linux/drivers/gpu/drm/amd/powerplay/amdgpu_smu.c

2503 lines
55 KiB
C

/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/firmware.h>
#include "pp_debug.h"
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "smu_internal.h"
#include "soc15_common.h"
#include "smu_v11_0.h"
#include "smu_v12_0.h"
#include "atom.h"
#include "amd_pcie.h"
#include "vega20_ppt.h"
#include "arcturus_ppt.h"
#include "navi10_ppt.h"
#include "renoir_ppt.h"
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(type) #type
static const char* __smu_message_names[] = {
SMU_MESSAGE_TYPES
};
const char *smu_get_message_name(struct smu_context *smu, enum smu_message_type type)
{
if (type < 0 || type >= SMU_MSG_MAX_COUNT)
return "unknown smu message";
return __smu_message_names[type];
}
#undef __SMU_DUMMY_MAP
#define __SMU_DUMMY_MAP(fea) #fea
static const char* __smu_feature_names[] = {
SMU_FEATURE_MASKS
};
const char *smu_get_feature_name(struct smu_context *smu, enum smu_feature_mask feature)
{
if (feature < 0 || feature >= SMU_FEATURE_COUNT)
return "unknown smu feature";
return __smu_feature_names[feature];
}
size_t smu_sys_get_pp_feature_mask(struct smu_context *smu, char *buf)
{
size_t size = 0;
int ret = 0, i = 0;
uint32_t feature_mask[2] = { 0 };
int32_t feature_index = 0;
uint32_t count = 0;
uint32_t sort_feature[SMU_FEATURE_COUNT];
uint64_t hw_feature_count = 0;
mutex_lock(&smu->mutex);
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
goto failed;
size = sprintf(buf + size, "features high: 0x%08x low: 0x%08x\n",
feature_mask[1], feature_mask[0]);
for (i = 0; i < SMU_FEATURE_COUNT; i++) {
feature_index = smu_feature_get_index(smu, i);
if (feature_index < 0)
continue;
sort_feature[feature_index] = i;
hw_feature_count++;
}
for (i = 0; i < hw_feature_count; i++) {
size += sprintf(buf + size, "%02d. %-20s (%2d) : %s\n",
count++,
smu_get_feature_name(smu, sort_feature[i]),
i,
!!smu_feature_is_enabled(smu, sort_feature[i]) ?
"enabled" : "disabled");
}
failed:
mutex_unlock(&smu->mutex);
return size;
}
static int smu_feature_update_enable_state(struct smu_context *smu,
uint64_t feature_mask,
bool enabled)
{
struct smu_feature *feature = &smu->smu_feature;
uint32_t feature_low = 0, feature_high = 0;
int ret = 0;
if (!smu->pm_enabled)
return ret;
feature_low = (feature_mask >> 0 ) & 0xffffffff;
feature_high = (feature_mask >> 32) & 0xffffffff;
if (enabled) {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_EnableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
} else {
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesLow,
feature_low);
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_DisableSmuFeaturesHigh,
feature_high);
if (ret)
return ret;
}
mutex_lock(&feature->mutex);
if (enabled)
bitmap_or(feature->enabled, feature->enabled,
(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
else
bitmap_andnot(feature->enabled, feature->enabled,
(unsigned long *)(&feature_mask), SMU_FEATURE_MAX);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_sys_set_pp_feature_mask(struct smu_context *smu, uint64_t new_mask)
{
int ret = 0;
uint32_t feature_mask[2] = { 0 };
uint64_t feature_2_enabled = 0;
uint64_t feature_2_disabled = 0;
uint64_t feature_enables = 0;
mutex_lock(&smu->mutex);
ret = smu_feature_get_enabled_mask(smu, feature_mask, 2);
if (ret)
goto out;
feature_enables = ((uint64_t)feature_mask[1] << 32 | (uint64_t)feature_mask[0]);
feature_2_enabled = ~feature_enables & new_mask;
feature_2_disabled = feature_enables & ~new_mask;
if (feature_2_enabled) {
ret = smu_feature_update_enable_state(smu, feature_2_enabled, true);
if (ret)
goto out;
}
if (feature_2_disabled) {
ret = smu_feature_update_enable_state(smu, feature_2_disabled, false);
if (ret)
goto out;
}
out:
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_smc_version(struct smu_context *smu, uint32_t *if_version, uint32_t *smu_version)
{
int ret = 0;
if (!if_version && !smu_version)
return -EINVAL;
if (if_version) {
ret = smu_send_smc_msg(smu, SMU_MSG_GetDriverIfVersion);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, if_version);
if (ret)
return ret;
}
if (smu_version) {
ret = smu_send_smc_msg(smu, SMU_MSG_GetSmuVersion);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, smu_version);
if (ret)
return ret;
}
return ret;
}
int smu_set_soft_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t min, uint32_t max)
{
int ret = 0;
if (min <= 0 && max <= 0)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
ret = smu_set_soft_freq_limited_range(smu, clk_type, min, max);
return ret;
}
int smu_set_hard_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t min, uint32_t max)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (min <= 0 && max <= 0)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
if (max > 0) {
param = (uint32_t)((clk_id << 16) | (max & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMaxByFreq,
param);
if (ret)
return ret;
}
if (min > 0) {
param = (uint32_t)((clk_id << 16) | (min & 0xffff));
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetHardMinByFreq,
param);
if (ret)
return ret;
}
return ret;
}
int smu_get_dpm_freq_range(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *min, uint32_t *max, bool lock_needed)
{
uint32_t clock_limit;
int ret = 0;
if (!min && !max)
return -EINVAL;
if (lock_needed)
mutex_lock(&smu->mutex);
if (!smu_clk_dpm_is_enabled(smu, clk_type)) {
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
clock_limit = smu->smu_table.boot_values.uclk;
break;
case SMU_GFXCLK:
case SMU_SCLK:
clock_limit = smu->smu_table.boot_values.gfxclk;
break;
case SMU_SOCCLK:
clock_limit = smu->smu_table.boot_values.socclk;
break;
default:
clock_limit = 0;
break;
}
/* clock in Mhz unit */
if (min)
*min = clock_limit / 100;
if (max)
*max = clock_limit / 100;
} else {
/*
* Todo: Use each asic(ASIC_ppt funcs) control the callbacks exposed to the
* core driver and then have helpers for stuff that is common(SMU_v11_x | SMU_v12_x funcs).
*/
ret = smu_get_dpm_ultimate_freq(smu, clk_type, min, max);
}
if (lock_needed)
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_dpm_freq_by_index(struct smu_context *smu, enum smu_clk_type clk_type,
uint16_t level, uint32_t *value)
{
int ret = 0, clk_id = 0;
uint32_t param;
if (!value)
return -EINVAL;
if (!smu_clk_dpm_is_enabled(smu, clk_type))
return 0;
clk_id = smu_clk_get_index(smu, clk_type);
if (clk_id < 0)
return clk_id;
param = (uint32_t)(((clk_id & 0xffff) << 16) | (level & 0xffff));
ret = smu_send_smc_msg_with_param(smu,SMU_MSG_GetDpmFreqByIndex,
param);
if (ret)
return ret;
ret = smu_read_smc_arg(smu, &param);
if (ret)
return ret;
/* BIT31: 0 - Fine grained DPM, 1 - Dicrete DPM
* now, we un-support it */
*value = param & 0x7fffffff;
return ret;
}
int smu_get_dpm_level_count(struct smu_context *smu, enum smu_clk_type clk_type,
uint32_t *value)
{
return smu_get_dpm_freq_by_index(smu, clk_type, 0xff, value);
}
bool smu_clk_dpm_is_enabled(struct smu_context *smu, enum smu_clk_type clk_type)
{
enum smu_feature_mask feature_id = 0;
switch (clk_type) {
case SMU_MCLK:
case SMU_UCLK:
feature_id = SMU_FEATURE_DPM_UCLK_BIT;
break;
case SMU_GFXCLK:
case SMU_SCLK:
feature_id = SMU_FEATURE_DPM_GFXCLK_BIT;
break;
case SMU_SOCCLK:
feature_id = SMU_FEATURE_DPM_SOCCLK_BIT;
break;
default:
return true;
}
if(!smu_feature_is_enabled(smu, feature_id)) {
return false;
}
return true;
}
int smu_dpm_set_power_gate(struct smu_context *smu, uint32_t block_type,
bool gate)
{
int ret = 0;
mutex_lock(&smu->mutex);
switch (block_type) {
case AMD_IP_BLOCK_TYPE_UVD:
ret = smu_dpm_set_uvd_enable(smu, gate);
break;
case AMD_IP_BLOCK_TYPE_VCE:
ret = smu_dpm_set_vce_enable(smu, gate);
break;
case AMD_IP_BLOCK_TYPE_GFX:
ret = smu_gfx_off_control(smu, gate);
break;
case AMD_IP_BLOCK_TYPE_SDMA:
ret = smu_powergate_sdma(smu, gate);
break;
default:
break;
}
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_power_num_states(struct smu_context *smu,
struct pp_states_info *state_info)
{
if (!state_info)
return -EINVAL;
/* not support power state */
memset(state_info, 0, sizeof(struct pp_states_info));
state_info->nums = 1;
state_info->states[0] = POWER_STATE_TYPE_DEFAULT;
return 0;
}
int smu_common_read_sensor(struct smu_context *smu, enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
struct smu_power_context *smu_power = &smu->smu_power;
struct smu_power_gate *power_gate = &smu_power->power_gate;
int ret = 0;
if(!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_STABLE_PSTATE_SCLK:
*((uint32_t *)data) = smu->pstate_sclk;
*size = 4;
break;
case AMDGPU_PP_SENSOR_STABLE_PSTATE_MCLK:
*((uint32_t *)data) = smu->pstate_mclk;
*size = 4;
break;
case AMDGPU_PP_SENSOR_ENABLED_SMC_FEATURES_MASK:
ret = smu_feature_get_enabled_mask(smu, (uint32_t *)data, 2);
*size = 8;
break;
case AMDGPU_PP_SENSOR_UVD_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_UVD_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCE_POWER:
*(uint32_t *)data = smu_feature_is_enabled(smu, SMU_FEATURE_DPM_VCE_BIT) ? 1 : 0;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VCN_POWER_STATE:
*(uint32_t *)data = power_gate->vcn_gated ? 0 : 1;
*size = 4;
break;
default:
ret = -EINVAL;
break;
}
if (ret)
*size = 0;
return ret;
}
int smu_update_table(struct smu_context *smu, enum smu_table_id table_index, int argument,
void *table_data, bool drv2smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct amdgpu_device *adev = smu->adev;
struct smu_table *table = NULL;
int ret = 0;
int table_id = smu_table_get_index(smu, table_index);
if (!table_data || table_id >= SMU_TABLE_COUNT || table_id < 0)
return -EINVAL;
table = &smu_table->tables[table_index];
if (drv2smu)
memcpy(table->cpu_addr, table_data, table->size);
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrHigh,
upper_32_bits(table->mc_address));
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, SMU_MSG_SetDriverDramAddrLow,
lower_32_bits(table->mc_address));
if (ret)
return ret;
ret = smu_send_smc_msg_with_param(smu, drv2smu ?
SMU_MSG_TransferTableDram2Smu :
SMU_MSG_TransferTableSmu2Dram,
table_id | ((argument & 0xFFFF) << 16));
if (ret)
return ret;
/* flush hdp cache */
adev->nbio.funcs->hdp_flush(adev, NULL);
if (!drv2smu)
memcpy(table_data, table->cpu_addr, table->size);
return ret;
}
bool is_support_sw_smu(struct amdgpu_device *adev)
{
if (adev->asic_type == CHIP_VEGA20)
return (amdgpu_dpm == 2) ? true : false;
else if (adev->asic_type >= CHIP_ARCTURUS)
return true;
else
return false;
}
bool is_support_sw_smu_xgmi(struct amdgpu_device *adev)
{
if (!is_support_sw_smu(adev))
return false;
if (adev->asic_type == CHIP_VEGA20)
return true;
return false;
}
int smu_sys_get_pp_table(struct smu_context *smu, void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
uint32_t powerplay_table_size;
if (!smu_table->power_play_table && !smu_table->hardcode_pptable)
return -EINVAL;
mutex_lock(&smu->mutex);
if (smu_table->hardcode_pptable)
*table = smu_table->hardcode_pptable;
else
*table = smu_table->power_play_table;
powerplay_table_size = smu_table->power_play_table_size;
mutex_unlock(&smu->mutex);
return powerplay_table_size;
}
int smu_sys_set_pp_table(struct smu_context *smu, void *buf, size_t size)
{
struct smu_table_context *smu_table = &smu->smu_table;
ATOM_COMMON_TABLE_HEADER *header = (ATOM_COMMON_TABLE_HEADER *)buf;
int ret = 0;
if (!smu->pm_enabled)
return -EINVAL;
if (header->usStructureSize != size) {
pr_err("pp table size not matched !\n");
return -EIO;
}
mutex_lock(&smu->mutex);
if (!smu_table->hardcode_pptable)
smu_table->hardcode_pptable = kzalloc(size, GFP_KERNEL);
if (!smu_table->hardcode_pptable) {
ret = -ENOMEM;
goto failed;
}
memcpy(smu_table->hardcode_pptable, buf, size);
smu_table->power_play_table = smu_table->hardcode_pptable;
smu_table->power_play_table_size = size;
ret = smu_reset(smu);
if (ret)
pr_info("smu reset failed, ret = %d\n", ret);
failed:
mutex_unlock(&smu->mutex);
return ret;
}
int smu_feature_init_dpm(struct smu_context *smu)
{
struct smu_feature *feature = &smu->smu_feature;
int ret = 0;
uint32_t allowed_feature_mask[SMU_FEATURE_MAX/32];
if (!smu->pm_enabled)
return ret;
mutex_lock(&feature->mutex);
bitmap_zero(feature->allowed, SMU_FEATURE_MAX);
mutex_unlock(&feature->mutex);
ret = smu_get_allowed_feature_mask(smu, allowed_feature_mask,
SMU_FEATURE_MAX/32);
if (ret)
return ret;
mutex_lock(&feature->mutex);
bitmap_or(feature->allowed, feature->allowed,
(unsigned long *)allowed_feature_mask,
feature->feature_num);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_is_enabled(struct smu_context *smu, enum smu_feature_mask mask)
{
struct amdgpu_device *adev = smu->adev;
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
if (adev->flags & AMD_IS_APU)
return 1;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return 0;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
ret = test_bit(feature_id, feature->enabled);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_set_enabled(struct smu_context *smu, enum smu_feature_mask mask,
bool enable)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return -EINVAL;
WARN_ON(feature_id > feature->feature_num);
return smu_feature_update_enable_state(smu,
1ULL << feature_id,
enable);
}
int smu_feature_is_supported(struct smu_context *smu, enum smu_feature_mask mask)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return 0;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
ret = test_bit(feature_id, feature->supported);
mutex_unlock(&feature->mutex);
return ret;
}
int smu_feature_set_supported(struct smu_context *smu,
enum smu_feature_mask mask,
bool enable)
{
struct smu_feature *feature = &smu->smu_feature;
int feature_id;
int ret = 0;
feature_id = smu_feature_get_index(smu, mask);
if (feature_id < 0)
return -EINVAL;
WARN_ON(feature_id > feature->feature_num);
mutex_lock(&feature->mutex);
if (enable)
test_and_set_bit(feature_id, feature->supported);
else
test_and_clear_bit(feature_id, feature->supported);
mutex_unlock(&feature->mutex);
return ret;
}
static int smu_set_funcs(struct amdgpu_device *adev)
{
struct smu_context *smu = &adev->smu;
switch (adev->asic_type) {
case CHIP_VEGA20:
vega20_set_ppt_funcs(smu);
break;
case CHIP_NAVI10:
case CHIP_NAVI14:
case CHIP_NAVI12:
navi10_set_ppt_funcs(smu);
break;
case CHIP_ARCTURUS:
arcturus_set_ppt_funcs(smu);
break;
case CHIP_RENOIR:
renoir_set_ppt_funcs(smu);
break;
default:
return -EINVAL;
}
if (adev->pm.pp_feature & PP_OVERDRIVE_MASK)
smu->od_enabled = true;
return 0;
}
static int smu_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
smu->adev = adev;
smu->pm_enabled = !!amdgpu_dpm;
smu->is_apu = false;
mutex_init(&smu->mutex);
return smu_set_funcs(adev);
}
static int smu_late_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
if (!smu->pm_enabled)
return 0;
smu_handle_task(&adev->smu,
smu->smu_dpm.dpm_level,
AMD_PP_TASK_COMPLETE_INIT,
false);
return 0;
}
int smu_get_atom_data_table(struct smu_context *smu, uint32_t table,
uint16_t *size, uint8_t *frev, uint8_t *crev,
uint8_t **addr)
{
struct amdgpu_device *adev = smu->adev;
uint16_t data_start;
if (!amdgpu_atom_parse_data_header(adev->mode_info.atom_context, table,
size, frev, crev, &data_start))
return -EINVAL;
*addr = (uint8_t *)adev->mode_info.atom_context->bios + data_start;
return 0;
}
static int smu_initialize_pptable(struct smu_context *smu)
{
/* TODO */
return 0;
}
static int smu_smc_table_sw_init(struct smu_context *smu)
{
int ret;
ret = smu_initialize_pptable(smu);
if (ret) {
pr_err("Failed to init smu_initialize_pptable!\n");
return ret;
}
/**
* Create smu_table structure, and init smc tables such as
* TABLE_PPTABLE, TABLE_WATERMARKS, TABLE_SMU_METRICS, and etc.
*/
ret = smu_init_smc_tables(smu);
if (ret) {
pr_err("Failed to init smc tables!\n");
return ret;
}
/**
* Create smu_power_context structure, and allocate smu_dpm_context and
* context size to fill the smu_power_context data.
*/
ret = smu_init_power(smu);
if (ret) {
pr_err("Failed to init smu_init_power!\n");
return ret;
}
return 0;
}
static int smu_smc_table_sw_fini(struct smu_context *smu)
{
int ret;
ret = smu_fini_smc_tables(smu);
if (ret) {
pr_err("Failed to smu_fini_smc_tables!\n");
return ret;
}
return 0;
}
static int smu_sw_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
int ret;
smu->pool_size = adev->pm.smu_prv_buffer_size;
smu->smu_feature.feature_num = SMU_FEATURE_MAX;
mutex_init(&smu->smu_feature.mutex);
bitmap_zero(smu->smu_feature.supported, SMU_FEATURE_MAX);
bitmap_zero(smu->smu_feature.enabled, SMU_FEATURE_MAX);
bitmap_zero(smu->smu_feature.allowed, SMU_FEATURE_MAX);
mutex_init(&smu->smu_baco.mutex);
smu->smu_baco.state = SMU_BACO_STATE_EXIT;
smu->smu_baco.platform_support = false;
mutex_init(&smu->sensor_lock);
smu->watermarks_bitmap = 0;
smu->power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->default_power_profile_mode = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->workload_mask = 1 << smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT];
smu->workload_prority[PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT] = 0;
smu->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D] = 1;
smu->workload_prority[PP_SMC_POWER_PROFILE_POWERSAVING] = 2;
smu->workload_prority[PP_SMC_POWER_PROFILE_VIDEO] = 3;
smu->workload_prority[PP_SMC_POWER_PROFILE_VR] = 4;
smu->workload_prority[PP_SMC_POWER_PROFILE_COMPUTE] = 5;
smu->workload_prority[PP_SMC_POWER_PROFILE_CUSTOM] = 6;
smu->workload_setting[0] = PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT;
smu->workload_setting[1] = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
smu->workload_setting[2] = PP_SMC_POWER_PROFILE_POWERSAVING;
smu->workload_setting[3] = PP_SMC_POWER_PROFILE_VIDEO;
smu->workload_setting[4] = PP_SMC_POWER_PROFILE_VR;
smu->workload_setting[5] = PP_SMC_POWER_PROFILE_COMPUTE;
smu->workload_setting[6] = PP_SMC_POWER_PROFILE_CUSTOM;
smu->display_config = &adev->pm.pm_display_cfg;
smu->smu_dpm.dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
smu->smu_dpm.requested_dpm_level = AMD_DPM_FORCED_LEVEL_AUTO;
ret = smu_init_microcode(smu);
if (ret) {
pr_err("Failed to load smu firmware!\n");
return ret;
}
ret = smu_smc_table_sw_init(smu);
if (ret) {
pr_err("Failed to sw init smc table!\n");
return ret;
}
ret = smu_register_irq_handler(smu);
if (ret) {
pr_err("Failed to register smc irq handler!\n");
return ret;
}
return 0;
}
static int smu_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
int ret;
kfree(smu->irq_source);
smu->irq_source = NULL;
ret = smu_smc_table_sw_fini(smu);
if (ret) {
pr_err("Failed to sw fini smc table!\n");
return ret;
}
ret = smu_fini_power(smu);
if (ret) {
pr_err("Failed to init smu_fini_power!\n");
return ret;
}
return 0;
}
static int smu_init_fb_allocations(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
int ret, i;
for (i = 0; i < SMU_TABLE_COUNT; i++) {
if (tables[i].size == 0)
continue;
ret = amdgpu_bo_create_kernel(adev,
tables[i].size,
tables[i].align,
tables[i].domain,
&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
if (ret)
goto failed;
}
return 0;
failed:
while (--i >= 0) {
if (tables[i].size == 0)
continue;
amdgpu_bo_free_kernel(&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
}
return ret;
}
static int smu_fini_fb_allocations(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
uint32_t i = 0;
if (!tables)
return 0;
for (i = 0; i < SMU_TABLE_COUNT; i++) {
if (tables[i].size == 0)
continue;
amdgpu_bo_free_kernel(&tables[i].bo,
&tables[i].mc_address,
&tables[i].cpu_addr);
}
return 0;
}
static int smu_smc_table_hw_init(struct smu_context *smu,
bool initialize)
{
struct amdgpu_device *adev = smu->adev;
int ret;
if (smu_is_dpm_running(smu) && adev->in_suspend) {
pr_info("dpm has been enabled\n");
return 0;
}
if (adev->asic_type != CHIP_ARCTURUS) {
ret = smu_init_display_count(smu, 0);
if (ret)
return ret;
}
if (initialize) {
/* get boot_values from vbios to set revision, gfxclk, and etc. */
ret = smu_get_vbios_bootup_values(smu);
if (ret)
return ret;
ret = smu_setup_pptable(smu);
if (ret)
return ret;
ret = smu_get_clk_info_from_vbios(smu);
if (ret)
return ret;
/*
* check if the format_revision in vbios is up to pptable header
* version, and the structure size is not 0.
*/
ret = smu_check_pptable(smu);
if (ret)
return ret;
/*
* allocate vram bos to store smc table contents.
*/
ret = smu_init_fb_allocations(smu);
if (ret)
return ret;
/*
* Parse pptable format and fill PPTable_t smc_pptable to
* smu_table_context structure. And read the smc_dpm_table from vbios,
* then fill it into smc_pptable.
*/
ret = smu_parse_pptable(smu);
if (ret)
return ret;
/*
* Send msg GetDriverIfVersion to check if the return value is equal
* with DRIVER_IF_VERSION of smc header.
*/
ret = smu_check_fw_version(smu);
if (ret)
return ret;
}
/* smu_dump_pptable(smu); */
/*
* Copy pptable bo in the vram to smc with SMU MSGs such as
* SetDriverDramAddr and TransferTableDram2Smu.
*/
ret = smu_write_pptable(smu);
if (ret)
return ret;
/* issue Run*Btc msg */
ret = smu_run_btc(smu);
if (ret)
return ret;
ret = smu_feature_set_allowed_mask(smu);
if (ret)
return ret;
ret = smu_system_features_control(smu, true);
if (ret)
return ret;
if (adev->asic_type != CHIP_ARCTURUS) {
ret = smu_override_pcie_parameters(smu);
if (ret)
return ret;
ret = smu_notify_display_change(smu);
if (ret)
return ret;
/*
* Set min deep sleep dce fclk with bootup value from vbios via
* SetMinDeepSleepDcefclk MSG.
*/
ret = smu_set_min_dcef_deep_sleep(smu);
if (ret)
return ret;
}
/*
* Set initialized values (get from vbios) to dpm tables context such as
* gfxclk, memclk, dcefclk, and etc. And enable the DPM feature for each
* type of clks.
*/
if (initialize) {
ret = smu_populate_smc_tables(smu);
if (ret)
return ret;
ret = smu_init_max_sustainable_clocks(smu);
if (ret)
return ret;
}
ret = smu_set_default_od_settings(smu, initialize);
if (ret)
return ret;
if (initialize) {
ret = smu_populate_umd_state_clk(smu);
if (ret)
return ret;
ret = smu_get_power_limit(smu, &smu->default_power_limit, true, false);
if (ret)
return ret;
}
/*
* Set PMSTATUSLOG table bo address with SetToolsDramAddr MSG for tools.
*/
ret = smu_set_tool_table_location(smu);
if (!smu_is_dpm_running(smu))
pr_info("dpm has been disabled\n");
return ret;
}
/**
* smu_alloc_memory_pool - allocate memory pool in the system memory
*
* @smu: amdgpu_device pointer
*
* This memory pool will be used for SMC use and msg SetSystemVirtualDramAddr
* and DramLogSetDramAddr can notify it changed.
*
* Returns 0 on success, error on failure.
*/
static int smu_alloc_memory_pool(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
uint64_t pool_size = smu->pool_size;
int ret = 0;
if (pool_size == SMU_MEMORY_POOL_SIZE_ZERO)
return ret;
memory_pool->size = pool_size;
memory_pool->align = PAGE_SIZE;
memory_pool->domain = AMDGPU_GEM_DOMAIN_GTT;
switch (pool_size) {
case SMU_MEMORY_POOL_SIZE_256_MB:
case SMU_MEMORY_POOL_SIZE_512_MB:
case SMU_MEMORY_POOL_SIZE_1_GB:
case SMU_MEMORY_POOL_SIZE_2_GB:
ret = amdgpu_bo_create_kernel(adev,
memory_pool->size,
memory_pool->align,
memory_pool->domain,
&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
break;
default:
break;
}
return ret;
}
static int smu_free_memory_pool(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *memory_pool = &smu_table->memory_pool;
int ret = 0;
if (memory_pool->size == SMU_MEMORY_POOL_SIZE_ZERO)
return ret;
amdgpu_bo_free_kernel(&memory_pool->bo,
&memory_pool->mc_address,
&memory_pool->cpu_addr);
memset(memory_pool, 0, sizeof(struct smu_table));
return ret;
}
static int smu_start_smc_engine(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
if (adev->asic_type < CHIP_NAVI10) {
if (smu->ppt_funcs->load_microcode) {
ret = smu->ppt_funcs->load_microcode(smu);
if (ret)
return ret;
}
}
}
if (smu->ppt_funcs->check_fw_status) {
ret = smu->ppt_funcs->check_fw_status(smu);
if (ret)
pr_err("SMC is not ready\n");
}
return ret;
}
static int smu_hw_init(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
ret = smu_start_smc_engine(smu);
if (ret) {
pr_err("SMU is not ready yet!\n");
return ret;
}
if (adev->flags & AMD_IS_APU) {
smu_powergate_sdma(&adev->smu, false);
smu_powergate_vcn(&adev->smu, false);
smu_set_gfx_cgpg(&adev->smu, true);
}
if (!smu->pm_enabled)
return 0;
ret = smu_feature_init_dpm(smu);
if (ret)
goto failed;
ret = smu_smc_table_hw_init(smu, true);
if (ret)
goto failed;
ret = smu_alloc_memory_pool(smu);
if (ret)
goto failed;
/*
* Use msg SetSystemVirtualDramAddr and DramLogSetDramAddr can notify
* pool location.
*/
ret = smu_notify_memory_pool_location(smu);
if (ret)
goto failed;
ret = smu_start_thermal_control(smu);
if (ret)
goto failed;
if (!smu->pm_enabled)
adev->pm.dpm_enabled = false;
else
adev->pm.dpm_enabled = true; /* TODO: will set dpm_enabled flag while VCN and DAL DPM is workable */
pr_info("SMU is initialized successfully!\n");
return 0;
failed:
return ret;
}
static int smu_stop_dpms(struct smu_context *smu)
{
return smu_send_smc_msg(smu, SMU_MSG_DisableAllSmuFeatures);
}
static int smu_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
struct smu_table_context *table_context = &smu->smu_table;
int ret = 0;
if (adev->flags & AMD_IS_APU) {
smu_powergate_sdma(&adev->smu, true);
smu_powergate_vcn(&adev->smu, true);
}
ret = smu_stop_thermal_control(smu);
if (ret) {
pr_warn("Fail to stop thermal control!\n");
return ret;
}
ret = smu_stop_dpms(smu);
if (ret) {
pr_warn("Fail to stop Dpms!\n");
return ret;
}
kfree(table_context->driver_pptable);
table_context->driver_pptable = NULL;
kfree(table_context->max_sustainable_clocks);
table_context->max_sustainable_clocks = NULL;
kfree(table_context->overdrive_table);
table_context->overdrive_table = NULL;
ret = smu_fini_fb_allocations(smu);
if (ret)
return ret;
ret = smu_free_memory_pool(smu);
if (ret)
return ret;
return 0;
}
int smu_reset(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
ret = smu_hw_fini(adev);
if (ret)
return ret;
ret = smu_hw_init(adev);
if (ret)
return ret;
return ret;
}
static int smu_suspend(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
bool baco_feature_is_enabled = false;
if(!(adev->flags & AMD_IS_APU))
baco_feature_is_enabled = smu_feature_is_enabled(smu, SMU_FEATURE_BACO_BIT);
ret = smu_system_features_control(smu, false);
if (ret)
return ret;
if (adev->in_gpu_reset && baco_feature_is_enabled) {
ret = smu_feature_set_enabled(smu, SMU_FEATURE_BACO_BIT, true);
if (ret) {
pr_warn("set BACO feature enabled failed, return %d\n", ret);
return ret;
}
}
smu->watermarks_bitmap &= ~(WATERMARKS_LOADED);
if (adev->asic_type >= CHIP_NAVI10 &&
adev->gfx.rlc.funcs->stop)
adev->gfx.rlc.funcs->stop(adev);
if (smu->is_apu)
smu_set_gfx_cgpg(&adev->smu, false);
return 0;
}
static int smu_resume(void *handle)
{
int ret;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
struct smu_context *smu = &adev->smu;
pr_info("SMU is resuming...\n");
ret = smu_start_smc_engine(smu);
if (ret) {
pr_err("SMU is not ready yet!\n");
goto failed;
}
ret = smu_smc_table_hw_init(smu, false);
if (ret)
goto failed;
ret = smu_start_thermal_control(smu);
if (ret)
goto failed;
if (smu->is_apu)
smu_set_gfx_cgpg(&adev->smu, true);
smu->disable_uclk_switch = 0;
pr_info("SMU is resumed successfully!\n");
return 0;
failed:
return ret;
}
int smu_display_configuration_change(struct smu_context *smu,
const struct amd_pp_display_configuration *display_config)
{
int index = 0;
int num_of_active_display = 0;
if (!smu->pm_enabled || !is_support_sw_smu(smu->adev))
return -EINVAL;
if (!display_config)
return -EINVAL;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_deep_sleep_dcefclk)
smu->ppt_funcs->set_deep_sleep_dcefclk(smu,
display_config->min_dcef_deep_sleep_set_clk / 100);
for (index = 0; index < display_config->num_path_including_non_display; index++) {
if (display_config->displays[index].controller_id != 0)
num_of_active_display++;
}
smu_set_active_display_count(smu, num_of_active_display);
smu_store_cc6_data(smu, display_config->cpu_pstate_separation_time,
display_config->cpu_cc6_disable,
display_config->cpu_pstate_disable,
display_config->nb_pstate_switch_disable);
mutex_unlock(&smu->mutex);
return 0;
}
static int smu_get_clock_info(struct smu_context *smu,
struct smu_clock_info *clk_info,
enum smu_perf_level_designation designation)
{
int ret;
struct smu_performance_level level = {0};
if (!clk_info)
return -EINVAL;
ret = smu_get_perf_level(smu, PERF_LEVEL_ACTIVITY, &level);
if (ret)
return -EINVAL;
clk_info->min_mem_clk = level.memory_clock;
clk_info->min_eng_clk = level.core_clock;
clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
ret = smu_get_perf_level(smu, designation, &level);
if (ret)
return -EINVAL;
clk_info->min_mem_clk = level.memory_clock;
clk_info->min_eng_clk = level.core_clock;
clk_info->min_bus_bandwidth = level.non_local_mem_freq * level.non_local_mem_width;
return 0;
}
int smu_get_current_clocks(struct smu_context *smu,
struct amd_pp_clock_info *clocks)
{
struct amd_pp_simple_clock_info simple_clocks = {0};
struct smu_clock_info hw_clocks;
int ret = 0;
if (!is_support_sw_smu(smu->adev))
return -EINVAL;
mutex_lock(&smu->mutex);
smu_get_dal_power_level(smu, &simple_clocks);
if (smu->support_power_containment)
ret = smu_get_clock_info(smu, &hw_clocks,
PERF_LEVEL_POWER_CONTAINMENT);
else
ret = smu_get_clock_info(smu, &hw_clocks, PERF_LEVEL_ACTIVITY);
if (ret) {
pr_err("Error in smu_get_clock_info\n");
goto failed;
}
clocks->min_engine_clock = hw_clocks.min_eng_clk;
clocks->max_engine_clock = hw_clocks.max_eng_clk;
clocks->min_memory_clock = hw_clocks.min_mem_clk;
clocks->max_memory_clock = hw_clocks.max_mem_clk;
clocks->min_bus_bandwidth = hw_clocks.min_bus_bandwidth;
clocks->max_bus_bandwidth = hw_clocks.max_bus_bandwidth;
clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
if (simple_clocks.level == 0)
clocks->max_clocks_state = PP_DAL_POWERLEVEL_7;
else
clocks->max_clocks_state = simple_clocks.level;
if (!smu_get_current_shallow_sleep_clocks(smu, &hw_clocks)) {
clocks->max_engine_clock_in_sr = hw_clocks.max_eng_clk;
clocks->min_engine_clock_in_sr = hw_clocks.min_eng_clk;
}
failed:
mutex_unlock(&smu->mutex);
return ret;
}
static int smu_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
return 0;
}
static int smu_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
static int smu_enable_umd_pstate(void *handle,
enum amd_dpm_forced_level *level)
{
uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
struct smu_context *smu = (struct smu_context*)(handle);
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->is_apu && (!smu->pm_enabled || !smu_dpm_ctx->dpm_context))
return -EINVAL;
if (!(smu_dpm_ctx->dpm_level & profile_mode_mask)) {
/* enter umd pstate, save current level, disable gfx cg*/
if (*level & profile_mode_mask) {
smu_dpm_ctx->saved_dpm_level = smu_dpm_ctx->dpm_level;
smu_dpm_ctx->enable_umd_pstate = true;
amdgpu_device_ip_set_clockgating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_CG_STATE_UNGATE);
amdgpu_device_ip_set_powergating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_PG_STATE_UNGATE);
}
} else {
/* exit umd pstate, restore level, enable gfx cg*/
if (!(*level & profile_mode_mask)) {
if (*level == AMD_DPM_FORCED_LEVEL_PROFILE_EXIT)
*level = smu_dpm_ctx->saved_dpm_level;
smu_dpm_ctx->enable_umd_pstate = false;
amdgpu_device_ip_set_clockgating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_CG_STATE_GATE);
amdgpu_device_ip_set_powergating_state(smu->adev,
AMD_IP_BLOCK_TYPE_GFX,
AMD_PG_STATE_GATE);
}
}
return 0;
}
static int smu_default_set_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
int ret = 0;
uint32_t sclk_mask, mclk_mask, soc_mask;
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
ret = smu_force_dpm_limit_value(smu, true);
break;
case AMD_DPM_FORCED_LEVEL_LOW:
ret = smu_force_dpm_limit_value(smu, false);
break;
case AMD_DPM_FORCED_LEVEL_AUTO:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
ret = smu_unforce_dpm_levels(smu);
break;
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
ret = smu_get_profiling_clk_mask(smu, level,
&sclk_mask,
&mclk_mask,
&soc_mask);
if (ret)
return ret;
smu_force_clk_levels(smu, SMU_SCLK, 1 << sclk_mask, false);
smu_force_clk_levels(smu, SMU_MCLK, 1 << mclk_mask, false);
smu_force_clk_levels(smu, SMU_SOCCLK, 1 << soc_mask, false);
break;
case AMD_DPM_FORCED_LEVEL_MANUAL:
case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
default:
break;
}
return ret;
}
int smu_adjust_power_state_dynamic(struct smu_context *smu,
enum amd_dpm_forced_level level,
bool skip_display_settings)
{
int ret = 0;
int index = 0;
long workload;
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
if (!smu->pm_enabled)
return -EINVAL;
if (!skip_display_settings) {
ret = smu_display_config_changed(smu);
if (ret) {
pr_err("Failed to change display config!");
return ret;
}
}
ret = smu_apply_clocks_adjust_rules(smu);
if (ret) {
pr_err("Failed to apply clocks adjust rules!");
return ret;
}
if (!skip_display_settings) {
ret = smu_notify_smc_dispaly_config(smu);
if (ret) {
pr_err("Failed to notify smc display config!");
return ret;
}
}
if (smu_dpm_ctx->dpm_level != level) {
ret = smu_asic_set_performance_level(smu, level);
if (ret) {
ret = smu_default_set_performance_level(smu, level);
if (ret) {
pr_err("Failed to set performance level!");
return ret;
}
}
/* update the saved copy */
smu_dpm_ctx->dpm_level = level;
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
if (smu->power_profile_mode != workload)
smu_set_power_profile_mode(smu, &workload, 0, false);
}
return ret;
}
int smu_handle_task(struct smu_context *smu,
enum amd_dpm_forced_level level,
enum amd_pp_task task_id,
bool lock_needed)
{
int ret = 0;
if (lock_needed)
mutex_lock(&smu->mutex);
switch (task_id) {
case AMD_PP_TASK_DISPLAY_CONFIG_CHANGE:
ret = smu_pre_display_config_changed(smu);
if (ret)
goto out;
ret = smu_set_cpu_power_state(smu);
if (ret)
goto out;
ret = smu_adjust_power_state_dynamic(smu, level, false);
break;
case AMD_PP_TASK_COMPLETE_INIT:
case AMD_PP_TASK_READJUST_POWER_STATE:
ret = smu_adjust_power_state_dynamic(smu, level, true);
break;
default:
break;
}
out:
if (lock_needed)
mutex_unlock(&smu->mutex);
return ret;
}
int smu_switch_power_profile(struct smu_context *smu,
enum PP_SMC_POWER_PROFILE type,
bool en)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
long workload;
uint32_t index;
if (!smu->pm_enabled)
return -EINVAL;
if (!(type < PP_SMC_POWER_PROFILE_CUSTOM))
return -EINVAL;
mutex_lock(&smu->mutex);
if (!en) {
smu->workload_mask &= ~(1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index > 0 && index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
} else {
smu->workload_mask |= (1 << smu->workload_prority[type]);
index = fls(smu->workload_mask);
index = index <= WORKLOAD_POLICY_MAX ? index - 1 : 0;
workload = smu->workload_setting[index];
}
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL)
smu_set_power_profile_mode(smu, &workload, 0, false);
mutex_unlock(&smu->mutex);
return 0;
}
enum amd_dpm_forced_level smu_get_performance_level(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
enum amd_dpm_forced_level level;
if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
return -EINVAL;
mutex_lock(&(smu->mutex));
level = smu_dpm_ctx->dpm_level;
mutex_unlock(&(smu->mutex));
return level;
}
int smu_force_performance_level(struct smu_context *smu, enum amd_dpm_forced_level level)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (!smu->is_apu && !smu_dpm_ctx->dpm_context)
return -EINVAL;
mutex_lock(&smu->mutex);
ret = smu_enable_umd_pstate(smu, &level);
if (ret) {
mutex_unlock(&smu->mutex);
return ret;
}
ret = smu_handle_task(smu, level,
AMD_PP_TASK_READJUST_POWER_STATE,
false);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_display_count(struct smu_context *smu, uint32_t count)
{
int ret = 0;
mutex_lock(&smu->mutex);
ret = smu_init_display_count(smu, count);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t mask,
bool lock_needed)
{
struct smu_dpm_context *smu_dpm_ctx = &(smu->smu_dpm);
int ret = 0;
if (smu_dpm_ctx->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) {
pr_debug("force clock level is for dpm manual mode only.\n");
return -EINVAL;
}
if (lock_needed)
mutex_lock(&smu->mutex);
if (smu->ppt_funcs && smu->ppt_funcs->force_clk_levels)
ret = smu->ppt_funcs->force_clk_levels(smu, clk_type, mask);
if (lock_needed)
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_mp1_state(struct smu_context *smu,
enum pp_mp1_state mp1_state)
{
uint16_t msg;
int ret;
/*
* The SMC is not fully ready. That may be
* expected as the IP may be masked.
* So, just return without error.
*/
if (!smu->pm_enabled)
return 0;
mutex_lock(&smu->mutex);
switch (mp1_state) {
case PP_MP1_STATE_SHUTDOWN:
msg = SMU_MSG_PrepareMp1ForShutdown;
break;
case PP_MP1_STATE_UNLOAD:
msg = SMU_MSG_PrepareMp1ForUnload;
break;
case PP_MP1_STATE_RESET:
msg = SMU_MSG_PrepareMp1ForReset;
break;
case PP_MP1_STATE_NONE:
default:
mutex_unlock(&smu->mutex);
return 0;
}
/* some asics may not support those messages */
if (smu_msg_get_index(smu, msg) < 0) {
mutex_unlock(&smu->mutex);
return 0;
}
ret = smu_send_smc_msg(smu, msg);
if (ret)
pr_err("[PrepareMp1] Failed!\n");
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_df_cstate(struct smu_context *smu,
enum pp_df_cstate state)
{
int ret = 0;
/*
* The SMC is not fully ready. That may be
* expected as the IP may be masked.
* So, just return without error.
*/
if (!smu->pm_enabled)
return 0;
if (!smu->ppt_funcs || !smu->ppt_funcs->set_df_cstate)
return 0;
mutex_lock(&smu->mutex);
ret = smu->ppt_funcs->set_df_cstate(smu, state);
if (ret)
pr_err("[SetDfCstate] failed!\n");
mutex_unlock(&smu->mutex);
return ret;
}
int smu_write_watermarks_table(struct smu_context *smu)
{
int ret = 0;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *table = NULL;
table = &smu_table->tables[SMU_TABLE_WATERMARKS];
if (!table->cpu_addr)
return -EINVAL;
ret = smu_update_table(smu, SMU_TABLE_WATERMARKS, 0, table->cpu_addr,
true);
return ret;
}
int smu_set_watermarks_for_clock_ranges(struct smu_context *smu,
struct dm_pp_wm_sets_with_clock_ranges_soc15 *clock_ranges)
{
int ret = 0;
struct smu_table *watermarks = &smu->smu_table.tables[SMU_TABLE_WATERMARKS];
void *table = watermarks->cpu_addr;
mutex_lock(&smu->mutex);
if (!smu->disable_watermark &&
smu_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
smu_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
smu_set_watermarks_table(smu, table, clock_ranges);
smu->watermarks_bitmap |= WATERMARKS_EXIST;
smu->watermarks_bitmap &= ~WATERMARKS_LOADED;
}
mutex_unlock(&smu->mutex);
return ret;
}
const struct amd_ip_funcs smu_ip_funcs = {
.name = "smu",
.early_init = smu_early_init,
.late_init = smu_late_init,
.sw_init = smu_sw_init,
.sw_fini = smu_sw_fini,
.hw_init = smu_hw_init,
.hw_fini = smu_hw_fini,
.suspend = smu_suspend,
.resume = smu_resume,
.is_idle = NULL,
.check_soft_reset = NULL,
.wait_for_idle = NULL,
.soft_reset = NULL,
.set_clockgating_state = smu_set_clockgating_state,
.set_powergating_state = smu_set_powergating_state,
.enable_umd_pstate = smu_enable_umd_pstate,
};
const struct amdgpu_ip_block_version smu_v11_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 11,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
const struct amdgpu_ip_block_version smu_v12_0_ip_block =
{
.type = AMD_IP_BLOCK_TYPE_SMC,
.major = 12,
.minor = 0,
.rev = 0,
.funcs = &smu_ip_funcs,
};
int smu_load_microcode(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->load_microcode)
ret = smu->ppt_funcs->load_microcode(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_check_fw_status(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->check_fw_status)
ret = smu->ppt_funcs->check_fw_status(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_gfx_cgpg(struct smu_context *smu, bool enabled)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_gfx_cgpg)
ret = smu->ppt_funcs->set_gfx_cgpg(smu, enabled);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_fan_speed_rpm(struct smu_context *smu, uint32_t speed)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_fan_speed_rpm)
ret = smu->ppt_funcs->set_fan_speed_rpm(smu, speed);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_power_limit(struct smu_context *smu,
uint32_t *limit,
bool def,
bool lock_needed)
{
int ret = 0;
if (lock_needed)
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_power_limit)
ret = smu->ppt_funcs->get_power_limit(smu, limit, def);
if (lock_needed)
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_power_limit(struct smu_context *smu, uint32_t limit)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_power_limit)
ret = smu->ppt_funcs->set_power_limit(smu, limit);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_print_clk_levels(struct smu_context *smu, enum smu_clk_type clk_type, char *buf)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->print_clk_levels)
ret = smu->ppt_funcs->print_clk_levels(smu, clk_type, buf);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_od_percentage(struct smu_context *smu, enum smu_clk_type type)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_od_percentage)
ret = smu->ppt_funcs->get_od_percentage(smu, type);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_od_percentage(struct smu_context *smu, enum smu_clk_type type, uint32_t value)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_od_percentage)
ret = smu->ppt_funcs->set_od_percentage(smu, type, value);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_od_edit_dpm_table(struct smu_context *smu,
enum PP_OD_DPM_TABLE_COMMAND type,
long *input, uint32_t size)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->od_edit_dpm_table)
ret = smu->ppt_funcs->od_edit_dpm_table(smu, type, input, size);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->read_sensor)
ret = smu->ppt_funcs->read_sensor(smu, sensor, data, size);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_power_profile_mode(struct smu_context *smu, char *buf)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_power_profile_mode)
ret = smu->ppt_funcs->get_power_profile_mode(smu, buf);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_power_profile_mode(struct smu_context *smu,
long *param,
uint32_t param_size,
bool lock_needed)
{
int ret = 0;
if (lock_needed)
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_power_profile_mode)
ret = smu->ppt_funcs->set_power_profile_mode(smu, param, param_size);
if (lock_needed)
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_fan_control_mode(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_fan_control_mode)
ret = smu->ppt_funcs->get_fan_control_mode(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_fan_control_mode(struct smu_context *smu, int value)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_fan_control_mode)
ret = smu->ppt_funcs->set_fan_control_mode(smu, value);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_fan_speed_percent(struct smu_context *smu, uint32_t *speed)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_fan_speed_percent)
ret = smu->ppt_funcs->get_fan_speed_percent(smu, speed);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_fan_speed_percent(struct smu_context *smu, uint32_t speed)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_fan_speed_percent)
ret = smu->ppt_funcs->set_fan_speed_percent(smu, speed);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_fan_speed_rpm(struct smu_context *smu, uint32_t *speed)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_fan_speed_rpm)
ret = smu->ppt_funcs->get_fan_speed_rpm(smu, speed);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_deep_sleep_dcefclk(struct smu_context *smu, int clk)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_deep_sleep_dcefclk)
ret = smu->ppt_funcs->set_deep_sleep_dcefclk(smu, clk);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_active_display_count(struct smu_context *smu, uint32_t count)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_active_display_count)
ret = smu->ppt_funcs->set_active_display_count(smu, count);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_clock_by_type(struct smu_context *smu,
enum amd_pp_clock_type type,
struct amd_pp_clocks *clocks)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_clock_by_type)
ret = smu->ppt_funcs->get_clock_by_type(smu, type, clocks);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_max_high_clocks(struct smu_context *smu,
struct amd_pp_simple_clock_info *clocks)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_max_high_clocks)
ret = smu->ppt_funcs->get_max_high_clocks(smu, clocks);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_clock_by_type_with_latency(struct smu_context *smu,
enum smu_clk_type clk_type,
struct pp_clock_levels_with_latency *clocks)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_clock_by_type_with_latency)
ret = smu->ppt_funcs->get_clock_by_type_with_latency(smu, clk_type, clocks);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_clock_by_type_with_voltage(struct smu_context *smu,
enum amd_pp_clock_type type,
struct pp_clock_levels_with_voltage *clocks)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_clock_by_type_with_voltage)
ret = smu->ppt_funcs->get_clock_by_type_with_voltage(smu, type, clocks);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_display_clock_voltage_request(struct smu_context *smu,
struct pp_display_clock_request *clock_req)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->display_clock_voltage_request)
ret = smu->ppt_funcs->display_clock_voltage_request(smu, clock_req);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_display_disable_memory_clock_switch(struct smu_context *smu, bool disable_memory_clock_switch)
{
int ret = -EINVAL;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->display_disable_memory_clock_switch)
ret = smu->ppt_funcs->display_disable_memory_clock_switch(smu, disable_memory_clock_switch);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_notify_smu_enable_pwe(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->notify_smu_enable_pwe)
ret = smu->ppt_funcs->notify_smu_enable_pwe(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_xgmi_pstate(struct smu_context *smu,
uint32_t pstate)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_xgmi_pstate)
ret = smu->ppt_funcs->set_xgmi_pstate(smu, pstate);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_set_azalia_d3_pme(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->set_azalia_d3_pme)
ret = smu->ppt_funcs->set_azalia_d3_pme(smu);
mutex_unlock(&smu->mutex);
return ret;
}
bool smu_baco_is_support(struct smu_context *smu)
{
bool ret = false;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->baco_is_support)
ret = smu->ppt_funcs->baco_is_support(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_baco_get_state(struct smu_context *smu, enum smu_baco_state *state)
{
if (smu->ppt_funcs->baco_get_state)
return -EINVAL;
mutex_lock(&smu->mutex);
*state = smu->ppt_funcs->baco_get_state(smu);
mutex_unlock(&smu->mutex);
return 0;
}
int smu_baco_reset(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->baco_reset)
ret = smu->ppt_funcs->baco_reset(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_mode2_reset(struct smu_context *smu)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->mode2_reset)
ret = smu->ppt_funcs->mode2_reset(smu);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_max_sustainable_clocks_by_dc(struct smu_context *smu,
struct pp_smu_nv_clock_table *max_clocks)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_max_sustainable_clocks_by_dc)
ret = smu->ppt_funcs->get_max_sustainable_clocks_by_dc(smu, max_clocks);
mutex_unlock(&smu->mutex);
return ret;
}
int smu_get_uclk_dpm_states(struct smu_context *smu,
unsigned int *clock_values_in_khz,
unsigned int *num_states)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_uclk_dpm_states)
ret = smu->ppt_funcs->get_uclk_dpm_states(smu, clock_values_in_khz, num_states);
mutex_unlock(&smu->mutex);
return ret;
}
enum amd_pm_state_type smu_get_current_power_state(struct smu_context *smu)
{
enum amd_pm_state_type pm_state = POWER_STATE_TYPE_DEFAULT;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_current_power_state)
pm_state = smu->ppt_funcs->get_current_power_state(smu);
mutex_unlock(&smu->mutex);
return pm_state;
}
int smu_get_dpm_clock_table(struct smu_context *smu,
struct dpm_clocks *clock_table)
{
int ret = 0;
mutex_lock(&smu->mutex);
if (smu->ppt_funcs->get_dpm_clock_table)
ret = smu->ppt_funcs->get_dpm_clock_table(smu, clock_table);
mutex_unlock(&smu->mutex);
return ret;
}