mirror of https://gitee.com/openkylin/linux.git
1331 lines
35 KiB
C
1331 lines
35 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Packard <keithp@keithp.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include "drmP.h"
|
|
#include "drm.h"
|
|
#include "drm_crtc.h"
|
|
#include "drm_crtc_helper.h"
|
|
#include "intel_drv.h"
|
|
#include "i915_drm.h"
|
|
#include "i915_drv.h"
|
|
#include "intel_dp.h"
|
|
|
|
#define DP_LINK_STATUS_SIZE 6
|
|
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
|
|
|
|
#define DP_LINK_CONFIGURATION_SIZE 9
|
|
|
|
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
|
|
|
|
struct intel_dp_priv {
|
|
uint32_t output_reg;
|
|
uint32_t DP;
|
|
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
|
|
uint32_t save_DP;
|
|
uint8_t save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
|
|
bool has_audio;
|
|
int dpms_mode;
|
|
uint8_t link_bw;
|
|
uint8_t lane_count;
|
|
uint8_t dpcd[4];
|
|
struct intel_output *intel_output;
|
|
struct i2c_adapter adapter;
|
|
struct i2c_algo_dp_aux_data algo;
|
|
};
|
|
|
|
static void
|
|
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
|
|
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
|
|
|
|
void
|
|
intel_edp_link_config (struct intel_output *intel_output,
|
|
int *lane_num, int *link_bw)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
*lane_num = dp_priv->lane_count;
|
|
if (dp_priv->link_bw == DP_LINK_BW_1_62)
|
|
*link_bw = 162000;
|
|
else if (dp_priv->link_bw == DP_LINK_BW_2_7)
|
|
*link_bw = 270000;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_lane_count(struct intel_output *intel_output)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
int max_lane_count = 4;
|
|
|
|
if (dp_priv->dpcd[0] >= 0x11) {
|
|
max_lane_count = dp_priv->dpcd[2] & 0x1f;
|
|
switch (max_lane_count) {
|
|
case 1: case 2: case 4:
|
|
break;
|
|
default:
|
|
max_lane_count = 4;
|
|
}
|
|
}
|
|
return max_lane_count;
|
|
}
|
|
|
|
static int
|
|
intel_dp_max_link_bw(struct intel_output *intel_output)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
int max_link_bw = dp_priv->dpcd[1];
|
|
|
|
switch (max_link_bw) {
|
|
case DP_LINK_BW_1_62:
|
|
case DP_LINK_BW_2_7:
|
|
break;
|
|
default:
|
|
max_link_bw = DP_LINK_BW_1_62;
|
|
break;
|
|
}
|
|
return max_link_bw;
|
|
}
|
|
|
|
static int
|
|
intel_dp_link_clock(uint8_t link_bw)
|
|
{
|
|
if (link_bw == DP_LINK_BW_2_7)
|
|
return 270000;
|
|
else
|
|
return 162000;
|
|
}
|
|
|
|
/* I think this is a fiction */
|
|
static int
|
|
intel_dp_link_required(int pixel_clock)
|
|
{
|
|
return pixel_clock * 3;
|
|
}
|
|
|
|
static int
|
|
intel_dp_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
|
|
int max_lanes = intel_dp_max_lane_count(intel_output);
|
|
|
|
if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
if (mode->clock < 10000)
|
|
return MODE_CLOCK_LOW;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static uint32_t
|
|
pack_aux(uint8_t *src, int src_bytes)
|
|
{
|
|
int i;
|
|
uint32_t v = 0;
|
|
|
|
if (src_bytes > 4)
|
|
src_bytes = 4;
|
|
for (i = 0; i < src_bytes; i++)
|
|
v |= ((uint32_t) src[i]) << ((3-i) * 8);
|
|
return v;
|
|
}
|
|
|
|
static void
|
|
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
|
|
{
|
|
int i;
|
|
if (dst_bytes > 4)
|
|
dst_bytes = 4;
|
|
for (i = 0; i < dst_bytes; i++)
|
|
dst[i] = src >> ((3-i) * 8);
|
|
}
|
|
|
|
/* hrawclock is 1/4 the FSB frequency */
|
|
static int
|
|
intel_hrawclk(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t clkcfg;
|
|
|
|
clkcfg = I915_READ(CLKCFG);
|
|
switch (clkcfg & CLKCFG_FSB_MASK) {
|
|
case CLKCFG_FSB_400:
|
|
return 100;
|
|
case CLKCFG_FSB_533:
|
|
return 133;
|
|
case CLKCFG_FSB_667:
|
|
return 166;
|
|
case CLKCFG_FSB_800:
|
|
return 200;
|
|
case CLKCFG_FSB_1067:
|
|
return 266;
|
|
case CLKCFG_FSB_1333:
|
|
return 333;
|
|
/* these two are just a guess; one of them might be right */
|
|
case CLKCFG_FSB_1600:
|
|
case CLKCFG_FSB_1600_ALT:
|
|
return 400;
|
|
default:
|
|
return 133;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_aux_ch(struct intel_output *intel_output,
|
|
uint8_t *send, int send_bytes,
|
|
uint8_t *recv, int recv_size)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
uint32_t output_reg = dp_priv->output_reg;
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t ch_ctl = output_reg + 0x10;
|
|
uint32_t ch_data = ch_ctl + 4;
|
|
int i;
|
|
int recv_bytes;
|
|
uint32_t ctl;
|
|
uint32_t status;
|
|
uint32_t aux_clock_divider;
|
|
int try;
|
|
|
|
/* The clock divider is based off the hrawclk,
|
|
* and would like to run at 2MHz. So, take the
|
|
* hrawclk value and divide by 2 and use that
|
|
*/
|
|
if (IS_eDP(intel_output))
|
|
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
|
|
else if (IS_IGDNG(dev))
|
|
aux_clock_divider = 62; /* IGDNG: input clock fixed at 125Mhz */
|
|
else
|
|
aux_clock_divider = intel_hrawclk(dev) / 2;
|
|
|
|
/* Must try at least 3 times according to DP spec */
|
|
for (try = 0; try < 5; try++) {
|
|
/* Load the send data into the aux channel data registers */
|
|
for (i = 0; i < send_bytes; i += 4) {
|
|
uint32_t d = pack_aux(send + i, send_bytes - i);;
|
|
|
|
I915_WRITE(ch_data + i, d);
|
|
}
|
|
|
|
ctl = (DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_TIME_OUT_400us |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
/* Send the command and wait for it to complete */
|
|
I915_WRITE(ch_ctl, ctl);
|
|
(void) I915_READ(ch_ctl);
|
|
for (;;) {
|
|
udelay(100);
|
|
status = I915_READ(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
}
|
|
|
|
/* Clear done status and any errors */
|
|
I915_WRITE(ch_ctl, (status |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR));
|
|
(void) I915_READ(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
|
|
break;
|
|
}
|
|
|
|
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
|
|
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Check for timeout or receive error.
|
|
* Timeouts occur when the sink is not connected
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
|
|
return -EIO;
|
|
}
|
|
|
|
/* Timeouts occur when the device isn't connected, so they're
|
|
* "normal" -- don't fill the kernel log with these */
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
|
|
DRM_DEBUG("dp_aux_ch timeout status 0x%08x\n", status);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Unload any bytes sent back from the other side */
|
|
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
|
|
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
|
|
|
|
if (recv_bytes > recv_size)
|
|
recv_bytes = recv_size;
|
|
|
|
for (i = 0; i < recv_bytes; i += 4) {
|
|
uint32_t d = I915_READ(ch_data + i);
|
|
|
|
unpack_aux(d, recv + i, recv_bytes - i);
|
|
}
|
|
|
|
return recv_bytes;
|
|
}
|
|
|
|
/* Write data to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write(struct intel_output *intel_output,
|
|
uint16_t address, uint8_t *send, int send_bytes)
|
|
{
|
|
int ret;
|
|
uint8_t msg[20];
|
|
int msg_bytes;
|
|
uint8_t ack;
|
|
|
|
if (send_bytes > 16)
|
|
return -1;
|
|
msg[0] = AUX_NATIVE_WRITE << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = send_bytes - 1;
|
|
memcpy(&msg[4], send, send_bytes);
|
|
msg_bytes = send_bytes + 4;
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
|
|
break;
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
return send_bytes;
|
|
}
|
|
|
|
/* Write a single byte to the aux channel in native mode */
|
|
static int
|
|
intel_dp_aux_native_write_1(struct intel_output *intel_output,
|
|
uint16_t address, uint8_t byte)
|
|
{
|
|
return intel_dp_aux_native_write(intel_output, address, &byte, 1);
|
|
}
|
|
|
|
/* read bytes from a native aux channel */
|
|
static int
|
|
intel_dp_aux_native_read(struct intel_output *intel_output,
|
|
uint16_t address, uint8_t *recv, int recv_bytes)
|
|
{
|
|
uint8_t msg[4];
|
|
int msg_bytes;
|
|
uint8_t reply[20];
|
|
int reply_bytes;
|
|
uint8_t ack;
|
|
int ret;
|
|
|
|
msg[0] = AUX_NATIVE_READ << 4;
|
|
msg[1] = address >> 8;
|
|
msg[2] = address & 0xff;
|
|
msg[3] = recv_bytes - 1;
|
|
|
|
msg_bytes = 4;
|
|
reply_bytes = recv_bytes + 1;
|
|
|
|
for (;;) {
|
|
ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
|
|
reply, reply_bytes);
|
|
if (ret == 0)
|
|
return -EPROTO;
|
|
if (ret < 0)
|
|
return ret;
|
|
ack = reply[0];
|
|
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
|
|
memcpy(recv, reply + 1, ret - 1);
|
|
return ret - 1;
|
|
}
|
|
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
|
|
udelay(100);
|
|
else
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static int
|
|
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
|
|
uint8_t *send, int send_bytes,
|
|
uint8_t *recv, int recv_bytes)
|
|
{
|
|
struct intel_dp_priv *dp_priv = container_of(adapter,
|
|
struct intel_dp_priv,
|
|
adapter);
|
|
struct intel_output *intel_output = dp_priv->intel_output;
|
|
|
|
return intel_dp_aux_ch(intel_output,
|
|
send, send_bytes, recv, recv_bytes);
|
|
}
|
|
|
|
static int
|
|
intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
DRM_ERROR("i2c_init %s\n", name);
|
|
dp_priv->algo.running = false;
|
|
dp_priv->algo.address = 0;
|
|
dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
|
|
|
|
memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
|
|
dp_priv->adapter.owner = THIS_MODULE;
|
|
dp_priv->adapter.class = I2C_CLASS_DDC;
|
|
strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
|
|
dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
|
|
dp_priv->adapter.algo_data = &dp_priv->algo;
|
|
dp_priv->adapter.dev.parent = &intel_output->base.kdev;
|
|
|
|
return i2c_dp_aux_add_bus(&dp_priv->adapter);
|
|
}
|
|
|
|
static bool
|
|
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct intel_output *intel_output = enc_to_intel_output(encoder);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
int lane_count, clock;
|
|
int max_lane_count = intel_dp_max_lane_count(intel_output);
|
|
int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
|
|
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
|
|
|
|
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
|
|
for (clock = 0; clock <= max_clock; clock++) {
|
|
int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
|
|
|
|
if (intel_dp_link_required(mode->clock) <= link_avail) {
|
|
dp_priv->link_bw = bws[clock];
|
|
dp_priv->lane_count = lane_count;
|
|
adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
|
|
DRM_DEBUG("Display port link bw %02x lane count %d clock %d\n",
|
|
dp_priv->link_bw, dp_priv->lane_count,
|
|
adjusted_mode->clock);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
struct intel_dp_m_n {
|
|
uint32_t tu;
|
|
uint32_t gmch_m;
|
|
uint32_t gmch_n;
|
|
uint32_t link_m;
|
|
uint32_t link_n;
|
|
};
|
|
|
|
static void
|
|
intel_reduce_ratio(uint32_t *num, uint32_t *den)
|
|
{
|
|
while (*num > 0xffffff || *den > 0xffffff) {
|
|
*num >>= 1;
|
|
*den >>= 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_compute_m_n(int bytes_per_pixel,
|
|
int nlanes,
|
|
int pixel_clock,
|
|
int link_clock,
|
|
struct intel_dp_m_n *m_n)
|
|
{
|
|
m_n->tu = 64;
|
|
m_n->gmch_m = pixel_clock * bytes_per_pixel;
|
|
m_n->gmch_n = link_clock * nlanes;
|
|
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
|
|
m_n->link_m = pixel_clock;
|
|
m_n->link_n = link_clock;
|
|
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
|
|
}
|
|
|
|
void
|
|
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct drm_device *dev = crtc->dev;
|
|
struct drm_mode_config *mode_config = &dev->mode_config;
|
|
struct drm_connector *connector;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
int lane_count = 4;
|
|
struct intel_dp_m_n m_n;
|
|
|
|
/*
|
|
* Find the lane count in the intel_output private
|
|
*/
|
|
list_for_each_entry(connector, &mode_config->connector_list, head) {
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
if (!connector->encoder || connector->encoder->crtc != crtc)
|
|
continue;
|
|
|
|
if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
|
|
lane_count = dp_priv->lane_count;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the GMCH and Link ratios. The '3' here is
|
|
* the number of bytes_per_pixel post-LUT, which we always
|
|
* set up for 8-bits of R/G/B, or 3 bytes total.
|
|
*/
|
|
intel_dp_compute_m_n(3, lane_count,
|
|
mode->clock, adjusted_mode->clock, &m_n);
|
|
|
|
if (IS_IGDNG(dev)) {
|
|
if (intel_crtc->pipe == 0) {
|
|
I915_WRITE(TRANSA_DATA_M1,
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
|
|
I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
|
|
I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
|
|
} else {
|
|
I915_WRITE(TRANSB_DATA_M1,
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
|
|
I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
|
|
I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
|
|
}
|
|
} else {
|
|
if (intel_crtc->pipe == 0) {
|
|
I915_WRITE(PIPEA_GMCH_DATA_M,
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(PIPEA_GMCH_DATA_N,
|
|
m_n.gmch_n);
|
|
I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
|
|
I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
|
|
} else {
|
|
I915_WRITE(PIPEB_GMCH_DATA_M,
|
|
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
|
|
m_n.gmch_m);
|
|
I915_WRITE(PIPEB_GMCH_DATA_N,
|
|
m_n.gmch_n);
|
|
I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
|
|
I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode)
|
|
{
|
|
struct intel_output *intel_output = enc_to_intel_output(encoder);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
struct drm_crtc *crtc = intel_output->enc.crtc;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
|
|
|
|
dp_priv->DP = (DP_LINK_TRAIN_OFF |
|
|
DP_VOLTAGE_0_4 |
|
|
DP_PRE_EMPHASIS_0 |
|
|
DP_SYNC_VS_HIGH |
|
|
DP_SYNC_HS_HIGH);
|
|
|
|
switch (dp_priv->lane_count) {
|
|
case 1:
|
|
dp_priv->DP |= DP_PORT_WIDTH_1;
|
|
break;
|
|
case 2:
|
|
dp_priv->DP |= DP_PORT_WIDTH_2;
|
|
break;
|
|
case 4:
|
|
dp_priv->DP |= DP_PORT_WIDTH_4;
|
|
break;
|
|
}
|
|
if (dp_priv->has_audio)
|
|
dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
|
|
|
|
memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
|
|
dp_priv->link_configuration[0] = dp_priv->link_bw;
|
|
dp_priv->link_configuration[1] = dp_priv->lane_count;
|
|
|
|
/*
|
|
* Check for DPCD version > 1.1,
|
|
* enable enahanced frame stuff in that case
|
|
*/
|
|
if (dp_priv->dpcd[0] >= 0x11) {
|
|
dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
|
|
dp_priv->DP |= DP_ENHANCED_FRAMING;
|
|
}
|
|
|
|
if (intel_crtc->pipe == 1)
|
|
dp_priv->DP |= DP_PIPEB_SELECT;
|
|
|
|
if (IS_eDP(intel_output)) {
|
|
/* don't miss out required setting for eDP */
|
|
dp_priv->DP |= DP_PLL_ENABLE;
|
|
if (adjusted_mode->clock < 200000)
|
|
dp_priv->DP |= DP_PLL_FREQ_160MHZ;
|
|
else
|
|
dp_priv->DP |= DP_PLL_FREQ_270MHZ;
|
|
}
|
|
}
|
|
|
|
static void igdng_edp_backlight_on (struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
DRM_DEBUG("\n");
|
|
pp = I915_READ(PCH_PP_CONTROL);
|
|
pp |= EDP_BLC_ENABLE;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
}
|
|
|
|
static void igdng_edp_backlight_off (struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u32 pp;
|
|
|
|
DRM_DEBUG("\n");
|
|
pp = I915_READ(PCH_PP_CONTROL);
|
|
pp &= ~EDP_BLC_ENABLE;
|
|
I915_WRITE(PCH_PP_CONTROL, pp);
|
|
}
|
|
|
|
static void
|
|
intel_dp_dpms(struct drm_encoder *encoder, int mode)
|
|
{
|
|
struct intel_output *intel_output = enc_to_intel_output(encoder);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
uint32_t dp_reg = I915_READ(dp_priv->output_reg);
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
if (dp_reg & DP_PORT_EN) {
|
|
intel_dp_link_down(intel_output, dp_priv->DP);
|
|
if (IS_eDP(intel_output))
|
|
igdng_edp_backlight_off(dev);
|
|
}
|
|
} else {
|
|
if (!(dp_reg & DP_PORT_EN)) {
|
|
intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
|
|
if (IS_eDP(intel_output))
|
|
igdng_edp_backlight_on(dev);
|
|
}
|
|
}
|
|
dp_priv->dpms_mode = mode;
|
|
}
|
|
|
|
/*
|
|
* Fetch AUX CH registers 0x202 - 0x207 which contain
|
|
* link status information
|
|
*/
|
|
static bool
|
|
intel_dp_get_link_status(struct intel_output *intel_output,
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_dp_aux_native_read(intel_output,
|
|
DP_LANE0_1_STATUS,
|
|
link_status, DP_LINK_STATUS_SIZE);
|
|
if (ret != DP_LINK_STATUS_SIZE)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int r)
|
|
{
|
|
return link_status[r - DP_LANE0_1_STATUS];
|
|
}
|
|
|
|
static void
|
|
intel_dp_save(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
dp_priv->save_DP = I915_READ(dp_priv->output_reg);
|
|
intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
|
|
dp_priv->save_link_configuration,
|
|
sizeof (dp_priv->save_link_configuration));
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int lane)
|
|
{
|
|
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
|
|
int s = ((lane & 1) ?
|
|
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
|
|
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
|
|
uint8_t l = intel_dp_link_status(link_status, i);
|
|
|
|
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int lane)
|
|
{
|
|
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
|
|
int s = ((lane & 1) ?
|
|
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
|
|
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
|
|
uint8_t l = intel_dp_link_status(link_status, i);
|
|
|
|
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
|
|
}
|
|
|
|
|
|
#if 0
|
|
static char *voltage_names[] = {
|
|
"0.4V", "0.6V", "0.8V", "1.2V"
|
|
};
|
|
static char *pre_emph_names[] = {
|
|
"0dB", "3.5dB", "6dB", "9.5dB"
|
|
};
|
|
static char *link_train_names[] = {
|
|
"pattern 1", "pattern 2", "idle", "off"
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* These are source-specific values; current Intel hardware supports
|
|
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
|
|
*/
|
|
#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
|
|
|
|
static uint8_t
|
|
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
|
|
{
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
return DP_TRAIN_PRE_EMPHASIS_6;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
return DP_TRAIN_PRE_EMPHASIS_3_5;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPHASIS_0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_get_adjust_train(struct intel_output *intel_output,
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int lane_count,
|
|
uint8_t train_set[4])
|
|
{
|
|
uint8_t v = 0;
|
|
uint8_t p = 0;
|
|
int lane;
|
|
|
|
for (lane = 0; lane < lane_count; lane++) {
|
|
uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
|
|
uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
|
|
|
|
if (this_v > v)
|
|
v = this_v;
|
|
if (this_p > p)
|
|
p = this_p;
|
|
}
|
|
|
|
if (v >= I830_DP_VOLTAGE_MAX)
|
|
v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
|
|
|
|
if (p >= intel_dp_pre_emphasis_max(v))
|
|
p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
|
|
|
|
for (lane = 0; lane < 4; lane++)
|
|
train_set[lane] = v | p;
|
|
}
|
|
|
|
static uint32_t
|
|
intel_dp_signal_levels(uint8_t train_set, int lane_count)
|
|
{
|
|
uint32_t signal_levels = 0;
|
|
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_400:
|
|
default:
|
|
signal_levels |= DP_VOLTAGE_0_4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_600:
|
|
signal_levels |= DP_VOLTAGE_0_6;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_800:
|
|
signal_levels |= DP_VOLTAGE_0_8;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_1200:
|
|
signal_levels |= DP_VOLTAGE_1_2;
|
|
break;
|
|
}
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPHASIS_0:
|
|
default:
|
|
signal_levels |= DP_PRE_EMPHASIS_0;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_3_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_3_5;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_6:
|
|
signal_levels |= DP_PRE_EMPHASIS_6;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPHASIS_9_5:
|
|
signal_levels |= DP_PRE_EMPHASIS_9_5;
|
|
break;
|
|
}
|
|
return signal_levels;
|
|
}
|
|
|
|
static uint8_t
|
|
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
|
|
int lane)
|
|
{
|
|
int i = DP_LANE0_1_STATUS + (lane >> 1);
|
|
int s = (lane & 1) * 4;
|
|
uint8_t l = intel_dp_link_status(link_status, i);
|
|
|
|
return (l >> s) & 0xf;
|
|
}
|
|
|
|
/* Check for clock recovery is done on all channels */
|
|
static bool
|
|
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
|
|
{
|
|
int lane;
|
|
uint8_t lane_status;
|
|
|
|
for (lane = 0; lane < lane_count; lane++) {
|
|
lane_status = intel_get_lane_status(link_status, lane);
|
|
if ((lane_status & DP_LANE_CR_DONE) == 0)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Check to see if channel eq is done on all channels */
|
|
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
|
|
DP_LANE_CHANNEL_EQ_DONE|\
|
|
DP_LANE_SYMBOL_LOCKED)
|
|
static bool
|
|
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
|
|
{
|
|
uint8_t lane_align;
|
|
uint8_t lane_status;
|
|
int lane;
|
|
|
|
lane_align = intel_dp_link_status(link_status,
|
|
DP_LANE_ALIGN_STATUS_UPDATED);
|
|
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
|
|
return false;
|
|
for (lane = 0; lane < lane_count; lane++) {
|
|
lane_status = intel_get_lane_status(link_status, lane);
|
|
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_set_link_train(struct intel_output *intel_output,
|
|
uint32_t dp_reg_value,
|
|
uint8_t dp_train_pat,
|
|
uint8_t train_set[4],
|
|
bool first)
|
|
{
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
int ret;
|
|
|
|
I915_WRITE(dp_priv->output_reg, dp_reg_value);
|
|
POSTING_READ(dp_priv->output_reg);
|
|
if (first)
|
|
intel_wait_for_vblank(dev);
|
|
|
|
intel_dp_aux_native_write_1(intel_output,
|
|
DP_TRAINING_PATTERN_SET,
|
|
dp_train_pat);
|
|
|
|
ret = intel_dp_aux_native_write(intel_output,
|
|
DP_TRAINING_LANE0_SET, train_set, 4);
|
|
if (ret != 4)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
|
|
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
|
|
{
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
uint8_t train_set[4];
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
int i;
|
|
uint8_t voltage;
|
|
bool clock_recovery = false;
|
|
bool channel_eq = false;
|
|
bool first = true;
|
|
int tries;
|
|
|
|
/* Write the link configuration data */
|
|
intel_dp_aux_native_write(intel_output, 0x100,
|
|
link_configuration, DP_LINK_CONFIGURATION_SIZE);
|
|
|
|
DP |= DP_PORT_EN;
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
memset(train_set, 0, 4);
|
|
voltage = 0xff;
|
|
tries = 0;
|
|
clock_recovery = false;
|
|
for (;;) {
|
|
/* Use train_set[0] to set the voltage and pre emphasis values */
|
|
uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
|
|
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
|
|
|
|
if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
|
|
DP_TRAINING_PATTERN_1, train_set, first))
|
|
break;
|
|
first = false;
|
|
/* Set training pattern 1 */
|
|
|
|
udelay(100);
|
|
if (!intel_dp_get_link_status(intel_output, link_status))
|
|
break;
|
|
|
|
if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
|
|
clock_recovery = true;
|
|
break;
|
|
}
|
|
|
|
/* Check to see if we've tried the max voltage */
|
|
for (i = 0; i < dp_priv->lane_count; i++)
|
|
if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
|
|
break;
|
|
if (i == dp_priv->lane_count)
|
|
break;
|
|
|
|
/* Check to see if we've tried the same voltage 5 times */
|
|
if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
|
|
++tries;
|
|
if (tries == 5)
|
|
break;
|
|
} else
|
|
tries = 0;
|
|
voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
|
|
|
|
/* Compute new train_set as requested by target */
|
|
intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
|
|
}
|
|
|
|
/* channel equalization */
|
|
tries = 0;
|
|
channel_eq = false;
|
|
for (;;) {
|
|
/* Use train_set[0] to set the voltage and pre emphasis values */
|
|
uint32_t signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
|
|
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
|
|
|
|
/* channel eq pattern */
|
|
if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
|
|
DP_TRAINING_PATTERN_2, train_set,
|
|
false))
|
|
break;
|
|
|
|
udelay(400);
|
|
if (!intel_dp_get_link_status(intel_output, link_status))
|
|
break;
|
|
|
|
if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
|
|
channel_eq = true;
|
|
break;
|
|
}
|
|
|
|
/* Try 5 times */
|
|
if (tries > 5)
|
|
break;
|
|
|
|
/* Compute new train_set as requested by target */
|
|
intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
|
|
++tries;
|
|
}
|
|
|
|
I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
|
|
POSTING_READ(dp_priv->output_reg);
|
|
intel_dp_aux_native_write_1(intel_output,
|
|
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
|
|
{
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
if (IS_eDP(intel_output)) {
|
|
DP &= ~DP_PLL_ENABLE;
|
|
I915_WRITE(dp_priv->output_reg, DP);
|
|
POSTING_READ(dp_priv->output_reg);
|
|
udelay(100);
|
|
}
|
|
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
|
|
POSTING_READ(dp_priv->output_reg);
|
|
|
|
udelay(17000);
|
|
|
|
if (IS_eDP(intel_output))
|
|
DP |= DP_LINK_TRAIN_OFF;
|
|
I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
|
|
POSTING_READ(dp_priv->output_reg);
|
|
}
|
|
|
|
static void
|
|
intel_dp_restore(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
if (dp_priv->save_DP & DP_PORT_EN)
|
|
intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
|
|
else
|
|
intel_dp_link_down(intel_output, dp_priv->save_DP);
|
|
}
|
|
|
|
/*
|
|
* According to DP spec
|
|
* 5.1.2:
|
|
* 1. Read DPCD
|
|
* 2. Configure link according to Receiver Capabilities
|
|
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
|
|
* 4. Check link status on receipt of hot-plug interrupt
|
|
*/
|
|
|
|
static void
|
|
intel_dp_check_link_status(struct intel_output *intel_output)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
uint8_t link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (!intel_output->enc.crtc)
|
|
return;
|
|
|
|
if (!intel_dp_get_link_status(intel_output, link_status)) {
|
|
intel_dp_link_down(intel_output, dp_priv->DP);
|
|
return;
|
|
}
|
|
|
|
if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
|
|
intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
igdng_dp_detect(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
enum drm_connector_status status;
|
|
|
|
status = connector_status_disconnected;
|
|
if (intel_dp_aux_native_read(intel_output,
|
|
0x000, dp_priv->dpcd,
|
|
sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
|
|
{
|
|
if (dp_priv->dpcd[0] != 0)
|
|
status = connector_status_connected;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
|
|
*
|
|
* \return true if DP port is connected.
|
|
* \return false if DP port is disconnected.
|
|
*/
|
|
static enum drm_connector_status
|
|
intel_dp_detect(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
uint32_t temp, bit;
|
|
enum drm_connector_status status;
|
|
|
|
dp_priv->has_audio = false;
|
|
|
|
if (IS_IGDNG(dev))
|
|
return igdng_dp_detect(connector);
|
|
|
|
temp = I915_READ(PORT_HOTPLUG_EN);
|
|
|
|
I915_WRITE(PORT_HOTPLUG_EN,
|
|
temp |
|
|
DPB_HOTPLUG_INT_EN |
|
|
DPC_HOTPLUG_INT_EN |
|
|
DPD_HOTPLUG_INT_EN);
|
|
|
|
POSTING_READ(PORT_HOTPLUG_EN);
|
|
|
|
switch (dp_priv->output_reg) {
|
|
case DP_B:
|
|
bit = DPB_HOTPLUG_INT_STATUS;
|
|
break;
|
|
case DP_C:
|
|
bit = DPC_HOTPLUG_INT_STATUS;
|
|
break;
|
|
case DP_D:
|
|
bit = DPD_HOTPLUG_INT_STATUS;
|
|
break;
|
|
default:
|
|
return connector_status_unknown;
|
|
}
|
|
|
|
temp = I915_READ(PORT_HOTPLUG_STAT);
|
|
|
|
if ((temp & bit) == 0)
|
|
return connector_status_disconnected;
|
|
|
|
status = connector_status_disconnected;
|
|
if (intel_dp_aux_native_read(intel_output,
|
|
0x000, dp_priv->dpcd,
|
|
sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
|
|
{
|
|
if (dp_priv->dpcd[0] != 0)
|
|
status = connector_status_connected;
|
|
}
|
|
return status;
|
|
}
|
|
|
|
static int intel_dp_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
struct drm_device *dev = intel_output->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* We should parse the EDID data and find out if it has an audio sink
|
|
*/
|
|
|
|
ret = intel_ddc_get_modes(intel_output);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* if eDP has no EDID, try to use fixed panel mode from VBT */
|
|
if (IS_eDP(intel_output)) {
|
|
if (dev_priv->panel_fixed_mode != NULL) {
|
|
struct drm_display_mode *mode;
|
|
mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
|
|
drm_mode_probed_add(connector, mode);
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
intel_dp_destroy (struct drm_connector *connector)
|
|
{
|
|
struct intel_output *intel_output = to_intel_output(connector);
|
|
|
|
if (intel_output->i2c_bus)
|
|
intel_i2c_destroy(intel_output->i2c_bus);
|
|
drm_sysfs_connector_remove(connector);
|
|
drm_connector_cleanup(connector);
|
|
kfree(intel_output);
|
|
}
|
|
|
|
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
|
|
.dpms = intel_dp_dpms,
|
|
.mode_fixup = intel_dp_mode_fixup,
|
|
.prepare = intel_encoder_prepare,
|
|
.mode_set = intel_dp_mode_set,
|
|
.commit = intel_encoder_commit,
|
|
};
|
|
|
|
static const struct drm_connector_funcs intel_dp_connector_funcs = {
|
|
.dpms = drm_helper_connector_dpms,
|
|
.save = intel_dp_save,
|
|
.restore = intel_dp_restore,
|
|
.detect = intel_dp_detect,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.destroy = intel_dp_destroy,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
|
|
.get_modes = intel_dp_get_modes,
|
|
.mode_valid = intel_dp_mode_valid,
|
|
.best_encoder = intel_best_encoder,
|
|
};
|
|
|
|
static void intel_dp_enc_destroy(struct drm_encoder *encoder)
|
|
{
|
|
drm_encoder_cleanup(encoder);
|
|
}
|
|
|
|
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
|
|
.destroy = intel_dp_enc_destroy,
|
|
};
|
|
|
|
void
|
|
intel_dp_hot_plug(struct intel_output *intel_output)
|
|
{
|
|
struct intel_dp_priv *dp_priv = intel_output->dev_priv;
|
|
|
|
if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
|
|
intel_dp_check_link_status(intel_output);
|
|
}
|
|
|
|
void
|
|
intel_dp_init(struct drm_device *dev, int output_reg)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_connector *connector;
|
|
struct intel_output *intel_output;
|
|
struct intel_dp_priv *dp_priv;
|
|
const char *name = NULL;
|
|
|
|
intel_output = kcalloc(sizeof(struct intel_output) +
|
|
sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
|
|
if (!intel_output)
|
|
return;
|
|
|
|
dp_priv = (struct intel_dp_priv *)(intel_output + 1);
|
|
|
|
connector = &intel_output->base;
|
|
drm_connector_init(dev, connector, &intel_dp_connector_funcs,
|
|
DRM_MODE_CONNECTOR_DisplayPort);
|
|
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
|
|
|
|
if (output_reg == DP_A)
|
|
intel_output->type = INTEL_OUTPUT_EDP;
|
|
else
|
|
intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
|
|
|
|
if (output_reg == DP_B)
|
|
intel_output->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
|
|
else if (output_reg == DP_C)
|
|
intel_output->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
|
|
else if (output_reg == DP_D)
|
|
intel_output->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
|
|
|
|
if (IS_eDP(intel_output)) {
|
|
intel_output->crtc_mask = (1 << 1);
|
|
intel_output->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
|
|
} else
|
|
intel_output->crtc_mask = (1 << 0) | (1 << 1);
|
|
connector->interlace_allowed = true;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
dp_priv->intel_output = intel_output;
|
|
dp_priv->output_reg = output_reg;
|
|
dp_priv->has_audio = false;
|
|
dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
|
|
intel_output->dev_priv = dp_priv;
|
|
|
|
drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
|
|
DRM_MODE_ENCODER_TMDS);
|
|
drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
|
|
|
|
drm_mode_connector_attach_encoder(&intel_output->base,
|
|
&intel_output->enc);
|
|
drm_sysfs_connector_add(connector);
|
|
|
|
/* Set up the DDC bus. */
|
|
switch (output_reg) {
|
|
case DP_A:
|
|
name = "DPDDC-A";
|
|
break;
|
|
case DP_B:
|
|
case PCH_DP_B:
|
|
name = "DPDDC-B";
|
|
break;
|
|
case DP_C:
|
|
case PCH_DP_C:
|
|
name = "DPDDC-C";
|
|
break;
|
|
case DP_D:
|
|
case PCH_DP_D:
|
|
name = "DPDDC-D";
|
|
break;
|
|
}
|
|
|
|
intel_dp_i2c_init(intel_output, name);
|
|
|
|
intel_output->ddc_bus = &dp_priv->adapter;
|
|
intel_output->hot_plug = intel_dp_hot_plug;
|
|
|
|
if (output_reg == DP_A) {
|
|
/* initialize panel mode from VBT if available for eDP */
|
|
if (dev_priv->lfp_lvds_vbt_mode) {
|
|
dev_priv->panel_fixed_mode =
|
|
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
|
|
if (dev_priv->panel_fixed_mode) {
|
|
dev_priv->panel_fixed_mode->type |=
|
|
DRM_MODE_TYPE_PREFERRED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G4X(dev) && !IS_GM45(dev)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
}
|