* We should never land here with regular DP ports */
WARN_ON(!intel_dp_is_edp(intel_dp));
if (!intel_dp->pps_reset)
return backlight_controller;
intel_dp->pps_reset = false;
/*
* Only the HW needs to be reprogrammed, the SW state is fixed and
* has been setup during connector init.
*/
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
return backlight_controller;
}
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
enum pipe pipe);
static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(PP_STATUS(pipe)) & PP_ON;
}
static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
}
static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
return true;
}
static enum pipe
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
enum port port,
vlv_pipe_check pipe_check)
{
enum pipe pipe;
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
PANEL_PORT_SELECT_MASK;
if (port_sel != PANEL_PORT_SELECT_VLV(port))
continue;
if (!pipe_check(dev_priv, pipe))
continue;
return pipe;
}
return INVALID_PIPE;
}
static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
lockdep_assert_held(&dev_priv->pps_mutex);
/* try to find a pipe with this port selected */
/* first pick one where the panel is on */
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_pp_on);
/* didn't find one? pick one where vdd is on */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_has_vdd_on);
/* didn't find one? pick one with just the correct port */
if (intel_dp->pps_pipe == INVALID_PIPE)
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
vlv_pipe_any);
/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
if (intel_dp->pps_pipe == INVALID_PIPE) {
DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
port_name(port));
return;
}
DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
port_name(port), pipe_name(intel_dp->pps_pipe));
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
}
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
!IS_GEN9_LP(dev_priv)))
return;
/*
* We can't grab pps_mutex here due to deadlock with power_domain
* mutex when power_domain functions are called while holding pps_mutex.
* That also means that in order to use pps_pipe the code needs to
* hold both a power domain reference and pps_mutex, and the power domain
* reference get/put must be done while _not_ holding pps_mutex.
* pps_{lock,unlock}() do these steps in the correct order, so one
* should use them always.
*/
for_each_intel_dp(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (encoder->type != INTEL_OUTPUT_EDP)
continue;
if (IS_GEN9_LP(dev_priv))
intel_dp->pps_reset = true;
else
intel_dp->pps_pipe = INVALID_PIPE;
}
}
struct pps_registers {
i915_reg_t pp_ctrl;
i915_reg_t pp_stat;
i915_reg_t pp_on;
i915_reg_t pp_off;
i915_reg_t pp_div;
};
static void intel_pps_get_registers(struct intel_dp *intel_dp,
struct pps_registers *regs)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
int pps_idx = 0;
memset(regs, 0, sizeof(*regs));
if (IS_GEN9_LP(dev_priv))
pps_idx = bxt_power_sequencer_idx(intel_dp);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
pps_idx = vlv_power_sequencer_pipe(intel_dp);
regs->pp_ctrl = PP_CONTROL(pps_idx);
regs->pp_stat = PP_STATUS(pps_idx);
regs->pp_on = PP_ON_DELAYS(pps_idx);
regs->pp_off = PP_OFF_DELAYS(pps_idx);
/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
regs->pp_div = INVALID_MMIO_REG;
else
regs->pp_div = PP_DIVISOR(pps_idx);
}
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
{
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
return regs.pp_ctrl;
}
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
{
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
return regs.pp_stat;
}
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
void *unused)
{
struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
edp_notifier);
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_wakeref_t wakeref;
if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
return 0;
with_pps_lock(intel_dp, wakeref) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
i915_reg_t pp_ctrl_reg, pp_div_reg;
u32 pp_div;
pp_ctrl_reg = PP_CONTROL(pipe);
pp_div_reg = PP_DIVISOR(pipe);
pp_div = I915_READ(pp_div_reg);
pp_div &= PP_REFERENCE_DIVIDER_MASK;
/* 0x1F write to PP_DIV_REG sets max cycle delay */
I915_WRITE(pp_div_reg, pp_div | 0x1F);
I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
msleep(intel_dp->panel_power_cycle_delay);
}
}
return 0;
}
static bool edp_have_panel_power(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
lockdep_assert_held(&dev_priv->pps_mutex);
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
}
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
lockdep_assert_held(&dev_priv->pps_mutex);
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp->pps_pipe == INVALID_PIPE)
return false;
return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
}
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (!intel_dp_is_edp(intel_dp))
return;
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
WARN(1, "eDP powered off while attempting aux channel communication.\n");
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
I915_READ(_pp_stat_reg(intel_dp)),
I915_READ(_pp_ctrl_reg(intel_dp)));
}
}
static u32
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
u32 status;
bool done;
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
msecs_to_jiffies_timeout(10));
/* just trace the final value */
trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
if (!done)
DRM_ERROR("dp aux hw did not signal timeout!\n");
#undef C
return status;
}
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (index)
return 0;
/*
* The clock divider is based off the hrawclk, and would like to run at
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
*/
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
if (index)
return 0;
/*
* The clock divider is based off the cdclk or PCH rawclk, and would
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
* divide by 2000 and use that
*/
if (dig_port->aux_ch == AUX_CH_A)
return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
else
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
}
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
/* Workaround for non-ULT HSW */
switch (index) {
case 0: return 63;
case 1: return 72;
default: return 0;
}
}
return ilk_get_aux_clock_divider(intel_dp, index);
}
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
/*
* SKL doesn't need us to program the AUX clock divider (Hardware will
* derive the clock from CDCLK automatically). We still implement the
* get_aux_clock_divider vfunc to plug-in into the existing code.
*/
return index ? 0 : 1;
}
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
int send_bytes,
u32 aux_clock_divider)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
u32 precharge, timeout;
if (IS_GEN(dev_priv, 6))
precharge = 3;
else
precharge = 5;
if (IS_BROADWELL(dev_priv))
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
else
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
return DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_INTERRUPT |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
timeout |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
}
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
int send_bytes,
u32 unused)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
u32 ret;
ret = DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_INTERRUPT |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_TIME_OUT_MAX |
DP_AUX_CH_CTL_RECEIVE_ERROR |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
if (intel_dig_port->tc_type == TC_PORT_TBT)
ret |= DP_AUX_CH_CTL_TBT_IO;
return ret;
}
static int
intel_dp_aux_xfer(struct intel_dp *intel_dp,
const u8 *send, int send_bytes,
u8 *recv, int recv_size,
u32 aux_send_ctl_flags)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
i915_reg_t ch_ctl, ch_data[5];
u32 aux_clock_divider;
intel_wakeref_t wakeref;
int i, ret, recv_bytes;
int try, clock = 0;
u32 status;
bool vdd;
ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
for (i = 0; i < ARRAY_SIZE(ch_data); i++)
ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
wakeref = pps_lock(intel_dp);
/*
* We will be called with VDD already enabled for dpcd/edid/oui reads.
* In such cases we want to leave VDD enabled and it's up to upper layers
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
* ourselves.
*/
vdd = edp_panel_vdd_on(intel_dp);
/* dp aux is extremely sensitive to irq latency, hence request the
* lowest possible wakeup latency and so prevent the cpu from going into
* deep sleep states.
*/
pm_qos_update_request(&dev_priv->pm_qos, 0);
intel_dp_check_edp(intel_dp);
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = I915_READ_NOTRACE(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
msleep(1);
}
/* just trace the final value */
trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
if (try == 3) {
static u32 last_status = -1;
const u32 status = I915_READ(ch_ctl);
if (status != last_status) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
status);
last_status = status;
}
ret = -EBUSY;
goto out;
}
/* Only 5 data registers! */
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
ret = -E2BIG;
goto out;
}
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
send_bytes,
aux_clock_divider);
send_ctl |= aux_send_ctl_flags;
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data[i >> 2],
intel_dp_pack_aux(send + i,
send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, send_ctl);
status = intel_dp_aux_wait_done(intel_dp);
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
* 400us delay required for errors and timeouts
* Timeout errors from the HW already meet this
* requirement so skip to next iteration
*/
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
continue;
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
usleep_range(400, 500);
continue;
}
if (status & DP_AUX_CH_CTL_DONE)
goto done;
}
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
ret = -EBUSY;
goto out;
}
done:
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
ret = -EIO;
goto out;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
ret = -ETIMEDOUT;
goto out;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
/*
* By BSpec: "Message sizes of 0 or >20 are not allowed."
* We have no idea of what happened so we return -EBUSY so
* drm layer takes care for the necessary retries.
*/
if (recv_bytes == 0 || recv_bytes > 20) {
DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
recv_bytes);
ret = -EBUSY;
goto out;
}
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
recv + i, recv_bytes - i);
ret = recv_bytes;
out:
pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
if (vdd)
edp_panel_vdd_off(intel_dp, false);
pps_unlock(intel_dp, wakeref);
return ret;
}
#define BARE_ADDRESS_SIZE 3
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
const struct drm_dp_aux_msg *msg)
{
txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
txbuf[1] = (msg->address >> 8) & 0xff;
txbuf[2] = msg->address & 0xff;
txbuf[3] = msg->size - 1;
}
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
{
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
u8 txbuf[20], rxbuf[20];
size_t txsize, rxsize;
int ret;
intel_dp_aux_header(txbuf, msg);
switch (msg->request & ~DP_AUX_I2C_MOT) {
case DP_AUX_NATIVE_WRITE:
case DP_AUX_I2C_WRITE:
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
rxsize = 2; /* 0 or 1 data bytes */
if (WARN_ON(txsize > 20))
return -E2BIG;
WARN_ON(!msg->buffer != !msg->size);
if (msg->buffer)
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, 0);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
if (ret > 1) {
/* Number of bytes written in a short write. */
ret = clamp_t(int, rxbuf[1], 0, msg->size);
} else {
/* Return payload size. */
ret = msg->size;
}
}
break;
case DP_AUX_NATIVE_READ:
case DP_AUX_I2C_READ:
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
rxsize = msg->size + 1;
if (WARN_ON(rxsize > 20))
return -E2BIG;
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
rxbuf, rxsize, 0);
if (ret > 0) {
msg->reply = rxbuf[0] >> 4;
/*
* Assume happy day, and copy the data. The caller is
* expected to check msg->reply before touching it.
*
* Return payload size.
*/
ret--;
memcpy(msg->buffer, rxbuf + 1, ret);
}
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_B);
}
}
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_B, index);
}
}
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_CTL(aux_ch);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
return DP_AUX_CH_DATA(aux_ch, index);
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
return PCH_DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_CTL(aux_ch);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_CTL(AUX_CH_A);
}
}
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
enum aux_ch aux_ch = dig_port->aux_ch;
switch (aux_ch) {
case AUX_CH_A:
case AUX_CH_B:
case AUX_CH_C:
case AUX_CH_D:
case AUX_CH_E:
case AUX_CH_F:
return DP_AUX_CH_DATA(aux_ch, index);
default:
MISSING_CASE(aux_ch);
return DP_AUX_CH_DATA(AUX_CH_A, index);
}
}
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
kfree(intel_dp->aux.name);
}
static void
intel_dp_aux_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
if (INTEL_GEN(dev_priv) >= 9) {
intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
intel_dp->aux_ch_data_reg = skl_aux_data_reg;
} else if (HAS_PCH_SPLIT(dev_priv)) {
intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
} else {
intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
}
if (INTEL_GEN(dev_priv) >= 9)
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
else if (HAS_PCH_SPLIT(dev_priv))
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
else
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
if (INTEL_GEN(dev_priv) >= 9)
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
else
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
drm_dp_aux_init(&intel_dp->aux);
/* Failure to allocate our preferred name is not critical */
intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
port_name(encoder->port));
intel_dp->aux.transfer = intel_dp_aux_transfer;
}
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
{
int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
return max_rate >= 540000;
}
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
return max_rate >= 810000;
}
static void
intel_dp_set_clock(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
const struct dp_link_dpll *divisor = NULL;
int i, count = 0;
if (IS_G4X(dev_priv)) {
divisor = g4x_dpll;
count = ARRAY_SIZE(g4x_dpll);
} else if (HAS_PCH_SPLIT(dev_priv)) {
divisor = pch_dpll;
count = ARRAY_SIZE(pch_dpll);
} else if (IS_CHERRYVIEW(dev_priv)) {
divisor = chv_dpll;
count = ARRAY_SIZE(chv_dpll);
} else if (IS_VALLEYVIEW(dev_priv)) {
divisor = vlv_dpll;
count = ARRAY_SIZE(vlv_dpll);
}
if (divisor && count) {
for (i = 0; i < count; i++) {
if (pipe_config->port_clock == divisor[i].clock) {
pipe_config->dpll = divisor[i].dpll;
pipe_config->clock_set = true;
break;
}
}
}
}
static void snprintf_int_array(char *str, size_t len,
const int *array, int nelem)
{
int i;
str[0] = '\0';
for (i = 0; i < nelem; i++) {
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
if (r >= len)
return;
str += r;
len -= r;
}
}
static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
char str[128]; /* FIXME: too big for stack? */
if ((drm_debug & DRM_UT_KMS) == 0)
return;
snprintf_int_array(str, sizeof(str),
intel_dp->source_rates, intel_dp->num_source_rates);
DRM_DEBUG_KMS("source rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->sink_rates, intel_dp->num_sink_rates);
DRM_DEBUG_KMS("sink rates: %s\n", str);
snprintf_int_array(str, sizeof(str),
intel_dp->common_rates, intel_dp->num_common_rates);
DRM_DEBUG_KMS("common rates: %s\n", str);
}
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
int len;
len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
if (WARN_ON(len <= 0))
return 162000;
return intel_dp->common_rates[len - 1];
}
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
int i = intel_dp_rate_index(intel_dp->sink_rates,
intel_dp->num_sink_rates, rate);
if (WARN_ON(i < 0))
i = 0;
return i;
}
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
u8 *link_bw, u8 *rate_select)
{
/* eDP 1.4 rate select method. */
if (intel_dp->use_rate_select) {
*link_bw = 0;
*rate_select =
intel_dp_rate_select(intel_dp, port_clock);
} else {
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
*rate_select = 0;
}
}
struct link_config_limits {
int min_clock, max_clock;
int min_lane_count, max_lane_count;
int min_bpp, max_bpp;
};
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
return INTEL_GEN(dev_priv) >= 11 &&
pipe_config->cpu_transcoder != TRANSCODER_A;
}
static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
drm_dp_sink_supports_fec(intel_dp->fec_capable);
}
static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
return INTEL_GEN(dev_priv) >= 10 &&
pipe_config->cpu_transcoder != TRANSCODER_A;
}
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
return false;
return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_connector *intel_connector = intel_dp->attached_connector;
int bpp, bpc;
bpp = pipe_config->pipe_bpp;
bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
if (bpc > 0)
bpp = min(bpp, 3*bpc);
if (intel_dp_is_edp(intel_dp)) {
/* Get bpp from vbt only for panels that dont have bpp in edid */
if (intel_connector->base.display_info.bpc == 0 &&
dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
dev_priv->vbt.edp.bpp);
bpp = dev_priv->vbt.edp.bpp;
}
}
return bpp;
}
/* Adjust link config limits based on compliance test requests. */
static void
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct link_config_limits *limits)
{
/* For DP Compliance we override the computed bpp for the pipe */
if (intel_dp->compliance.test_data.bpc != 0) {
int bpp = 3 * intel_dp->compliance.test_data.bpc;
limits->min_bpp = limits->max_bpp = bpp;
pipe_config->dither_force_disable = bpp == 6 * 3;
DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
}
/* Use values requested by Compliance Test Request */
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
int index;
/* Validate the compliance test data since max values
* might have changed due to link train fallback.
*/
if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
intel_dp->compliance.test_lane_count)) {
index = intel_dp_rate_index(intel_dp->common_rates,
intel_dp->num_common_rates,
intel_dp->compliance.test_link_rate);
if (index >= 0)
limits->min_clock = limits->max_clock = index;
limits->min_lane_count = limits->max_lane_count =
intel_dp->compliance.test_lane_count;
}
}
}
/* Optimize link config in order: max bpp, min clock, min lanes */
static int
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
const struct link_config_limits *limits)
{
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int bpp, clock, lane_count;
int mode_rate, link_clock, link_avail;
for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
bpp);
for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
link_clock = intel_dp->common_rates[clock];
link_avail = intel_dp_max_data_rate(link_clock,
lane_count);
if (mode_rate <= link_avail) {
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = link_clock;
return 0;
}
}
}
}
return -EINVAL;
}
/* Optimize link config in order: max bpp, min lanes, min clock */
static int
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
const struct link_config_limits *limits)
{
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
int bpp, clock, lane_count;
int mode_rate, link_clock, link_avail;
for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
bpp);
for (lane_count = limits->min_lane_count;
lane_count <= limits->max_lane_count;
lane_count <<= 1) {
for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
link_clock = intel_dp->common_rates[clock];
link_avail = intel_dp_max_data_rate(link_clock,
lane_count);
if (mode_rate <= link_avail) {
pipe_config->lane_count = lane_count;
pipe_config->pipe_bpp = bpp;
pipe_config->port_clock = link_clock;
return 0;
}
}
}
}
return -EINVAL;
}
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
int i, num_bpc;
u8 dsc_bpc[3] = {0};
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
dsc_bpc);
for (i = 0; i < num_bpc; i++) {
if (dsc_max_bpc >= dsc_bpc[i])
return dsc_bpc[i] * 3;
}
return 0;
}
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state,
struct link_config_limits *limits)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
u8 dsc_max_bpc;
int pipe_bpp;
int ret;
if (!intel_dp_supports_dsc(intel_dp, pipe_config))
return -EINVAL;
dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
conn_state->max_requested_bpc);
pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
return -EINVAL;
}
/*
* For now enable DSC for max bpp, max link rate, max lane count.
* Optimize this later for the minimum possible link rate/lane count
* with DSC enabled for the requested mode.
*/
pipe_config->pipe_bpp = pipe_bpp;
pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
pipe_config->lane_count = limits->max_lane_count;
if (intel_dp_is_edp(intel_dp)) {
pipe_config->dsc_params.compressed_bpp =
min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
pipe_config->pipe_bpp);
pipe_config->dsc_params.slice_count =
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
true);
} else {
u16 dsc_max_output_bpp;
u8 dsc_dp_slice_count;
dsc_max_output_bpp =
intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
pipe_config->lane_count,
adjusted_mode->crtc_clock,
adjusted_mode->crtc_hdisplay);
dsc_dp_slice_count =
intel_dp_dsc_get_slice_count(intel_dp,
adjusted_mode->crtc_clock,
adjusted_mode->crtc_hdisplay);
if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
return -EINVAL;
}
pipe_config->dsc_params.compressed_bpp = min_t(u16,
dsc_max_output_bpp >> 4,
pipe_config->pipe_bpp);
pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
}
/*
* VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
* is greater than the maximum Cdclock and if slice count is even
* then we need to use 2 VDSC instances.
*/
if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
if (pipe_config->dsc_params.slice_count > 1) {
pipe_config->dsc_params.dsc_split = true;
} else {
DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
return -EINVAL;
}
}
ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
if (ret < 0) {
DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
"Compressed BPP = %d\n",
pipe_config->pipe_bpp,
pipe_config->dsc_params.compressed_bpp);
return ret;
}
pipe_config->dsc_params.compression_enable = true;
DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
"Compressed Bpp = %d Slice Count = %d\n",
pipe_config->pipe_bpp,
pipe_config->dsc_params.compressed_bpp,
pipe_config->dsc_params.slice_count);
return 0;
}
static int
intel_dp_compute_link_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct link_config_limits limits;
int common_len;
int ret;
common_len = intel_dp_common_len_rate_limit(intel_dp,
intel_dp->max_link_rate);
/* No common link rates between source and sink */
WARN_ON(common_len <= 0);
limits.min_clock = 0;
limits.max_clock = common_len - 1;
limits.min_lane_count = 1;
limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
limits.min_bpp = 6 * 3;
limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
/*
* Use the maximum clock and number of lanes the eDP panel
* advertizes being capable of. The eDP 1.3 and earlier panels
* are generally designed to support only a single clock and
* lane configuration, and typically these values correspond to
* the native resolution of the panel. With eDP 1.4 rate select
* and DSC, this is decreasingly the case, and we need to be
* able to select less than maximum link config.
*/
limits.min_lane_count = limits.max_lane_count;
limits.min_clock = limits.max_clock;
}
intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
DRM_DEBUG_KMS("DP link computation with max lane count %i "
"max rate %d max bpp %d pixel clock %iKHz\n",
limits.max_lane_count,
intel_dp->common_rates[limits.max_clock],
limits.max_bpp, adjusted_mode->crtc_clock);
if (intel_dp_is_edp(intel_dp))
/*
* Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
* section A.1: "It is recommended that the minimum number of
* lanes be used, using the minimum link rate allowed for that
* lane configuration."
*
* Note that we use the max clock and lane count for eDP 1.3 and
* earlier, and fast vs. wide is irrelevant.
*/
ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
&limits);
else
/* Optimize for slow and wide. */
ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
&limits);
/* enable compression if the mode doesn't fit available BW */
DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
if (ret || intel_dp->force_dsc_en) {
ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
conn_state, &limits);
if (ret < 0)
return ret;
}
if (pipe_config->dsc_params.compression_enable) {
DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
pipe_config->lane_count, pipe_config->port_clock,
pipe_config->pipe_bpp,
pipe_config->dsc_params.compressed_bpp);
DRM_DEBUG_KMS("DP link rate required %i available %i\n",
intel_dp_link_required(adjusted_mode->crtc_clock,
pipe_config->dsc_params.compressed_bpp),
intel_dp_max_data_rate(pipe_config->port_clock,
pipe_config->lane_count));
} else {
DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
pipe_config->lane_count, pipe_config->port_clock,
pipe_config->pipe_bpp);
DRM_DEBUG_KMS("DP link rate required %i available %i\n",
intel_dp_link_required(adjusted_mode->crtc_clock,
pipe_config->pipe_bpp),
intel_dp_max_data_rate(pipe_config->port_clock,
pipe_config->lane_count));
}
return 0;
}
int
intel_dp_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config,
struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
enum port port = encoder->port;
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct intel_digital_connector_state *intel_conn_state =
to_intel_digital_connector_state(conn_state);
bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
DP_DPCD_QUIRK_CONSTANT_N);
int ret;
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
pipe_config->has_pch_encoder = true;
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
if (lspcon->active)
lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
pipe_config->has_drrs = false;
if (IS_G4X(dev_priv) || port == PORT_A)
pipe_config->has_audio = false;
else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
pipe_config->has_audio = intel_dp->has_audio;
else
pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
adjusted_mode);
if (INTEL_GEN(dev_priv) >= 9) {
ret = skl_update_scaler_crtc(pipe_config);
if (ret)
return ret;
}
if (HAS_GMCH(dev_priv))
intel_gmch_panel_fitting(intel_crtc, pipe_config,
conn_state->scaling_mode);
else
intel_pch_panel_fitting(intel_crtc, pipe_config,
conn_state->scaling_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
return -EINVAL;
if (HAS_GMCH(dev_priv) &&
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return -EINVAL;
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return -EINVAL;
pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
intel_dp_supports_fec(intel_dp, pipe_config);
ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
if (ret < 0)
return ret;
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
/*
* See:
* CEA-861-E - 5.1 Default Encoding Parameters
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
*/
pipe_config->limited_color_range =
pipe_config->pipe_bpp != 18 &&
drm_default_rgb_quant_range(adjusted_mode) ==
HDMI_QUANTIZATION_RANGE_LIMITED;
} else {
pipe_config->limited_color_range =
intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
}
if (!pipe_config->dsc_params.compression_enable)
intel_link_compute_m_n(pipe_config->pipe_bpp,
pipe_config->lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
&pipe_config->dp_m_n,
constant_n);
else
intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
pipe_config->lane_count,
adjusted_mode->crtc_clock,
pipe_config->port_clock,
&pipe_config->dp_m_n,
constant_n);
if (intel_connector->panel.downclock_mode != NULL &&
dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
pipe_config->has_drrs = true;
intel_link_compute_m_n(pipe_config->pipe_bpp,
pipe_config->lane_count,
intel_connector->panel.downclock_mode->clock,
pipe_config->port_clock,
&pipe_config->dp_m2_n2,
constant_n);
}
if (!HAS_DDI(dev_priv))
intel_dp_set_clock(encoder, pipe_config);
intel_psr_compute_config(intel_dp, pipe_config);
return 0;
}
void intel_dp_set_link_params(struct intel_dp *intel_dp,
int link_rate, u8 lane_count,
bool link_mst)
{
intel_dp->link_trained = false;
intel_dp->link_rate = link_rate;
intel_dp->lane_count = lane_count;
intel_dp->link_mst = link_mst;
}
static void intel_dp_prepare(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
pipe_config->lane_count,
intel_crtc_has_type(pipe_config,
INTEL_OUTPUT_DP_MST));
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
/* Split out the IBX/CPU vs CPT settings */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
trans_dp |= TRANS_DP_ENH_FRAMING;
else
trans_dp &= ~TRANS_DP_ENH_FRAMING;
I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
} else {
if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
intel_dp->DP |= DP_COLOR_RANGE_16_235;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (IS_CHERRYVIEW(dev_priv))
intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
else
intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
}
}
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void intel_pps_verify_state(struct intel_dp *intel_dp);
static void wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
i915_reg_t pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
intel_pps_verify_state(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
mask, value,
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
if (intel_wait_for_register(dev_priv,
pp_stat_reg, mask, value,
5000))
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(pp_stat_reg),
I915_READ(pp_ctrl_reg));
DRM_DEBUG_KMS("Wait complete\n");
}
static void wait_panel_on(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power on\n");
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void wait_panel_off(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power off time\n");
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
{
ktime_t panel_power_on_time;
s64 panel_power_off_duration;
DRM_DEBUG_KMS("Wait for panel power cycle\n");
/* take the difference of currrent time and panel power off time
* and then make panel wait for t11_t12 if needed. */
panel_power_on_time = ktime_get_boottime();
panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
/* When we disable the VDD override bit last we have to do the manual
* wait. */
if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
wait_remaining_ms_from_jiffies(jiffies,
intel_dp->panel_power_cycle_delay - panel_power_off_duration);
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
static void wait_backlight_on(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
intel_dp->backlight_on_delay);
}
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
{
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
intel_dp->backlight_off_delay);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 control;
lockdep_assert_held(&dev_priv->pps_mutex);
control = I915_READ(_pp_ctrl_reg(intel_dp));
if (WARN_ON(!HAS_DDI(dev_priv) &&
(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
}
return control;
}
/*
* Must be paired with edp_panel_vdd_off().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
u32 pp;
i915_reg_t pp_stat_reg, pp_ctrl_reg;
bool need_to_disable = !intel_dp->want_panel_vdd;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return false;
cancel_delayed_work(&intel_dp->panel_vdd_work);
intel_dp->want_panel_vdd = true;
if (edp_have_panel_vdd(intel_dp))
return need_to_disable;
intel_display_power_get(dev_priv,
intel_aux_power_domain(intel_dig_port));
DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
port_name(intel_dig_port->base.port));
if (!edp_have_panel_power(intel_dp))
wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_FORCE_VDD;
pp_stat_reg = _pp_stat_reg(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
port_name(intel_dig_port->base.port));
msleep(intel_dp->panel_power_up_delay);
}
return need_to_disable;
}
/*
* Must be paired with intel_edp_panel_vdd_off() or
* intel_edp_panel_off().
* Nested calls to these functions are not allowed since
* we drop the lock. Caller must use some higher level
* locking to prevent nested calls from other threads.
*/
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
intel_wakeref_t wakeref;
bool vdd;
if (!intel_dp_is_edp(intel_dp))
return;
vdd = false;
with_pps_lock(intel_dp, wakeref)
vdd = edp_panel_vdd_on(intel_dp);
I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
}
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port =
dp_to_dig_port(intel_dp);
u32 pp;
i915_reg_t pp_stat_reg, pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
WARN_ON(intel_dp->want_panel_vdd);
if (!edp_have_panel_vdd(intel_dp))
return;
DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
port_name(intel_dig_port->base.port));
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_FORCE_VDD;
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp_stat_reg = _pp_stat_reg(intel_dp);
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
/* Make sure sequencer is idle before allowing subsequent activity */
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
if ((pp & PANEL_POWER_ON) == 0)
intel_dp->panel_power_off_time = ktime_get_boottime();
intel_display_power_put_unchecked(dev_priv,
intel_aux_power_domain(intel_dig_port));
}
static void edp_panel_vdd_work(struct work_struct *__work)
{
struct intel_dp *intel_dp =
container_of(to_delayed_work(__work),
struct intel_dp, panel_vdd_work);
intel_wakeref_t wakeref;
with_pps_lock(intel_dp, wakeref) {
if (!intel_dp->want_panel_vdd)
edp_panel_vdd_off_sync(intel_dp);
}
}
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
unsigned long delay;
/*
* Queue the timer to fire a long time from now (relative to the power
* down delay) to keep the panel power up across a sequence of
* operations.
*/
delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}
/*
* Must be paired with edp_panel_vdd_on().
* Must hold pps_mutex around the whole on/off sequence.
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
*/
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
port_name(dp_to_dig_port(intel_dp)->base.port));
intel_dp->want_panel_vdd = false;
if (sync)
edp_panel_vdd_off_sync(intel_dp);
else
edp_panel_vdd_schedule_off(intel_dp);
}
static void edp_panel_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 pp;
i915_reg_t pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
port_name(dp_to_dig_port(intel_dp)->base.port));
if (WARN(edp_have_panel_power(intel_dp),
"eDP port %c panel power already on\n",
port_name(dp_to_dig_port(intel_dp)->base.port)))
return;
wait_panel_power_cycle(intel_dp);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
pp = ironlake_get_pp_control(intel_dp);
if (IS_GEN(dev_priv, 5)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
pp |= PANEL_POWER_ON;
if (!IS_GEN(dev_priv, 5))
pp |= PANEL_POWER_RESET;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_on(intel_dp);
intel_dp->last_power_on = jiffies;
if (IS_GEN(dev_priv, 5)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
}
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
intel_wakeref_t wakeref;
if (!intel_dp_is_edp(intel_dp))
return;
with_pps_lock(intel_dp, wakeref)
edp_panel_on(intel_dp);
}
static void edp_panel_off(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
u32 pp;
i915_reg_t pp_ctrl_reg;
lockdep_assert_held(&dev_priv->pps_mutex);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
port_name(dig_port->base.port));
WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
port_name(dig_port->base.port));
pp = ironlake_get_pp_control(intel_dp);
/* We need to switch off panel power _and_ force vdd, for otherwise some
* panels get very unhappy and cease to work. */
pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
EDP_BLC_ENABLE);
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
intel_dp->want_panel_vdd = false;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
wait_panel_off(intel_dp);
intel_dp->panel_power_off_time = ktime_get_boottime();
/* We got a reference when we enabled the VDD. */
intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
}
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
intel_wakeref_t wakeref;
if (!intel_dp_is_edp(intel_dp))
return;
with_pps_lock(intel_dp, wakeref)
edp_panel_off(intel_dp);
}
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_wakeref_t wakeref;
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
wait_backlight_on(intel_dp);
with_pps_lock(intel_dp, wakeref) {
i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
u32 pp;
pp = ironlake_get_pp_control(intel_dp);
pp |= EDP_BLC_ENABLE;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
}
/* Enable backlight PWM and backlight PP control. */
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
intel_panel_enable_backlight(crtc_state, conn_state);
_intel_edp_backlight_on(intel_dp);
}
/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
intel_wakeref_t wakeref;
if (!intel_dp_is_edp(intel_dp))
return;
with_pps_lock(intel_dp, wakeref) {
i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
u32 pp;
pp = ironlake_get_pp_control(intel_dp);
pp &= ~EDP_BLC_ENABLE;
I915_WRITE(pp_ctrl_reg, pp);
POSTING_READ(pp_ctrl_reg);
}
intel_dp->last_backlight_off = jiffies;
edp_wait_backlight_off(intel_dp);
}
/* Disable backlight PP control and backlight PWM. */
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
if (!intel_dp_is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
_intel_edp_backlight_off(intel_dp);
intel_panel_disable_backlight(old_conn_state);
}
/*
* Hook for controlling the panel power control backlight through the bl_power
* sysfs attribute. Take care to handle multiple calls.
*/
static void intel_edp_backlight_power(struct intel_connector *connector,
bool enable)
{
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
intel_wakeref_t wakeref;
bool is_enabled;
is_enabled = false;
with_pps_lock(intel_dp, wakeref)
is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
if (is_enabled == enable)
return;
DRM_DEBUG_KMS("panel power control backlight %s\n",
enable ? "enable" : "disable");
if (enable)
_intel_edp_backlight_on(intel_dp);
else
_intel_edp_backlight_off(intel_dp);
}
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
I915_STATE_WARN(cur_state != state,
"DP port %c state assertion failure (expected %s, current %s)\n",
port_name(dig_port->base.port),
onoff(state), onoff(cur_state));
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)
static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
I915_STATE_WARN(cur_state != state,
"eDP PLL state assertion failure (expected %s, current %s)\n",
onoff(state), onoff(cur_state));
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
const struct intel_crtc_state *pipe_config)
{
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_pipe_disabled(dev_priv, crtc->pipe);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_disabled(dev_priv);
DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
pipe_config->port_clock);
intel_dp->DP &= ~DP_PLL_FREQ_MASK;
if (pipe_config->port_clock == 162000)
intel_dp->DP |= DP_PLL_FREQ_162MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(500);
/*
* [DevILK] Work around required when enabling DP PLL
* while a pipe is enabled going to FDI:
* 1. Wait for the start of vertical blank on the enabled pipe going to FDI
* 2. Program DP PLL enable
*/
if (IS_GEN(dev_priv, 5))
intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
intel_dp->DP |= DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
assert_pipe_disabled(dev_priv, crtc->pipe);
assert_dp_port_disabled(intel_dp);
assert_edp_pll_enabled(dev_priv);
DRM_DEBUG_KMS("disabling eDP PLL\n");
intel_dp->DP &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
/*
* DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
* be capable of signalling downstream hpd with a long pulse.
* Whether or not that means D3 is safe to use is not clear,
* but let's assume so until proven otherwise.
*
* FIXME should really check all downstream ports...
*/
return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state,
bool enable)
{
int ret;
if (!crtc_state->dsc_params.compression_enable)
return;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
enable ? DP_DECOMPRESSION_EN : 0);
if (ret < 0)
DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
enable ? "enable" : "disable");
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
if (downstream_hpd_needs_d0(intel_dp))
return;
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D3);
} else {
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
msleep(1);
}
if (ret == 1 && lspcon->active)
lspcon_wait_pcon_mode(lspcon);
}
if (ret != 1)
DRM_DEBUG_KMS("failed to %s sink power state\n",
mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
}
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
enum port port, enum pipe *pipe)
{
enum pipe p;
for_each_pipe(dev_priv, p) {
u32 val = I915_READ(TRANS_DP_CTL(p));
if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
*pipe = p;
return true;
}
}
DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
/* must initialize pipe to something for the asserts */
*pipe = PIPE_A;
return false;
}
bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
i915_reg_t dp_reg, enum port port,
enum pipe *pipe)
{
bool ret;
u32 val;
val = I915_READ(dp_reg);
ret = val & DP_PORT_EN;
/* asserts want to know the pipe even if the port is disabled */
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
ret &= cpt_dp_port_selected(dev_priv, port, pipe);
else if (IS_CHERRYVIEW(dev_priv))
*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
else
*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
return ret;
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_wakeref_t wakeref;
bool ret;
wakeref = intel_display_power_get_if_enabled(dev_priv,
encoder->power_domain);
if (!wakeref)
return false;
ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, pipe);
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
return ret;
}
static void intel_dp_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
u32 tmp, flags = 0;
enum port port = encoder->port;
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
if (encoder->type == INTEL_OUTPUT_EDP)
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
else
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
tmp = I915_READ(intel_dp->output_reg);
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
} else {
if (tmp & DP_SYNC_HS_HIGH)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (tmp & DP_SYNC_VS_HIGH)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
}
pipe_config->base.adjusted_mode.flags |= flags;
if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
pipe_config->limited_color_range = true;
pipe_config->lane_count =
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(crtc, pipe_config);
if (port == PORT_A) {
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
pipe_config->port_clock = 162000;
else
pipe_config->port_clock = 270000;
}
pipe_config->base.adjusted_mode.crtc_clock =
intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
}
static void intel_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
intel_dp->link_trained = false;
if (old_crtc_state->has_audio)
intel_audio_codec_disable(encoder,
old_crtc_state, old_conn_state);
/* Make sure the panel is off before trying to change the mode. But also
* ensure that we have vdd while we switch off the panel. */
intel_edp_panel_vdd_on(intel_dp);
intel_edp_backlight_off(old_conn_state);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_off(intel_dp);
}
static void g4x_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}
static void vlv_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
}
static void g4x_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
/*
* Bspec does not list a specific disable sequence for g4x DP.
* Follow the ilk+ sequence (disable pipe before the port) for
* g4x DP as it does not suffer from underruns like the normal
* g4x modeset sequence (disable pipe after the port).
*/
intel_dp_link_down(encoder, old_crtc_state);
/* Only ilk+ has port A */
if (port == PORT_A)
ironlake_edp_pll_off(intel_dp, old_crtc_state);
}
static void vlv_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
intel_dp_link_down(encoder, old_crtc_state);
}
static void chv_post_disable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
intel_dp_link_down(encoder, old_crtc_state);
mutex_lock(&dev_priv->sb_lock);
/* Assert data lane reset */
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
mutex_unlock(&dev_priv->sb_lock);
}
static void
_intel_dp_set_link_train(struct intel_dp *intel_dp,
u32 *DP,
u8 dp_train_pat)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
if (dp_train_pat & train_pat_mask)
DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
dp_train_pat & train_pat_mask);
if (HAS_DDI(dev_priv)) {
u32 temp = I915_READ(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & train_pat_mask) {
case DP_TRAINING_PATTERN_DISABLE:
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
case DP_TRAINING_PATTERN_4:
temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
break;
}
I915_WRITE(DP_TP_CTL(port), temp);
} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
*DP &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
*DP |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
*DP |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
*DP |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
*DP |= DP_LINK_TRAIN_PAT_2;
break;
}
}
}
static void intel_dp_enable_port(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
/* enable with pattern 1 (as per spec) */
intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
/*
* Magic for VLV/CHV. We _must_ first set up the register
* without actually enabling the port, and then do another
* write to enable the port. Otherwise link training will
* fail when the power sequencer is freshly used for this port.
*/
intel_dp->DP |= DP_PORT_EN;
if (old_crtc_state->has_audio)
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
static void intel_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
u32 dp_reg = I915_READ(intel_dp->output_reg);
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
if (WARN_ON(dp_reg & DP_PORT_EN))
return;
with_pps_lock(intel_dp, wakeref) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
vlv_init_panel_power_sequencer(encoder, pipe_config);
intel_dp_enable_port(intel_dp, pipe_config);
edp_panel_vdd_on(intel_dp);
edp_panel_on(intel_dp);
edp_panel_vdd_off(intel_dp, true);
}
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
unsigned int lane_mask = 0x0;
if (IS_CHERRYVIEW(dev_priv))
lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
lane_mask);
}
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
if (pipe_config->has_audio) {
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
pipe_name(pipe));
intel_audio_codec_enable(encoder, pipe_config, conn_state);
}
}
static void g4x_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_enable_dp(encoder, pipe_config, conn_state);
intel_edp_backlight_on(pipe_config, conn_state);
}
static void vlv_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_edp_backlight_on(pipe_config, conn_state);
}
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
intel_dp_prepare(encoder, pipe_config);
/* Only ilk+ has port A */
if (port == PORT_A)
ironlake_edp_pll_on(intel_dp, pipe_config);
}
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
enum pipe pipe = intel_dp->pps_pipe;
i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
return;
edp_panel_vdd_off_sync(intel_dp);
/*
* VLV seems to get confused when multiple power sequencers
* have the same port selected (even if only one has power/vdd
* enabled). The failure manifests as vlv_wait_port_ready() failing
* CHV on the other hand doesn't seem to mind having the same port
* selected in multiple power sequencers, but let's clear the
* port select always when logically disconnecting a power sequencer
* from a port.
*/
DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(intel_dig_port->base.port));
I915_WRITE(pp_on_reg, 0);
POSTING_READ(pp_on_reg);
intel_dp->pps_pipe = INVALID_PIPE;
}
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
enum pipe pipe)
{
struct intel_encoder *encoder;
lockdep_assert_held(&dev_priv->pps_mutex);
for_each_intel_dp(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
enum port port = encoder->port;
WARN(intel_dp->active_pipe == pipe,
"stealing pipe %c power sequencer from active (e)DP port %c\n",
pipe_name(pipe), port_name(port));
if (intel_dp->pps_pipe != pipe)
continue;
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
pipe_name(pipe), port_name(port));
/* make sure vdd is off before we steal it */
vlv_detach_power_sequencer(intel_dp);
}
}
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
lockdep_assert_held(&dev_priv->pps_mutex);
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
if (intel_dp->pps_pipe != INVALID_PIPE &&
intel_dp->pps_pipe != crtc->pipe) {
/*
* If another power sequencer was being used on this
* port previously make sure to turn off vdd there while
* we still have control of it.
*/
vlv_detach_power_sequencer(intel_dp);
}
/*
* We may be stealing the power
* sequencer from another port.
*/
vlv_steal_power_sequencer(dev_priv, crtc->pipe);
intel_dp->active_pipe = crtc->pipe;
if (!intel_dp_is_edp(intel_dp))
return;
/* now it's all ours */
intel_dp->pps_pipe = crtc->pipe;
DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
/* init power sequencer on this pipe and port */
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
}
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
vlv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(encoder, pipe_config, conn_state);
}
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
vlv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_pre_enable_dp(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
chv_phy_pre_encoder_enable(encoder, pipe_config);
intel_enable_dp(encoder, pipe_config, conn_state);
/* Second common lane will stay alive on its own now */
chv_phy_release_cl2_override(encoder);
}
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config,
const struct drm_connector_state *conn_state)
{
intel_dp_prepare(encoder, pipe_config);
chv_phy_pre_pll_enable(encoder, pipe_config);
}
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state,
const struct drm_connector_state *old_conn_state)
{
chv_phy_post_pll_disable(encoder, old_crtc_state);
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
bool
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
{
return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
}
/* These are source-specific values. */
u8
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum port port = encoder->port;
if (HAS_DDI(dev_priv))
return intel_ddi_dp_voltage_max(encoder);
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
else
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum port port = encoder->port;
if (HAS_DDI(dev_priv)) {
return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_3;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
return DP_TRAIN_PRE_EMPH_LEVEL_2;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
return DP_TRAIN_PRE_EMPH_LEVEL_1;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
default:
return DP_TRAIN_PRE_EMPH_LEVEL_0;
}
}
}
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
unsigned long demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value;
u8 train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
preemph_reg_value = 0x0004000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x552AB83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5548B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B245555;
uniqtranscale_reg_value = 0x5560B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
demph_reg_value = 0x2B405555;
uniqtranscale_reg_value = 0x5598DA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
preemph_reg_value = 0x0002000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x5552B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B404848;
uniqtranscale_reg_value = 0x5580B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
demph_reg_value = 0x2B404040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
preemph_reg_value = 0x0000000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x2B305555;
uniqtranscale_reg_value = 0x5570B83A;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
demph_reg_value = 0x2B2B4040;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
preemph_reg_value = 0x0006000;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
demph_reg_value = 0x1B405555;
uniqtranscale_reg_value = 0x55ADDA3A;
break;
default:
return 0;
}
break;
default:
return 0;
}
vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
uniqtranscale_reg_value, 0);
return 0;
}
static u32 chv_signal_levels(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
u32 deemph_reg_value, margin_reg_value;
bool uniq_trans_scale = false;
u8 train_set = intel_dp->train_set[0];
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 128;
margin_reg_value = 52;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 128;
margin_reg_value = 77;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 128;
margin_reg_value = 102;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
deemph_reg_value = 128;
margin_reg_value = 154;
uniq_trans_scale = true;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 85;
margin_reg_value = 78;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 85;
margin_reg_value = 116;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
deemph_reg_value = 85;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 64;
margin_reg_value = 104;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
deemph_reg_value = 64;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
deemph_reg_value = 43;
margin_reg_value = 154;
break;
default:
return 0;
}
break;
default:
return 0;
}
chv_set_phy_signal_level(encoder, deemph_reg_value,
margin_reg_value, uniq_trans_scale);
return 0;
}
static u32
g4x_signal_levels(u8 train_set)
{
u32 signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPH_LEVEL_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_1:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_2:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPH_LEVEL_3:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* SNB CPU eDP voltage swing and pre-emphasis control */
static u32
snb_cpu_edp_signal_levels(u8 train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* IVB CPU eDP voltage swing and pre-emphasis control */
static u32
ivb_cpu_edp_signal_levels(u8 train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
void
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
u32 signal_levels, mask = 0;
u8 train_set = intel_dp->train_set[0];
if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
signal_levels = bxt_signal_levels(intel_dp);
} else if (HAS_DDI(dev_priv)) {
signal_levels = ddi_signal_levels(intel_dp);
mask = DDI_BUF_EMP_MASK;
} else if (IS_CHERRYVIEW(dev_priv)) {
signal_levels = chv_signal_levels(intel_dp);
} else if (IS_VALLEYVIEW(dev_priv)) {
signal_levels = vlv_signal_levels(intel_dp);
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
signal_levels = ivb_cpu_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
signal_levels = snb_cpu_edp_signal_levels(train_set);
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
} else {
signal_levels = g4x_signal_levels(train_set);
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
}
if (mask)
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
DRM_DEBUG_KMS("Using vswing level %d\n",
train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
DP_TRAIN_PRE_EMPHASIS_SHIFT);
intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
void
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
u8 dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
POSTING_READ(intel_dp->output_reg);
}
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
enum port port = intel_dig_port->base.port;
u32 val;
if (!HAS_DDI(dev_priv))
return;
val = I915_READ(DP_TP_CTL(port));
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
I915_WRITE(DP_TP_CTL(port), val);
/*
* On PORT_A we can have only eDP in SST mode. There the only reason
* we need to set idle transmission mode is to work around a HW issue
* where we enable the pipe while not in idle link-training mode.
* In this case there is requirement to wait for a minimum number of
* idle patterns to be sent.
*/
if (port == PORT_A)
return;
if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
DP_TP_STATUS_IDLE_DONE,
DP_TP_STATUS_IDLE_DONE,
1))
DRM_ERROR("Timed out waiting for DP idle patterns\n");
}
static void
intel_dp_link_down(struct intel_encoder *encoder,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
enum port port = encoder->port;
u32 DP = intel_dp->DP;
if (WARN_ON(HAS_DDI(dev_priv)))
return;
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
return;
DRM_DEBUG_KMS("\n");
if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
} else {
DP &= ~DP_LINK_TRAIN_MASK;
DP |= DP_LINK_TRAIN_PAT_IDLE;
}
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
/*
* HW workaround for IBX, we need to move the port
* to transcoder A after disabling it to allow the
* matching HDMI port to be enabled on transcoder A.
*/
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
/*
* We get CPU/PCH FIFO underruns on the other pipe when
* doing the workaround. Sweep them under the rug.
*/
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
/* always enable with pattern 1 (as per spec) */
DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
DP_LINK_TRAIN_PAT_1;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
DP &= ~DP_PORT_EN;
I915_WRITE(intel_dp->output_reg, DP);
POSTING_READ(intel_dp->output_reg);
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
}
msleep(intel_dp->panel_power_down_delay);
intel_dp->DP = DP;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_wakeref_t wakeref;
with_pps_lock(intel_dp, wakeref)
intel_dp->active_pipe = INVALID_PIPE;
}
}
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
u8 dpcd_ext[6];
/*
* Prior to DP1.3 the bit represented by
* DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
* if it is set DP_DPCD_REV at 0000h could be at a value less than
* the true capability of the panel. The only way to check is to
* then compare 0000h and 2200h.
*/
if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
return;
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
&dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
DRM_ERROR("DPCD failed read at extended capabilities\n");
return;
}
if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
return;
}
if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
return;
DRM_DEBUG_KMS("Base DPCD: %*ph\n",
(int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}
bool
intel_dp_read_dpcd(struct intel_dp *intel_dp)
{
if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
sizeof(intel_dp->dpcd)) < 0)
return false; /* aux transfer failed */
intel_dp_extended_receiver_capabilities(intel_dp);
DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
/*
* Clear the cached register set to avoid using stale values
* for the sinks that do not support DSC.
*/
memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
/* Clear fec_capable to avoid using stale values */
intel_dp->fec_capable = 0;
/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
intel_dp->edp_dpcd[0] >= DP_EDP_14) {
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
intel_dp->dsc_dpcd,
sizeof(intel_dp->dsc_dpcd)) < 0)
DRM_ERROR("Failed to read DPCD register 0x%x\n",
DP_DSC_SUPPORT);
DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
(int)sizeof(intel_dp->dsc_dpcd),
intel_dp->dsc_dpcd);
/* FEC is supported only on DP 1.4 */
if (!intel_dp_is_edp(intel_dp) &&
drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
&intel_dp->fec_capable) < 0)
DRM_ERROR("Failed to read FEC DPCD register\n");
DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
}
}
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv =
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
/* this function is meant to be called only once */
WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
if (!intel_dp_read_dpcd(intel_dp))
return false;
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
/*
* Read the eDP display control registers.
*
* Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
* DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
* set, but require eDP 1.4+ detection (e.g. for supported link rates
* method). The display control registers should read zero if they're
* not supported anyway.
*/
if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
sizeof(intel_dp->edp_dpcd))
DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
intel_dp->edp_dpcd);
/*
* This has to be called after intel_dp->edp_dpcd is filled, PSR checks
* for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
*/
intel_psr_init_dpcd(intel_dp);
/* Read the eDP 1.4+ supported link rates. */
if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
int i;
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
sink_rates, sizeof(sink_rates));
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
int val = le16_to_cpu(sink_rates[i]);
if (val == 0)
break;
/* Value read multiplied by 200kHz gives the per-lane
* link rate in kHz. The source rates are, however,
* stored in terms of LS_Clk kHz. The full conversion
* back to symbols is
* (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
*/
intel_dp->sink_rates[i] = (val * 200) / 10;
}
intel_dp->num_sink_rates = i;
}
/*
* Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
* default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
*/
if (intel_dp->num_sink_rates)
intel_dp->use_rate_select = true;
else
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_common_rates(intel_dp);
/* Read the eDP DSC DPCD registers */
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
intel_dp_get_dsc_sink_cap(intel_dp);
return true;
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
if (!intel_dp_read_dpcd(intel_dp))
return false;
/* Don't clobber cached eDP rates. */
if (!intel_dp_is_edp(intel_dp)) {
intel_dp_set_sink_rates(intel_dp);
intel_dp_set_common_rates(intel_dp);
}
/*
* Some eDP panels do not set a valid value for sink count, that is why
* it don't care about read it here and in intel_edp_init_dpcd().
*/
if (!intel_dp_is_edp(intel_dp)) {
u8 count;
ssize_t r;
r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
if (r < 1)
return false;
/*
* Sink count can change between short pulse hpd hence
* a member variable in intel_dp will track any changes
* between short pulse interrupts.
*/
intel_dp->sink_count = DP_GET_SINK_COUNT(count);
/*
* SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
* a dongle is present but no display. Unless we require to know
* if a dongle is present or not, we don't need to update
* downstream port information. So, an early return here saves
* time from performing other operations which are not required.
*/
if (!intel_dp->sink_count)
return false;
}
if (!drm_dp_is_branch(intel_dp->dpcd))
return true; /* native DP sink */
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
return true; /* no per-port downstream info */
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
intel_dp->downstream_ports,
DP_MAX_DOWNSTREAM_PORTS) < 0)
return false; /* downstream port status fetch failed */
return true;
}
static bool
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
{
u8 mstm_cap;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
return false;
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
return false;
return mstm_cap & DP_MST_CAP;
}
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
return i915_modparams.enable_dp_mst &&
intel_dp->can_mst &&
intel_dp_sink_can_mst(intel_dp);
}
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
struct intel_encoder *encoder =
&dp_to_dig_port(intel_dp)->base;
bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
port_name(encoder->port), yesno(intel_dp->can_mst),
yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
if (!intel_dp->can_mst)
return;
intel_dp->is_mst = sink_can_mst &&
i915_modparams.enable_dp_mst;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
}
static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
sink_irq_vector, DP_DPRX_ESI_LEN) ==
DP_DPRX_ESI_LEN;
}
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
int mode_clock, int mode_hdisplay)
{
u16 bits_per_pixel, max_bpp_small_joiner_ram;
int i;
/*
* Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
* (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
* FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
* for MST -> TimeSlotsPerMTP has to be calculated
*/
bits_per_pixel = (link_clock * lane_count * 8 *
DP_DSC_FEC_OVERHEAD_FACTOR) /
mode_clock;
/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
mode_hdisplay;
/*
* Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
* check, output bpp from small joiner RAM check)
*/
bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
/* Error out if the max bpp is less than smallest allowed valid bpp */
if (bits_per_pixel < valid_dsc_bpp[0]) {
DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
return 0;
}
/* Find the nearest match in the array of known BPPs from VESA */
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
if (bits_per_pixel < valid_dsc_bpp[i + 1])
break;
}
bits_per_pixel = valid_dsc_bpp[i];
/*
* Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
* fractional part is 0
*/
return bits_per_pixel << 4;
}
u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
int mode_clock,
int mode_hdisplay)
{
u8 min_slice_count, i;
int max_slice_width;
if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_0);
else
min_slice_count = DIV_ROUND_UP(mode_clock,
DP_DSC_MAX_ENC_THROUGHPUT_1);
max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
max_slice_width);
return 0;
}
/* Also take into account max slice width */
min_slice_count = min_t(u8, min_slice_count,
DIV_ROUND_UP(mode_hdisplay,
max_slice_width));
/* Find the closest match to the valid slice count values */
for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
if (valid_dsc_slicecount[i] >
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
false))
break;
if (min_slice_count <= valid_dsc_slicecount[i])
return valid_dsc_slicecount[i];
}
DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
return 0;
}
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
{
int status = 0;
int test_link_rate;
u8 test_lane_count, test_link_bw;
/* (DP CTS 1.2)
* 4.3.1.11
*/
/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
&test_lane_count);
if (status <= 0) {
DRM_DEBUG_KMS("Lane count read failed\n");
return DP_TEST_NAK;
}
test_lane_count &= DP_MAX_LANE_COUNT_MASK;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
&test_link_bw);
if (status <= 0) {
DRM_DEBUG_KMS("Link Rate read failed\n");
return DP_TEST_NAK;
}
test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
/* Validate the requested link rate and lane count */
if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
test_lane_count))
return DP_TEST_NAK;
intel_dp->compliance.test_lane_count = test_lane_count;
intel_dp->compliance.test_link_rate = test_link_rate;
return DP_TEST_ACK;
}
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
{
u8 test_pattern;
u8 test_misc;
__be16 h_width, v_height;
int status = 0;
/* Read the TEST_PATTERN (DP CTS 3.1.5) */
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
&test_pattern);
if (status <= 0) {
DRM_DEBUG_KMS("Test pattern read failed\n");
return DP_TEST_NAK;
}
if (test_pattern != DP_COLOR_RAMP)
return DP_TEST_NAK;
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
&h_width, 2);
if (status <= 0) {
DRM_DEBUG_KMS("H Width read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
&v_height, 2);
if (status <= 0) {
DRM_DEBUG_KMS("V Height read failed\n");
return DP_TEST_NAK;
}
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
&test_misc);
if (status <= 0) {
DRM_DEBUG_KMS("TEST MISC read failed\n");
return DP_TEST_NAK;
}
if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
return DP_TEST_NAK;
if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
return DP_TEST_NAK;
switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
case DP_TEST_BIT_DEPTH_6:
intel_dp->compliance.test_data.bpc = 6;
break;
case DP_TEST_BIT_DEPTH_8:
intel_dp->compliance.test_data.bpc = 8;
break;
default:
return DP_TEST_NAK;
}
intel_dp->compliance.test_data.video_pattern = test_pattern;
intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = 1;
return DP_TEST_ACK;
}
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
{
u8 test_result = DP_TEST_ACK;
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct drm_connector *connector = &intel_connector->base;
if (intel_connector->detect_edid == NULL ||
connector->edid_corrupt ||
intel_dp->aux.i2c_defer_count > 6) {
/* Check EDID read for NACKs, DEFERs and corruption
* (DP CTS 1.2 Core r1.1)
* 4.2.2.4 : Failed EDID read, I2C_NAK
* 4.2.2.5 : Failed EDID read, I2C_DEFER
* 4.2.2.6 : EDID corruption detected
* Use failsafe mode for all cases
*/
if (intel_dp->aux.i2c_nack_count > 0 ||
intel_dp->aux.i2c_defer_count > 0)
DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
intel_dp->aux.i2c_nack_count,
intel_dp->aux.i2c_defer_count);
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
} else {
struct edid *block = intel_connector->detect_edid;
/* We have to write the checksum
* of the last block read
*/
block += intel_connector->detect_edid->extensions;
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
block->checksum) <= 0)
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
}
/* Set test active flag here so userspace doesn't interrupt things */
intel_dp->compliance.test_active = 1;
return test_result;
}
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
{
u8 test_result = DP_TEST_NAK;
return test_result;
}
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
u8 response = DP_TEST_NAK;
u8 request = 0;
int status;
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
if (status <= 0) {
DRM_DEBUG_KMS("Could not read test request from sink\n");
goto update_status;
}
switch (request) {
case DP_TEST_LINK_TRAINING:
DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
response = intel_dp_autotest_link_training(intel_dp);
break;
case DP_TEST_LINK_VIDEO_PATTERN:
DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
response = intel_dp_autotest_video_pattern(intel_dp);
break;
case DP_TEST_LINK_EDID_READ:
DRM_DEBUG_KMS("EDID test requested\n");
response = intel_dp_autotest_edid(intel_dp);
break;
case DP_TEST_LINK_PHY_TEST_PATTERN:
DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
response = intel_dp_autotest_phy_pattern(intel_dp);
break;
default:
DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
break;
}
if (response & DP_TEST_ACK)
intel_dp->compliance.test_type = request;
update_status:
status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
if (status <= 0)
DRM_DEBUG_KMS("Could not write test response to sink\n");
}
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
bool bret;
if (intel_dp->is_mst) {
u8 esi[DP_DPRX_ESI_LEN] = { 0 };
int ret = 0;
int retry;
bool handled;
WARN_ON_ONCE(intel_dp->active_mst_links < 0);
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
go_again:
if (bret == true) {
/* check link status - esi[10] = 0x200c */
if (intel_dp->active_mst_links > 0 &&
!drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
}
DRM_DEBUG_KMS("got esi %3ph\n", esi);
ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
if (handled) {
for (retry = 0; retry < 3; retry++) {
int wret;
wret = drm_dp_dpcd_write(&intel_dp->aux,
DP_SINK_COUNT_ESI+1,
&esi[1], 3);
if (wret == 3) {
break;
}
}
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
if (bret == true) {
DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
goto go_again;
}
} else
ret = 0;
return ret;
} else {
DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
}
}
return -EINVAL;
}
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
u8 link_status[DP_LINK_STATUS_SIZE];
if (!intel_dp->link_trained)
return false;
/*
* While PSR source HW is enabled, it will control main-link sending
* frames, enabling and disabling it so trying to do a retrain will fail
* as the link would or not be on or it could mix training patterns
* and frame data at the same time causing retrain to fail.
* Also when exiting PSR, HW will retrain the link anyways fixing
* any link status error.
*/
if (intel_psr_enabled(intel_dp))
return false;
if (!intel_dp_get_link_status(intel_dp, link_status))
return false;
/*
* Validate the cached values of intel_dp->link_rate and
* intel_dp->lane_count before attempting to retrain.
*/
if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
intel_dp->lane_count))
return false;
/* Retrain if Channel EQ or CR not ok */
return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}
int intel_dp_retrain_link(struct intel_encoder *encoder,
struct drm_modeset_acquire_ctx *ctx)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_connector *connector = intel_dp->attached_connector;
struct drm_connector_state *conn_state;
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int ret;
/* FIXME handle the MST connectors as well */
if (!connector || connector->base.status != connector_status_connected)
return 0;
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
ctx);
if (ret)
return ret;
conn_state = connector->base.state;
crtc = to_intel_crtc(conn_state->crtc);
if (!crtc)
return 0;
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
if (ret)
return ret;
crtc_state = to_intel_crtc_state(crtc->base.state);
WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
if (!crtc_state->base.active)
return 0;
if (conn_state->commit &&
!try_wait_for_completion(&conn_state->commit->hw_done))
return 0;
if (!intel_dp_needs_link_retrain(intel_dp))
return 0;
/* Suppress underruns caused by re-training */
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
if (crtc_state->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), false);
intel_dp_start_link_train(intel_dp);
intel_dp_stop_link_train(intel_dp);
/* Keep underrun reporting disabled until things are stable */
intel_wait_for_vblank(dev_priv, crtc->pipe);
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
if (crtc_state->has_pch_encoder)
intel_set_pch_fifo_underrun_reporting(dev_priv,
intel_crtc_pch_transcoder(crtc), true);
return 0;
}
/*
* If display is now connected check links status,
* there has been known issues of link loss triggering
* long pulse.
*
* Some sinks (eg. ASUS PB287Q) seem to perform some
* weird HPD ping pong during modesets. So we can apparently
* end up with HPD going low during a modeset, and then
* going back up soon after. And once that happens we must
* retrain the link to get a picture. That's in case no
* userspace component reacted to intermittent HPD dip.
*/
static bool intel_dp_hotplug(struct intel_encoder *encoder,
struct intel_connector *connector)
{
struct drm_modeset_acquire_ctx ctx;
bool changed;
int ret;
changed = intel_encoder_hotplug(encoder, connector);
drm_modeset_acquire_init(&ctx, 0);
for (;;) {
ret = intel_dp_retrain_link(encoder, &ctx);
if (ret == -EDEADLK) {
drm_modeset_backoff(&ctx);
continue;
}
break;
}
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
return changed;
}
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
u8 val;
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (drm_dp_dpcd_readb(&intel_dp->aux,
DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
return;
drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
if (val & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (val & DP_CP_IRQ)
intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
if (val & DP_SINK_SPECIFIC_IRQ)
DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*
* intel_dp_short_pulse - handles short pulse interrupts
* when full detection is not required.
* Returns %true if short pulse is handled and full detection
* is NOT required and %false otherwise.
*/
static bool
intel_dp_short_pulse(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u8 old_sink_count = intel_dp->sink_count;
bool ret;
/*
* Clearing compliance test variables to allow capturing
* of values for next automated test request.
*/
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
/*
* Now read the DPCD to see if it's actually running
* If the current value of sink count doesn't match with
* the value that was stored earlier or dpcd read failed
* we need to do full detection
*/
ret = intel_dp_get_dpcd(intel_dp);
if ((old_sink_count != intel_dp->sink_count) || !ret) {
/* No need to proceed if we are going to do full detect */
return false;
}
intel_dp_check_service_irq(intel_dp);
/* Handle CEC interrupts, if any */
drm_dp_cec_irq(&intel_dp->aux);
/* defer to the hotplug work for link retraining if needed */
if (intel_dp_needs_link_retrain(intel_dp))
return false;
intel_psr_short_pulse(intel_dp);
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
/* Send a Hotplug Uevent to userspace to start modeset */
drm_kms_helper_hotplug_event(&dev_priv->drm);
}
return true;
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
u8 *dpcd = intel_dp->dpcd;
u8 type;
if (lspcon->active)
lspcon_resume(lspcon);
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
if (intel_dp_is_edp(intel_dp))
return connector_status_connected;
/* if there's no downstream port, we're done */
if (!drm_dp_is_branch(dpcd))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
return intel_dp->sink_count ?
connector_status_connected : connector_status_disconnected;
}
if (intel_dp_can_mst(intel_dp))
return connector_status_connected;
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(&intel_dp->aux.ddc))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA ||
type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
} else {
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_TYPE_MASK;
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
type == DP_DWN_STRM_PORT_TYPE_OTHER)
return connector_status_unknown;
}
/* Anything else is out of spec, warn and ignore */
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
return connector_status_connected;
}
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = SDE_PORTB_HOTPLUG;
break;
case HPD_PORT_C:
bit = SDE_PORTC_HOTPLUG;
break;
case HPD_PORT_D:
bit = SDE_PORTD_HOTPLUG;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = SDE_PORTB_HOTPLUG_CPT;
break;
case HPD_PORT_C:
bit = SDE_PORTC_HOTPLUG_CPT;
break;
case HPD_PORT_D:
bit = SDE_PORTD_HOTPLUG_CPT;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(SDEISR) & bit;
}
static bool spt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_A:
bit = SDE_PORTA_HOTPLUG_SPT;
break;
case HPD_PORT_E:
bit = SDE_PORTE_HOTPLUG_SPT;
break;
default:
return cpt_digital_port_connected(encoder);
}
return I915_READ(SDEISR) & bit;
}
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_B:
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_C:
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
break;
case HPD_PORT_D:
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(PORT_HOTPLUG_STAT) & bit;
}
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
else
return ibx_digital_port_connected(encoder);
}
static bool snb_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
else
return cpt_digital_port_connected(encoder);
}
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
else
return cpt_digital_port_connected(encoder);
}
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (encoder->hpd_pin == HPD_PORT_A)
return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
else
return cpt_digital_port_connected(encoder);
}
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 bit;
switch (encoder->hpd_pin) {
case HPD_PORT_A:
bit = BXT_DE_PORT_HP_DDIA;
break;
case HPD_PORT_B:
bit = BXT_DE_PORT_HP_DDIB;
break;
case HPD_PORT_C:
bit = BXT_DE_PORT_HP_DDIC;
break;
default:
MISSING_CASE(encoder->hpd_pin);
return false;
}
return I915_READ(GEN8_DE_PORT_ISR) & bit;
}
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *intel_dig_port)
{
enum port port = intel_dig_port->base.port;
return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
}
static const char *tc_type_name(enum tc_port_type type)
{
static const char * const names[] = {
[TC_PORT_UNKNOWN] = "unknown",
[TC_PORT_LEGACY] = "legacy",
[TC_PORT_TYPEC] = "typec",
[TC_PORT_TBT] = "tbt",
};
if (WARN_ON(type >= ARRAY_SIZE(names)))
type = TC_PORT_UNKNOWN;
return names[type];
}
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
struct intel_digital_port *intel_dig_port,
bool is_legacy, bool is_typec, bool is_tbt)
{
enum port port = intel_dig_port->base.port;
enum tc_port_type old_type = intel_dig_port->tc_type;
WARN_ON(is_legacy + is_typec + is_tbt != 1);
if (is_legacy)
intel_dig_port->tc_type = TC_PORT_LEGACY;
else if (is_typec)
intel_dig_port->tc_type = TC_PORT_TYPEC;
else if (is_tbt)
intel_dig_port->tc_type = TC_PORT_TBT;
else
return;
/* Types are not supposed to be changed at runtime. */
WARN_ON(old_type != TC_PORT_UNKNOWN &&
old_type != intel_dig_port->tc_type);
if (old_type != intel_dig_port->tc_type)
DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
tc_type_name(intel_dig_port->tc_type));
}
/*
* This function implements the first part of the Connect Flow described by our
* specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
* lanes, EDID, etc) is done as needed in the typical places.
*
* Unlike the other ports, type-C ports are not available to use as soon as we
* get a hotplug. The type-C PHYs can be shared between multiple controllers:
* display, USB, etc. As a result, handshaking through FIA is required around
* connect and disconnect to cleanly transfer ownership with the controller and
* set the type-C power state.
*
* We could opt to only do the connect flow when we actually try to use the AUX
* channels or do a modeset, then immediately run the disconnect flow after
* usage, but there are some implications on this for a dynamic environment:
* things may go away or change behind our backs. So for now our driver is
* always trying to acquire ownership of the controller as soon as it gets an
* interrupt (or polls state and sees a port is connected) and only gives it
* back when it sees a disconnect. Implementation of a more fine-grained model
* will require a lot of coordination with user space and thorough testing for
* the extra possible cases.
*/
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
struct intel_digital_port *dig_port)
{
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
u32 val;
if (dig_port->tc_type != TC_PORT_LEGACY &&
dig_port->tc_type != TC_PORT_TYPEC)
return true;
val = I915_READ(PORT_TX_DFLEXDPPMS);
if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
WARN_ON(dig_port->tc_legacy_port);
return false;
}
/*
* This function may be called many times in a row without an HPD event
* in between, so try to avoid the write when we can.
*/
val = I915_READ(PORT_TX_DFLEXDPCSSS);
if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
}
/*
* Now we have to re-check the live state, in case the port recently
* became disconnected. Not necessary for legacy mode.
*/
if (dig_port->tc_type == TC_PORT_TYPEC &&
!(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
icl_tc_phy_disconnect(dev_priv, dig_port);
return false;
}
return true;
}
/*
* See the comment at the connect function. This implements the Disconnect
* Flow.
*/
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
struct intel_digital_port *dig_port)
{
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
if (dig_port->tc_type == TC_PORT_UNKNOWN)
return;
/*
* TBT disconnection flow is read the live status, what was done in
* caller.
*/
if (dig_port->tc_type == TC_PORT_TYPEC ||
dig_port->tc_type == TC_PORT_LEGACY) {
u32 val;
val = I915_READ(PORT_TX_DFLEXDPCSSS);
val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
}
DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
port_name(dig_port->base.port),
tc_type_name(dig_port->tc_type));
dig_port->tc_type = TC_PORT_UNKNOWN;
}
/*
* The type-C ports are different because even when they are connected, they may
* not be available/usable by the graphics driver: see the comment on
* icl_tc_phy_connect(). So in our driver instead of adding the additional
* concept of "usable" and make everything check for "connected and usable" we
* define a port as "connected" when it is not only connected, but also when it
* is usable by the rest of the driver. That maintains the old assumption that
* connected ports are usable, and avoids exposing to the users objects they
* can't really use.
*/
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
struct intel_digital_port *intel_dig_port)
{
enum port port = intel_dig_port->base.port;
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
bool is_legacy, is_typec, is_tbt;
u32 dpsp;
/*
* WARN if we got a legacy port HPD, but VBT didn't mark the port as
* legacy. Treat the port as legacy from now on.
*/
if (WARN_ON(!intel_dig_port->tc_legacy_port &&
I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
intel_dig_port->tc_legacy_port = true;
is_legacy = intel_dig_port->tc_legacy_port;
/*
* The spec says we shouldn't be using the ISR bits for detecting
* between TC and TBT. We should use DFLEXDPSP.
*/
dpsp = I915_READ(PORT_TX_DFLEXDPSP);
is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
if (!is_legacy && !is_typec && !is_tbt) {
icl_tc_phy_disconnect(dev_priv, intel_dig_port);
return false;
}
icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
is_tbt);
if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
return false;
return true;
}
static bool icl_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
if (intel_port_is_combophy(dev_priv, encoder->port))
return icl_combo_port_connected(dev_priv, dig_port);
else if (intel_port_is_tc(dev_priv, encoder->port))
return icl_tc_port_connected(dev_priv, dig_port);
else
MISSING_CASE(encoder->hpd_pin);
return false;
}
/*
* intel_digital_port_connected - is the specified port connected?
* @encoder: intel_encoder
*
* In cases where there's a connector physically connected but it can't be used
* by our hardware we also return false, since the rest of the driver should
* pretty much treat the port as disconnected. This is relevant for type-C
* (starting on ICL) where there's ownership involved.
*
* Return %true if port is connected, %false otherwise.
*/
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
if (HAS_GMCH(dev_priv)) {
if (IS_GM45(dev_priv))
return gm45_digital_port_connected(encoder);
else
return g4x_digital_port_connected(encoder);
}
if (INTEL_GEN(dev_priv) >= 11)
return icl_digital_port_connected(encoder);
else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
return spt_digital_port_connected(encoder);
else if (IS_GEN9_LP(dev_priv))
return bxt_digital_port_connected(encoder);
else if (IS_GEN(dev_priv, 8))
return bdw_digital_port_connected(encoder);
else if (IS_GEN(dev_priv, 7))
return ivb_digital_port_connected(encoder);
else if (IS_GEN(dev_priv, 6))
return snb_digital_port_connected(encoder);
else if (IS_GEN(dev_priv, 5))
return ilk_digital_port_connected(encoder);
MISSING_CASE(INTEL_GEN(dev_priv));
return false;
}
static struct edid *
intel_dp_get_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (IS_ERR(intel_connector->edid))
return NULL;
return drm_edid_duplicate(intel_connector->edid);
} else
return drm_get_edid(&intel_connector->base,
&intel_dp->aux.ddc);
}
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
struct edid *edid;
intel_dp_unset_edid(intel_dp);
edid = intel_dp_get_edid(intel_dp);
intel_connector->detect_edid = edid;
intel_dp->has_audio = drm_detect_monitor_audio(edid);
drm_dp_cec_set_edid(&intel_dp->aux, edid);
}
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
{
struct intel_connector *intel_connector = intel_dp->attached_connector;
drm_dp_cec_unset_edid(&intel_dp->aux);
kfree(intel_connector->detect_edid);
intel_connector->detect_edid = NULL;
intel_dp->has_audio = false;
}
static int
intel_dp_detect(struct drm_connector *connector,
struct drm_modeset_acquire_ctx *ctx,
bool force)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *encoder = &dig_port->base;
enum drm_connector_status status;
enum intel_display_power_domain aux_domain =
intel_aux_power_domain(dig_port);
intel_wakeref_t wakeref;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
wakeref = intel_display_power_get(dev_priv, aux_domain);
/* Can't disconnect eDP */
if (intel_dp_is_edp(intel_dp))
status = edp_detect(intel_dp);
else if (intel_digital_port_connected(encoder))
status = intel_dp_detect_dpcd(intel_dp);
else
status = connector_status_disconnected;
if (status == connector_status_disconnected) {
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
if (intel_dp->is_mst) {
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
intel_dp->is_mst,
intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
}
goto out;
}
if (intel_dp->reset_link_params) {
/* Initial max link lane count */
intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
/* Initial max link rate */
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
intel_dp->reset_link_params = false;
}
intel_dp_print_rates(intel_dp);
/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
if (INTEL_GEN(dev_priv) >= 11)
intel_dp_get_dsc_sink_cap(intel_dp);
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
drm_dp_is_branch(intel_dp->dpcd));
intel_dp_configure_mst(intel_dp);
if (intel_dp->is_mst) {
/*
* If we are in MST mode then this connector
* won't appear connected or have anything
* with EDID on it
*/
status = connector_status_disconnected;
goto out;
}
/*
* Some external monitors do not signal loss of link synchronization
* with an IRQ_HPD, so force a link status check.
*/
if (!intel_dp_is_edp(intel_dp)) {
int ret;
ret = intel_dp_retrain_link(encoder, ctx);
if (ret) {
intel_display_power_put(dev_priv, aux_domain, wakeref);
return ret;
}
}
/*
* Clearing NACK and defer counts to get their exact values
* while reading EDID which are required by Compliance tests
* 4.2.2.4 and 4.2.2.5
*/
intel_dp->aux.i2c_nack_count = 0;
intel_dp->aux.i2c_defer_count = 0;
intel_dp_set_edid(intel_dp);
if (intel_dp_is_edp(intel_dp) ||
to_intel_connector(connector)->detect_edid)
status = connector_status_connected;
intel_dp_check_service_irq(intel_dp);
out:
if (status != connector_status_connected && !intel_dp->is_mst)
intel_dp_unset_edid(intel_dp);
intel_display_power_put(dev_priv, aux_domain, wakeref);
return status;
}
static void
intel_dp_force(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &dig_port->base;
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
enum intel_display_power_domain aux_domain =
intel_aux_power_domain(dig_port);
intel_wakeref_t wakeref;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
connector->base.id, connector->name);
intel_dp_unset_edid(intel_dp);
if (connector->status != connector_status_connected)
return;
wakeref = intel_display_power_get(dev_priv, aux_domain);
intel_dp_set_edid(intel_dp);
intel_display_power_put(dev_priv, aux_domain, wakeref);
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
struct edid *edid;
edid = intel_connector->detect_edid;
if (edid) {
int ret = intel_connector_update_modes(connector, edid);
if (ret)
return ret;
}
/* if eDP has no EDID, fall back to fixed mode */
if (intel_dp_is_edp(intel_attached_dp(connector)) &&
intel_connector->panel.fixed_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(connector->dev,
intel_connector->panel.fixed_mode);
if (mode) {
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static int
intel_dp_connector_register(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct drm_device *dev = connector->dev;
int ret;
ret = intel_connector_register(connector);
if (ret)
return ret;
i915_debugfs_connector_add(connector);
DRM_DEBUG_KMS("registering %s bus for %s\n",
intel_dp->aux.name, connector->kdev->kobj.name);
intel_dp->aux.dev = connector->kdev;
ret = drm_dp_aux_register(&intel_dp->aux);
if (!ret)
drm_dp_cec_register_connector(&intel_dp->aux,
connector->name, dev->dev);
return ret;
}
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
drm_dp_cec_unregister_connector(&intel_dp->aux);
drm_dp_aux_unregister(&intel_dp->aux);
intel_connector_unregister(connector);
}
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
intel_dp_mst_encoder_cleanup(intel_dig_port);
if (intel_dp_is_edp(intel_dp)) {
intel_wakeref_t wakeref;
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
with_pps_lock(intel_dp, wakeref)
edp_panel_vdd_off_sync(intel_dp);
if (intel_dp->edp_notifier.notifier_call) {
unregister_reboot_notifier(&intel_dp->edp_notifier);
intel_dp->edp_notifier.notifier_call = NULL;
}
}
intel_dp_aux_fini(intel_dp);
}
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
intel_dp_encoder_flush_work(encoder);
drm_encoder_cleanup(encoder);
kfree(enc_to_dig_port(encoder));
}
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
intel_wakeref_t wakeref;
if (!intel_dp_is_edp(intel_dp))
return;
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
with_pps_lock(intel_dp, wakeref)
edp_panel_vdd_off_sync(intel_dp);
}
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
long ret;
#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
msecs_to_jiffies(timeout));
if (!ret)
DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
u8 *an)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
static const struct drm_dp_aux_msg msg = {
.request = DP_AUX_NATIVE_WRITE,
.address = DP_AUX_HDCP_AKSV,
.size = DRM_HDCP_KSV_LEN,
};
u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
ssize_t dpcd_ret;
int ret;
/* Output An first, that's easy */
dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
an, DRM_HDCP_AN_LEN);
if (dpcd_ret != DRM_HDCP_AN_LEN) {
DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
dpcd_ret);
return dpcd_ret >= 0 ? -EIO : dpcd_ret;
}
/*
* Since Aksv is Oh-So-Secret, we can't access it in software. So in
* order to get it on the wire, we need to create the AUX header as if
* we were writing the data, and then tickle the hardware to output the
* data once the header is sent out.
*/
intel_dp_aux_header(txbuf, &msg);
ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
rxbuf, sizeof(rxbuf),
DP_AUX_CH_CTL_AUX_AKSV_SELECT);
if (ret < 0) {
DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
return ret;
} else if (ret == 0) {
DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
return -EIO;
}
reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
if (reply != DP_AUX_NATIVE_REPLY_ACK) {
DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
reply);
return -EIO;
}
return 0;
}
static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
u8 *bksv)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
DRM_HDCP_KSV_LEN);
if (ret != DRM_HDCP_KSV_LEN) {
DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
u8 *bstatus)
{
ssize_t ret;
/*
* For some reason the HDMI and DP HDCP specs call this register
* definition by different names. In the HDMI spec, it's called BSTATUS,
* but in DP it's called BINFO.
*/
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
bstatus, DRM_HDCP_BSTATUS_LEN);
if (ret != DRM_HDCP_BSTATUS_LEN) {
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
u8 *bcaps)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
bcaps, 1);
if (ret != 1) {
DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
bool *repeater_present)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
if (ret)
return ret;
*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
return 0;
}
static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
u8 *ri_prime)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
ri_prime, DRM_HDCP_RI_LEN);
if (ret != DRM_HDCP_RI_LEN) {
DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
bool *ksv_ready)
{
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
*ksv_ready = bstatus & DP_BSTATUS_READY;
return 0;
}
static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
int num_downstream, u8 *ksv_fifo)
{
ssize_t ret;
int i;
/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
for (i = 0; i < num_downstream; i += 3) {
size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_AUX_HDCP_KSV_FIFO,
ksv_fifo + i * DRM_HDCP_KSV_LEN,
len);
if (ret != len) {
DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
i, ret);
return ret >= 0 ? -EIO : ret;
}
}
return 0;
}
static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
int i, u32 *part)
{
ssize_t ret;
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
return -EINVAL;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_AUX_HDCP_V_PRIME(i), part,
DRM_HDCP_V_PRIME_PART_LEN);
if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
bool enable)
{
/* Not used for single stream DisplayPort setups */
return 0;
}
static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
ssize_t ret;
u8 bstatus;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
&bstatus, 1);
if (ret != 1) {
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
return false;
}
return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
bool *hdcp_capable)
{
ssize_t ret;
u8 bcaps;
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
if (ret)
return ret;
*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
return 0;
}
struct hdcp2_dp_errata_stream_type {
u8 msg_id;
u8 stream_type;
} __packed;
static struct hdcp2_dp_msg_data {
u8 msg_id;
u32 offset;
bool msg_detectable;
u32 timeout;
u32 timeout2; /* Added for non_paired situation */
} hdcp2_msg_data[] = {
{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
false, 0, 0},
{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
false, 0, 0},
{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
{HDCP_2_2_AKE_SEND_PAIRING_INFO,
DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
0, 0},
{HDCP_2_2_REP_SEND_RECVID_LIST,
DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
0, 0},
{HDCP_2_2_REP_STREAM_MANAGE,
DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
0, 0},
{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
0, 0},
};
static inline
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
u8 *rx_status)
{
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
HDCP_2_2_DP_RXSTATUS_LEN);
if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
return ret >= 0 ? -EIO : ret;
}
return 0;
}
static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
u8 msg_id, bool *msg_ready)
{
u8 rx_status;
int ret;
*msg_ready = false;
ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
if (ret < 0)
return ret;
switch (msg_id) {
case HDCP_2_2_AKE_SEND_HPRIME:
if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
*msg_ready = true;
break;
case HDCP_2_2_AKE_SEND_PAIRING_INFO:
if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
*msg_ready = true;
break;
case HDCP_2_2_REP_SEND_RECVID_LIST:
if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
*msg_ready = true;
break;
default:
DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
return -EINVAL;
}
return 0;
}
static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
struct hdcp2_dp_msg_data *hdcp2_msg_data)
{
struct intel_dp *dp = &intel_dig_port->dp;
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
u8 msg_id = hdcp2_msg_data->msg_id;
int ret, timeout;
bool msg_ready = false;
if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
timeout = hdcp2_msg_data->timeout2;
else
timeout = hdcp2_msg_data->timeout;
/*
* There is no way to detect the CERT, LPRIME and STREAM_READY
* availability. So Wait for timeout and read the msg.
*/
if (!hdcp2_msg_data->msg_detectable) {
mdelay(timeout);
ret = 0;
} else {
/*
* As we want to check the msg availability at timeout, Ignoring
* the timeout at wait for CP_IRQ.
*/
intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
ret = hdcp2_detect_msg_availability(intel_dig_port,
msg_id, &msg_ready);
if (!msg_ready)
ret = -ETIMEDOUT;
}
if (ret)
DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
hdcp2_msg_data->msg_id, ret, timeout);
return ret;
}
static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
{
int i;
for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
if (hdcp2_msg_data[i].msg_id == msg_id)
return &hdcp2_msg_data[i];
return NULL;
}
static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
void *buf, size_t size)
{
struct intel_dp *dp = &intel_dig_port->dp;
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
unsigned int offset;
u8 *byte = buf;
ssize_t ret, bytes_to_write, len;
struct hdcp2_dp_msg_data *hdcp2_msg_data;
hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
if (!hdcp2_msg_data)
return -EINVAL;
offset = hdcp2_msg_data->offset;
/* No msg_id in DP HDCP2.2 msgs */
bytes_to_write = size - 1;
byte++;
hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
while (bytes_to_write) {
len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
offset, (void *)byte, len);
if (ret < 0)
return ret;
bytes_to_write -= ret;
byte += ret;
offset += ret;
}
return size;
}
static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
u8 rx_info[HDCP_2_2_RXINFO_LEN];
u32 dev_cnt;
ssize_t ret;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_HDCP_2_2_REG_RXINFO_OFFSET,
(void *)rx_info, HDCP_2_2_RXINFO_LEN);
if (ret != HDCP_2_2_RXINFO_LEN)
return ret >= 0 ? -EIO : ret;
dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
HDCP_2_2_RECEIVER_IDS_MAX_LEN +
(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
return ret;
}
static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
u8 msg_id, void *buf, size_t size)
{
unsigned int offset;
u8 *byte = buf;
ssize_t ret, bytes_to_recv, len;
struct hdcp2_dp_msg_data *hdcp2_msg_data;
hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
if (!hdcp2_msg_data)
return -EINVAL;
offset = hdcp2_msg_data->offset;
ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
if (ret < 0)
return ret;
if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
ret = get_receiver_id_list_size(intel_dig_port);
if (ret < 0)
return ret;
size = ret;
}
bytes_to_recv = size - 1;
/* DP adaptation msgs has no msg_id */
byte++;
while (bytes_to_recv) {
len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
(void *)byte, len);
if (ret < 0) {
DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
return ret;
}
bytes_to_recv -= ret;
byte += ret;
offset += ret;
}
byte = buf;
*byte = msg_id;
return size;
}
static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
bool is_repeater, u8 content_type)
{
struct hdcp2_dp_errata_stream_type stream_type_msg;
if (is_repeater)
return 0;
/*
* Errata for DP: As Stream type is used for encryption, Receiver
* should be communicated with stream type for the decryption of the
* content.
* Repeater will be communicated with stream type as a part of it's
* auth later in time.
*/
stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
stream_type_msg.stream_type = content_type;
return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
sizeof(stream_type_msg));
}
static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
u8 rx_status;
int ret;
ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
if (ret)
return ret;
if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
ret = HDCP_REAUTH_REQUEST;
else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
ret = HDCP_LINK_INTEGRITY_FAILURE;
else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
ret = HDCP_TOPOLOGY_CHANGE;
return ret;
}
static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
bool *capable)
{
u8 rx_caps[3];
int ret;
*capable = false;
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
rx_caps, HDCP_2_2_RXCAPS_LEN);
if (ret != HDCP_2_2_RXCAPS_LEN)
return ret >= 0 ? -EIO : ret;
if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
*capable = true;
return 0;
}
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
.write_an_aksv = intel_dp_hdcp_write_an_aksv,
.read_bksv = intel_dp_hdcp_read_bksv,
.read_bstatus = intel_dp_hdcp_read_bstatus,
.repeater_present = intel_dp_hdcp_repeater_present,
.read_ri_prime = intel_dp_hdcp_read_ri_prime,
.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
.toggle_signalling = intel_dp_hdcp_toggle_signalling,
.check_link = intel_dp_hdcp_check_link,
.hdcp_capable = intel_dp_hdcp_capable,
.write_2_2_msg = intel_dp_hdcp2_write_msg,
.read_2_2_msg = intel_dp_hdcp2_read_msg,
.config_stream_type = intel_dp_hdcp2_config_stream_type,
.check_2_2_link = intel_dp_hdcp2_check_link,
.hdcp_2_2_capable = intel_dp_hdcp2_capable,
.protocol = HDCP_PROTOCOL_DP,
};
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
lockdep_assert_held(&dev_priv->pps_mutex);
if (!edp_have_panel_vdd(intel_dp))
return;
/*
* The VDD bit needs a power domain reference, so if the bit is
* already enabled when we boot or resume, grab this reference and
* schedule a vdd off, so we don't hold on to the reference
* indefinitely.
*/
DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
edp_panel_vdd_schedule_off(intel_dp);
}
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
enum pipe pipe;
if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
encoder->port, &pipe))
return pipe;
return INVALID_PIPE;
}
void intel_dp_encoder_reset(struct drm_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
intel_wakeref_t wakeref;
if (!HAS_DDI(dev_priv))
intel_dp->DP = I915_READ(intel_dp->output_reg);
if (lspcon->active)
lspcon_resume(lspcon);
intel_dp->reset_link_params = true;
with_pps_lock(intel_dp, wakeref) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
if (intel_dp_is_edp(intel_dp)) {
/*
* Reinit the power sequencer, in case BIOS did
* something nasty with it.
*/
intel_dp_pps_init(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
}
}
}
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.force = intel_dp_force,
.fill_modes = drm_helper_probe_single_connector_modes,
.atomic_get_property = intel_digital_connector_atomic_get_property,
.atomic_set_property = intel_digital_connector_atomic_set_property,
.late_register = intel_dp_connector_register,
.early_unregister = intel_dp_connector_unregister,
.destroy = intel_connector_destroy,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.detect_ctx = intel_dp_detect,
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.atomic_check = intel_digital_connector_atomic_check,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
enum irqreturn
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
enum irqreturn ret = IRQ_NONE;
intel_wakeref_t wakeref;
if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
/*
* vdd off can generate a long pulse on eDP which
* would require vdd on to handle it, and thus we
* would end up in an endless cycle of
* "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
*/
DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
port_name(intel_dig_port->base.port));
return IRQ_HANDLED;
}
DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
port_name(intel_dig_port->base.port),
long_hpd ? "long" : "short");
if (long_hpd) {
intel_dp->reset_link_params = true;
return IRQ_NONE;
}
wakeref = intel_display_power_get(dev_priv,
intel_aux_power_domain(intel_dig_port));
if (intel_dp->is_mst) {
if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
/*
* If we were in MST mode, and device is not
* there, get out of MST mode
*/
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
intel_dp->is_mst);
goto put_power;
}
}
if (!intel_dp->is_mst) {
bool handled;
handled = intel_dp_short_pulse(intel_dp);
if (!handled)
goto put_power;
}
ret = IRQ_HANDLED;
put_power:
intel_display_power_put(dev_priv,
intel_aux_power_domain(intel_dig_port),
wakeref);
return ret;
}
/* check the VBT to see whether the eDP is on another port */
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
{
/*
* eDP not supported on g4x. so bail out early just
* for a bit extra safety in case the VBT is bonkers.
*/
if (INTEL_GEN(dev_priv) < 5)
return false;
if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
return true;
return intel_bios_is_port_edp(dev_priv, port);
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct drm_i915_private *dev_priv = to_i915(connector->dev);
enum port port = dp_to_dig_port(intel_dp)->base.port;
if (!IS_G4X(dev_priv) && port != PORT_A)
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
if (HAS_GMCH(dev_priv))
drm_connector_attach_max_bpc_property(connector, 6, 10);
else if (INTEL_GEN(dev_priv) >= 5)
drm_connector_attach_max_bpc_property(connector, 6, 12);
if (intel_dp_is_edp(intel_dp)) {
u32 allowed_scalers;
allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
if (!HAS_GMCH(dev_priv))
allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
}
}
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
intel_dp->panel_power_off_time = ktime_get_boottime();
intel_dp->last_power_on = jiffies;
intel_dp->last_backlight_off = jiffies;
}
static void
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 pp_on, pp_off, pp_ctl;
struct pps_registers regs;
intel_pps_get_registers(intel_dp, &regs);
pp_ctl = ironlake_get_pp_control(intel_dp);
/* Ensure PPS is unlocked */
if (!HAS_DDI(dev_priv))
I915_WRITE(regs.pp_ctrl, pp_ctl);
pp_on = I915_READ(regs.pp_on);
pp_off = I915_READ(regs.pp_off);
/* Pull timing values out of registers */
seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
if (i915_mmio_reg_valid(regs.pp_div)) {
u32 pp_div;
pp_div = I915_READ(regs.pp_div);
seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
} else {
seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
}
}
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
state_name,
seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}
static void
intel_pps_verify_state(struct intel_dp *intel_dp)
{
struct edp_power_seq hw;
struct edp_power_seq *sw = &intel_dp->pps_delays;
intel_pps_readout_hw_state(intel_dp, &hw);
if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
DRM_ERROR("PPS state mismatch\n");
intel_pps_dump_state("sw", sw);
intel_pps_dump_state("hw", &hw);
}
}
static void
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct edp_power_seq cur, vbt, spec,
*final = &intel_dp->pps_delays;
lockdep_assert_held(&dev_priv->pps_mutex);
/* already initialized? */
if (final->t11_t12 != 0)
return;
intel_pps_readout_hw_state(intel_dp, &cur);
intel_pps_dump_state("cur", &cur);
vbt = dev_priv->vbt.edp.pps;
/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
* of 500ms appears to be too short. Ocassionally the panel
* just fails to power back on. Increasing the delay to 800ms
* seems sufficient to avoid this problem.
*/
if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
vbt.t11_t12);
}
/* T11_T12 delay is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
vbt.t11_t12 += 100 * 10;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
spec.t1_t3 = 210 * 10;
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
spec.t10 = 500 * 10;
/* This one is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
spec.t11_t12 = (510 + 100) * 10;
intel_pps_dump_state("vbt", &vbt);
/* Use the max of the register settings and vbt. If both are
* unset, fall back to the spec limits. */
#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
spec.field : \
max(cur.field, vbt.field))
assign_final(t1_t3);
assign_final(t8);
assign_final(t9);
assign_final(t10);
assign_final(t11_t12);
#undef assign_final
#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
intel_dp->panel_power_up_delay = get_delay(t1_t3);
intel_dp->backlight_on_delay = get_delay(t8);
intel_dp->backlight_off_delay = get_delay(t9);
intel_dp->panel_power_down_delay = get_delay(t10);
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
/*
* We override the HW backlight delays to 1 because we do manual waits
* on them. For T8, even BSpec recommends doing it. For T9, if we
* don't do this, we'll end up waiting for the backlight off delay
* twice: once when we do the manual sleep, and once when we disable
* the panel and wait for the PP_STATUS bit to become zero.
*/
final->t8 = 1;
final->t9 = 1;
/*
* HW has only a 100msec granularity for t11_t12 so round it up
* accordingly.
*/
final->t11_t12 = roundup(final->t11_t12, 100 * 10);
}
static void
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
bool force_disable_vdd)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
u32 pp_on, pp_off, port_sel = 0;
int div = dev_priv->rawclk_freq / 1000;
struct pps_registers regs;
enum port port = dp_to_dig_port(intel_dp)->base.port;
const struct edp_power_seq *seq = &intel_dp->pps_delays;
lockdep_assert_held(&dev_priv->pps_mutex);
intel_pps_get_registers(intel_dp, &regs);
/*
* On some VLV machines the BIOS can leave the VDD
* enabled even on power sequencers which aren't
* hooked up to any port. This would mess up the
* power domain tracking the first time we pick
* one of these power sequencers for use since
* edp_panel_vdd_on() would notice that the VDD was
* already on and therefore wouldn't grab the power
* domain reference. Disable VDD first to avoid this.
* This also avoids spuriously turning the VDD on as
* soon as the new power sequencer gets initialized.
*/
if (force_disable_vdd) {
u32 pp = ironlake_get_pp_control(intel_dp);
WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
if (pp & EDP_FORCE_VDD)
DRM_DEBUG_KMS("VDD already on, disabling first\n");
pp &= ~EDP_FORCE_VDD;
I915_WRITE(regs.pp_ctrl, pp);
}
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
/* Haswell doesn't have any port selection bits for the panel
* power sequencer any more. */
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
port_sel = PANEL_PORT_SELECT_VLV(port);
} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
switch (port) {
case PORT_A:
port_sel = PANEL_PORT_SELECT_DPA;
break;
case PORT_C:
port_sel = PANEL_PORT_SELECT_DPC;
break;
case PORT_D:
port_sel = PANEL_PORT_SELECT_DPD;
break;
default:
MISSING_CASE(port);
break;
}
}
pp_on |= port_sel;
I915_WRITE(regs.pp_on, pp_on);
I915_WRITE(regs.pp_off, pp_off);
/*
* Compute the divisor for the pp clock, simply match the Bspec formula.
*/
if (i915_mmio_reg_valid(regs.pp_div)) {
u32 pp_div;
pp_div = ((100 * div) / 2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000) <<
PANEL_POWER_CYCLE_DELAY_SHIFT);
I915_WRITE(regs.pp_div, pp_div);
} else {
u32 pp_ctl;
pp_ctl = I915_READ(regs.pp_ctrl);
pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
pp_ctl |= (DIV_ROUND_UP(seq->t11_t12, 1000) <<
BXT_POWER_CYCLE_DELAY_SHIFT);
I915_WRITE(regs.pp_ctrl, pp_ctl);
}
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
I915_READ(regs.pp_on),
I915_READ(regs.pp_off),
i915_mmio_reg_valid(regs.pp_div) ?
I915_READ(regs.pp_div) :
(I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
}
static void intel_dp_pps_init(struct intel_dp *intel_dp)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
vlv_initial_power_sequencer_setup(intel_dp);
} else {
intel_dp_init_panel_power_sequencer(intel_dp);
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
}
}
/**
* intel_dp_set_drrs_state - program registers for RR switch to take effect
* @dev_priv: i915 device
* @crtc_state: a pointer to the active intel_crtc_state
* @refresh_rate: RR to be programmed
*
* This function gets called when refresh rate (RR) has to be changed from
* one frequency to another. Switches can be between high and low RR
* supported by the panel or to any other RR based on media playback (in
* this case, RR value needs to be passed from user space).
*
* The caller of this function needs to take a lock on dev_priv->drrs.
*/
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state,
int refresh_rate)
{
struct intel_encoder *encoder;
struct intel_digital_port *dig_port = NULL;
struct intel_dp *intel_dp = dev_priv->drrs.dp;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
if (refresh_rate <= 0) {
DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
return;
}
if (intel_dp == NULL) {
DRM_DEBUG_KMS("DRRS not supported.\n");
return;
}
dig_port = dp_to_dig_port(intel_dp);
encoder = &dig_port->base;
if (!intel_crtc) {
DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
return;
}
if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
return;
}
if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
refresh_rate)
index = DRRS_LOW_RR;
if (index == dev_priv->drrs.refresh_rate_type) {
DRM_DEBUG_KMS(
"DRRS requested for previously set RR...ignoring\n");
return;
}
if (!crtc_state->base.active) {
DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
return;
}
if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
switch (index) {
case DRRS_HIGH_RR:
intel_dp_set_m_n(crtc_state, M1_N1);
break;
case DRRS_LOW_RR:
intel_dp_set_m_n(crtc_state, M2_N2);
break;
case DRRS_MAX_RR:
default:
DRM_ERROR("Unsupported refreshrate type\n");
}
} else if (INTEL_GEN(dev_priv) > 6) {
i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
u32 val;
val = I915_READ(reg);
if (index > DRRS_HIGH_RR) {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val |= PIPECONF_EDP_RR_MODE_SWITCH;
} else {
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
else
val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
}
I915_WRITE(reg, val);
}
dev_priv->drrs.refresh_rate_type = index;
DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}
/**
* intel_edp_drrs_enable - init drrs struct if supported
* @intel_dp: DP struct
* @crtc_state: A pointer to the active crtc state.
*
* Initializes frontbuffer_bits and drrs.dp
*/
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (!crtc_state->has_drrs) {
DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
return;
}
if (dev_priv->psr.enabled) {
DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
return;
}
mutex_lock(&dev_priv->drrs.mutex);
if (dev_priv->drrs.dp) {
DRM_DEBUG_KMS("DRRS already enabled\n");
goto unlock;
}
dev_priv->drrs.busy_frontbuffer_bits = 0;
dev_priv->drrs.dp = intel_dp;
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_disable - Disable DRRS
* @intel_dp: DP struct
* @old_crtc_state: Pointer to old crtc_state.
*
*/
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
const struct intel_crtc_state *old_crtc_state)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
if (!old_crtc_state->has_drrs)
return;
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, old_crtc_state,
intel_dp->attached_connector->panel.fixed_mode->vrefresh);
dev_priv->drrs.dp = NULL;
mutex_unlock(&dev_priv->drrs.mutex);
cancel_delayed_work_sync(&dev_priv->drrs.work);
}
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), drrs.work.work);
struct intel_dp *intel_dp;
mutex_lock(&dev_priv->drrs.mutex);
intel_dp = dev_priv->drrs.dp;
if (!intel_dp)
goto unlock;
/*
* The delayed work can race with an invalidate hence we need to
* recheck.
*/
if (dev_priv->drrs.busy_frontbuffer_bits)
goto unlock;
if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
intel_dp->attached_connector->panel.downclock_mode->vrefresh);
}
unlock:
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_invalidate - Disable Idleness DRRS
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called everytime rendering on the given planes start.
* Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
/* invalidate means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* intel_edp_drrs_flush - Restart Idleness DRRS
* @dev_priv: i915 device
* @frontbuffer_bits: frontbuffer plane tracking bits
*
* This function gets called every time rendering on the given planes has
* completed or flip on a crtc is completed. So DRRS should be upclocked
* (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
* if no other planes are dirty.
*
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
*/
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits)
{
struct drm_crtc *crtc;
enum pipe pipe;
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
return;
cancel_delayed_work(&dev_priv->drrs.work);
mutex_lock(&dev_priv->drrs.mutex);
if (!dev_priv->drrs.dp) {
mutex_unlock(&dev_priv->drrs.mutex);
return;
}
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
pipe = to_intel_crtc(crtc)->pipe;
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
/* flush means busy screen hence upclock */
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
/*
* flush also means no more activity hence schedule downclock, if all
* other fbs are quiescent too
*/
if (!dev_priv->drrs.busy_frontbuffer_bits)
schedule_delayed_work(&dev_priv->drrs.work,
msecs_to_jiffies(1000));
mutex_unlock(&dev_priv->drrs.mutex);
}
/**
* DOC: Display Refresh Rate Switching (DRRS)
*
* Display Refresh Rate Switching (DRRS) is a power conservation feature
* which enables swtching between low and high refresh rates,
* dynamically, based on the usage scenario. This feature is applicable
* for internal panels.
*
* Indication that the panel supports DRRS is given by the panel EDID, which
* would list multiple refresh rates for one resolution.
*
* DRRS is of 2 types - static and seamless.
* Static DRRS involves changing refresh rate (RR) by doing a full modeset
* (may appear as a blink on screen) and is used in dock-undock scenario.
* Seamless DRRS involves changing RR without any visual effect to the user
* and can be used during normal system usage. This is done by programming
* certain registers.
*
* Support for static/seamless DRRS may be indicated in the VBT based on
* inputs from the panel spec.
*
* DRRS saves power by switching to low RR based on usage scenarios.
*
* The implementation is based on frontbuffer tracking implementation. When
* there is a disturbance on the screen triggered by user activity or a periodic
* system activity, DRRS is disabled (RR is changed to high RR). When there is
* no movement on screen, after a timeout of 1 second, a switch to low RR is
* made.
*
* For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
* and intel_edp_drrs_flush() are called.
*
* DRRS can be further extended to support other internal panels and also
* the scenario of video playback wherein RR is set based on the rate
* requested by userspace.
*/
/**
* intel_dp_drrs_init - Init basic DRRS work and mutex.
* @connector: eDP connector
* @fixed_mode: preferred mode of panel
*
* This function is called only once at driver load to initialize basic
* DRRS stuff.
*
* Returns:
* Downclock mode if panel supports it, else return NULL.
* DRRS support is determined by the presence of downclock mode (apart
* from VBT setting).
*/
static struct drm_display_mode *
intel_dp_drrs_init(struct intel_connector *connector,
struct drm_display_mode *fixed_mode)
{
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
struct drm_display_mode *downclock_mode = NULL;
INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
mutex_init(&dev_priv->drrs.mutex);
if (INTEL_GEN(dev_priv) <= 6) {
DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
return NULL;
}
if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
return NULL;
}
downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
&connector->base);
if (!downclock_mode) {
DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
return NULL;
}
dev_priv->drrs.type = dev_priv->vbt.drrs_type;
dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
return downclock_mode;
}
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
struct intel_connector *intel_connector)
{
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
struct drm_device *dev = &dev_priv->drm;
struct drm_connector *connector = &intel_connector->base;
struct drm_display_mode *fixed_mode = NULL;
struct drm_display_mode *downclock_mode = NULL;
bool has_dpcd;
struct drm_display_mode *scan;
enum pipe pipe = INVALID_PIPE;
intel_wakeref_t wakeref;
struct edid *edid;
if (!intel_dp_is_edp(intel_dp))
return true;
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
/*
* On IBX/CPT we may get here with LVDS already registered. Since the
* driver uses the only internal power sequencer available for both
* eDP and LVDS bail out early in this case to prevent interfering
* with an already powered-on LVDS power sequencer.
*/
if (intel_get_lvds_encoder(&dev_priv->drm)) {
WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
DRM_INFO("LVDS was detected, not registering eDP\n");
return false;
}
with_pps_lock(intel_dp, wakeref) {
intel_dp_init_panel_power_timestamps(intel_dp);
intel_dp_pps_init(intel_dp);
intel_edp_panel_vdd_sanitize(intel_dp);
}
/* Cache DPCD and EDID for edp. */
has_dpcd = intel_edp_init_dpcd(intel_dp);
if (!has_dpcd) {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
goto out_vdd_off;
}
mutex_lock(&dev->mode_config.mutex);
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
if (edid) {
if (drm_add_edid_modes(connector, edid)) {
drm_connector_update_edid_property(connector,
edid);
} else {
kfree(edid);
edid = ERR_PTR(-EINVAL);
}
} else {
edid = ERR_PTR(-ENOENT);
}
intel_connector->edid = edid;
/* prefer fixed mode from EDID if available */
list_for_each_entry(scan, &connector->probed_modes, head) {
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
fixed_mode = drm_mode_duplicate(dev, scan);
downclock_mode = intel_dp_drrs_init(
intel_connector, fixed_mode);
break;
}
}
/* fallback to VBT if available for eDP */
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
fixed_mode = drm_mode_duplicate(dev,
dev_priv->vbt.lfp_lvds_vbt_mode);
if (fixed_mode) {
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
connector->display_info.width_mm = fixed_mode->width_mm;
connector->display_info.height_mm = fixed_mode->height_mm;
}
}
mutex_unlock(&dev->mode_config.mutex);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
intel_dp->edp_notifier.notifier_call = edp_notify_handler;
register_reboot_notifier(&intel_dp->edp_notifier);
/*
* Figure out the current pipe for the initial backlight setup.
* If the current pipe isn't valid, try the PPS pipe, and if that
* fails just assume pipe A.
*/
pipe = vlv_active_pipe(intel_dp);
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = intel_dp->pps_pipe;
if (pipe != PIPE_A && pipe != PIPE_B)
pipe = PIPE_A;
DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
pipe_name(pipe));
}
intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
intel_connector->panel.backlight.power = intel_edp_backlight_power;
intel_panel_setup_backlight(connector, pipe);
if (fixed_mode)
drm_connector_init_panel_orientation_property(
connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
return true;
out_vdd_off:
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
/*
* vdd might still be enabled do to the delayed vdd off.
* Make sure vdd is actually turned off here.
*/
with_pps_lock(intel_dp, wakeref)
edp_panel_vdd_off_sync(intel_dp);
return false;
}
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
struct intel_connector *intel_connector;
struct drm_connector *connector;
intel_connector = container_of(work, typeof(*intel_connector),
modeset_retry_work);
connector = &intel_connector->base;
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
connector->name);
/* Grab the locks before changing connector property*/
mutex_lock(&connector->dev->mode_config.mutex);
/* Set connector link status to BAD and send a Uevent to notify
* userspace to do a modeset.
*/
drm_connector_set_link_status_property(connector,
DRM_MODE_LINK_STATUS_BAD);
mutex_unlock(&connector->dev->mode_config.mutex);
/* Send Hotplug uevent so userspace can reprobe */
drm_kms_helper_hotplug_event(connector->dev);
}
bool
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_encoder->port;
int type;
/* Initialize the work for modeset in case of link train failure */
INIT_WORK(&intel_connector->modeset_retry_work,
intel_dp_modeset_retry_work_fn);
if (WARN(intel_dig_port->max_lanes < 1,
"Not enough lanes (%d) for DP on port %c\n",
intel_dig_port->max_lanes, port_name(port)))
return false;
intel_dp_set_source_rates(intel_dp);
intel_dp->reset_link_params = true;
intel_dp->pps_pipe = INVALID_PIPE;
intel_dp->active_pipe = INVALID_PIPE;
/* intel_dp vfuncs */
if (HAS_DDI(dev_priv))
intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
/* Preserve the current hw state. */
intel_dp->DP = I915_READ(intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (intel_dp_is_port_edp(dev_priv, port))
type = DRM_MODE_CONNECTOR_eDP;
else
type = DRM_MODE_CONNECTOR_DisplayPort;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
/*
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
* for DP the encoder type can be set by the caller to
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
*/
if (type == DRM_MODE_CONNECTOR_eDP)
intel_encoder->type = INTEL_OUTPUT_EDP;
/* eDP only on port B and/or C on vlv/chv */
if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
intel_dp_is_edp(intel_dp) &&
port != PORT_B && port != PORT_C))
return false;
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
port_name(port));
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
if (!HAS_GMCH(dev_priv))
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
intel_dp_aux_init(intel_dp);
intel_connector_attach_encoder(intel_connector, intel_encoder);
if (HAS_DDI(dev_priv))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
/* init MST on ports that can support it */
if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
(port == PORT_B || port == PORT_C ||
port == PORT_D || port == PORT_F))
intel_dp_mst_encoder_init(intel_dig_port,
intel_connector->base.base.id);
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
intel_dp_aux_fini(intel_dp);
intel_dp_mst_encoder_cleanup(intel_dig_port);
goto fail;
}
intel_dp_add_properties(intel_dp, connector);
if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
if (ret)
DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
}
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G45(dev_priv)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
return true;
fail:
drm_connector_cleanup(connector);
return false;
}
bool intel_dp_init(struct drm_i915_private *dev_priv,
i915_reg_t output_reg,
enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return false;
intel_connector = intel_connector_alloc();
if (!intel_connector)
goto err_connector_alloc;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
&intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
"DP %c", port_name(port)))
goto err_encoder_init;
intel_encoder->hotplug = intel_dp_hotplug;
intel_encoder->compute_config = intel_dp_compute_config;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_encoder->get_config = intel_dp_get_config;
intel_encoder->update_pipe = intel_panel_update_backlight;
intel_encoder->suspend = intel_dp_encoder_suspend;
if (IS_CHERRYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
intel_encoder->pre_enable = chv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = chv_post_disable_dp;
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
} else if (IS_VALLEYVIEW(dev_priv)) {
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
intel_encoder->pre_enable = vlv_pre_enable_dp;
intel_encoder->enable = vlv_enable_dp;
intel_encoder->disable = vlv_disable_dp;
intel_encoder->post_disable = vlv_post_disable_dp;
} else {
intel_encoder->pre_enable = g4x_pre_enable_dp;
intel_encoder->enable = g4x_enable_dp;
intel_encoder->disable = g4x_disable_dp;
intel_encoder->post_disable = g4x_post_disable_dp;
}
intel_dig_port->dp.output_reg = output_reg;
intel_dig_port->max_lanes = 4;
intel_encoder->type = INTEL_OUTPUT_DP;
intel_encoder->power_domain = intel_port_to_power_domain(port);
if (IS_CHERRYVIEW(dev_priv)) {
if (port == PORT_D)
intel_encoder->crtc_mask = 1 << 2;
else
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
} else {
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
}
intel_encoder->cloneable = 0;
intel_encoder->port = port;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
if (port != PORT_A)
intel_infoframe_init(intel_dig_port);
intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
if (!intel_dp_init_connector(intel_dig_port, intel_connector))
goto err_init_connector;
return true;
err_init_connector:
drm_encoder_cleanup(encoder);
err_encoder_init:
kfree(intel_connector);
err_connector_alloc:
kfree(intel_dig_port);
return false;
}
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
if (encoder->type != INTEL_OUTPUT_DDI)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
if (!intel_dp->can_mst)
continue;
if (intel_dp->is_mst)
drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
}
}
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
{
struct intel_encoder *encoder;
for_each_intel_encoder(&dev_priv->drm, encoder) {
struct intel_dp *intel_dp;
int ret;
if (encoder->type != INTEL_OUTPUT_DDI)
continue;
intel_dp = enc_to_intel_dp(&encoder->base);
if (!intel_dp->can_mst)
continue;
ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
if (ret) {
intel_dp->is_mst = false;
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
false);
}
}
}