mirror of https://gitee.com/openkylin/linux.git
1031 lines
27 KiB
C
1031 lines
27 KiB
C
/*
|
|
Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
|
|
|
|
Copyright (C) 2005 Steven Toth <stoth@hauppauge.com>
|
|
|
|
Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/init.h>
|
|
|
|
#include "dvb_frontend.h"
|
|
#include "cx24123.h"
|
|
|
|
#define XTAL 10111000
|
|
|
|
static int force_band;
|
|
static int debug;
|
|
#define dprintk(args...) \
|
|
do { \
|
|
if (debug) printk (KERN_DEBUG "cx24123: " args); \
|
|
} while (0)
|
|
|
|
struct cx24123_state
|
|
{
|
|
struct i2c_adapter* i2c;
|
|
const struct cx24123_config* config;
|
|
|
|
struct dvb_frontend frontend;
|
|
|
|
/* Some PLL specifics for tuning */
|
|
u32 VCAarg;
|
|
u32 VGAarg;
|
|
u32 bandselectarg;
|
|
u32 pllarg;
|
|
u32 FILTune;
|
|
|
|
/* The Demod/Tuner can't easily provide these, we cache them */
|
|
u32 currentfreq;
|
|
u32 currentsymbolrate;
|
|
};
|
|
|
|
/* Various tuner defaults need to be established for a given symbol rate Sps */
|
|
static struct
|
|
{
|
|
u32 symbolrate_low;
|
|
u32 symbolrate_high;
|
|
u32 VCAprogdata;
|
|
u32 VGAprogdata;
|
|
u32 FILTune;
|
|
} cx24123_AGC_vals[] =
|
|
{
|
|
{
|
|
.symbolrate_low = 1000000,
|
|
.symbolrate_high = 4999999,
|
|
/* the specs recommend other values for VGA offsets,
|
|
but tests show they are wrong */
|
|
.VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
|
|
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
|
|
.FILTune = 0x27f /* 0.41 V */
|
|
},
|
|
{
|
|
.symbolrate_low = 5000000,
|
|
.symbolrate_high = 14999999,
|
|
.VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
|
|
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
|
|
.FILTune = 0x317 /* 0.90 V */
|
|
},
|
|
{
|
|
.symbolrate_low = 15000000,
|
|
.symbolrate_high = 45000000,
|
|
.VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
|
|
.VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
|
|
.FILTune = 0x145 /* 2.70 V */
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Various tuner defaults need to be established for a given frequency kHz.
|
|
* fixme: The bounds on the bands do not match the doc in real life.
|
|
* fixme: Some of them have been moved, other might need adjustment.
|
|
*/
|
|
static struct
|
|
{
|
|
u32 freq_low;
|
|
u32 freq_high;
|
|
u32 VCOdivider;
|
|
u32 progdata;
|
|
} cx24123_bandselect_vals[] =
|
|
{
|
|
/* band 1 */
|
|
{
|
|
.freq_low = 950000,
|
|
.freq_high = 1074999,
|
|
.VCOdivider = 4,
|
|
.progdata = (0 << 19) | (0 << 9) | 0x40,
|
|
},
|
|
|
|
/* band 2 */
|
|
{
|
|
.freq_low = 1075000,
|
|
.freq_high = 1177999,
|
|
.VCOdivider = 4,
|
|
.progdata = (0 << 19) | (0 << 9) | 0x80,
|
|
},
|
|
|
|
/* band 3 */
|
|
{
|
|
.freq_low = 1178000,
|
|
.freq_high = 1295999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x01,
|
|
},
|
|
|
|
/* band 4 */
|
|
{
|
|
.freq_low = 1296000,
|
|
.freq_high = 1431999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x02,
|
|
},
|
|
|
|
/* band 5 */
|
|
{
|
|
.freq_low = 1432000,
|
|
.freq_high = 1575999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x04,
|
|
},
|
|
|
|
/* band 6 */
|
|
{
|
|
.freq_low = 1576000,
|
|
.freq_high = 1717999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x08,
|
|
},
|
|
|
|
/* band 7 */
|
|
{
|
|
.freq_low = 1718000,
|
|
.freq_high = 1855999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x10,
|
|
},
|
|
|
|
/* band 8 */
|
|
{
|
|
.freq_low = 1856000,
|
|
.freq_high = 2035999,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x20,
|
|
},
|
|
|
|
/* band 9 */
|
|
{
|
|
.freq_low = 2036000,
|
|
.freq_high = 2150000,
|
|
.VCOdivider = 2,
|
|
.progdata = (0 << 19) | (1 << 9) | 0x40,
|
|
},
|
|
};
|
|
|
|
static struct {
|
|
u8 reg;
|
|
u8 data;
|
|
} cx24123_regdata[] =
|
|
{
|
|
{0x00, 0x03}, /* Reset system */
|
|
{0x00, 0x00}, /* Clear reset */
|
|
{0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
|
|
{0x04, 0x10}, /* MPEG */
|
|
{0x05, 0x04}, /* MPEG */
|
|
{0x06, 0x31}, /* MPEG (default) */
|
|
{0x0b, 0x00}, /* Freq search start point (default) */
|
|
{0x0c, 0x00}, /* Demodulator sample gain (default) */
|
|
{0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */
|
|
{0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
|
|
{0x0f, 0xfe}, /* FEC search mask (all supported codes) */
|
|
{0x10, 0x01}, /* Default search inversion, no repeat (default) */
|
|
{0x16, 0x00}, /* Enable reading of frequency */
|
|
{0x17, 0x01}, /* Enable EsNO Ready Counter */
|
|
{0x1c, 0x80}, /* Enable error counter */
|
|
{0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
|
|
{0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
|
|
{0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
|
|
{0x29, 0x00}, /* DiSEqC LNB_DC off */
|
|
{0x2a, 0xb0}, /* DiSEqC Parameters (default) */
|
|
{0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
|
|
{0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
|
|
{0x2d, 0x00},
|
|
{0x2e, 0x00},
|
|
{0x2f, 0x00},
|
|
{0x30, 0x00},
|
|
{0x31, 0x00},
|
|
{0x32, 0x8c}, /* DiSEqC Parameters (default) */
|
|
{0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
|
|
{0x34, 0x00},
|
|
{0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
|
|
{0x36, 0x02}, /* DiSEqC Parameters (default) */
|
|
{0x37, 0x3a}, /* DiSEqC Parameters (default) */
|
|
{0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
|
|
{0x44, 0x00}, /* Constellation (default) */
|
|
{0x45, 0x00}, /* Symbol count (default) */
|
|
{0x46, 0x0d}, /* Symbol rate estimator on (default) */
|
|
{0x56, 0xc1}, /* Error Counter = Viterbi BER */
|
|
{0x57, 0xff}, /* Error Counter Window (default) */
|
|
{0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */
|
|
{0x67, 0x83}, /* Non-DCII symbol clock */
|
|
};
|
|
|
|
static int cx24123_writereg(struct cx24123_state* state, int reg, int data)
|
|
{
|
|
u8 buf[] = { reg, data };
|
|
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
|
|
int err;
|
|
|
|
if (debug>1)
|
|
printk("cx24123: %s: write reg 0x%02x, value 0x%02x\n",
|
|
__FUNCTION__,reg, data);
|
|
|
|
if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) {
|
|
printk("%s: writereg error(err == %i, reg == 0x%02x,"
|
|
" data == 0x%02x)\n", __FUNCTION__, err, reg, data);
|
|
return -EREMOTEIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_readreg(struct cx24123_state* state, u8 reg)
|
|
{
|
|
int ret;
|
|
u8 b0[] = { reg };
|
|
u8 b1[] = { 0 };
|
|
struct i2c_msg msg[] = {
|
|
{ .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 },
|
|
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 }
|
|
};
|
|
|
|
ret = i2c_transfer(state->i2c, msg, 2);
|
|
|
|
if (ret != 2) {
|
|
printk("%s: reg=0x%x (error=%d)\n", __FUNCTION__, reg, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (debug>1)
|
|
printk("cx24123: read reg 0x%02x, value 0x%02x\n",reg, ret);
|
|
|
|
return b1[0];
|
|
}
|
|
|
|
static int cx24123_set_inversion(struct cx24123_state* state, fe_spectral_inversion_t inversion)
|
|
{
|
|
u8 nom_reg = cx24123_readreg(state, 0x0e);
|
|
u8 auto_reg = cx24123_readreg(state, 0x10);
|
|
|
|
switch (inversion) {
|
|
case INVERSION_OFF:
|
|
dprintk("%s: inversion off\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
|
|
cx24123_writereg(state, 0x10, auto_reg | 0x80);
|
|
break;
|
|
case INVERSION_ON:
|
|
dprintk("%s: inversion on\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x80);
|
|
cx24123_writereg(state, 0x10, auto_reg | 0x80);
|
|
break;
|
|
case INVERSION_AUTO:
|
|
dprintk("%s: inversion auto\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x10, auto_reg & ~0x80);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_get_inversion(struct cx24123_state* state, fe_spectral_inversion_t *inversion)
|
|
{
|
|
u8 val;
|
|
|
|
val = cx24123_readreg(state, 0x1b) >> 7;
|
|
|
|
if (val == 0) {
|
|
dprintk("%s: read inversion off\n",__FUNCTION__);
|
|
*inversion = INVERSION_OFF;
|
|
} else {
|
|
dprintk("%s: read inversion on\n",__FUNCTION__);
|
|
*inversion = INVERSION_ON;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_set_fec(struct cx24123_state* state, fe_code_rate_t fec)
|
|
{
|
|
u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
|
|
|
|
if ( (fec < FEC_NONE) || (fec > FEC_AUTO) )
|
|
fec = FEC_AUTO;
|
|
|
|
/* Set the soft decision threshold */
|
|
if(fec == FEC_1_2)
|
|
cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) | 0x01);
|
|
else
|
|
cx24123_writereg(state, 0x43, cx24123_readreg(state, 0x43) & ~0x01);
|
|
|
|
switch (fec) {
|
|
case FEC_1_2:
|
|
dprintk("%s: set FEC to 1/2\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x01);
|
|
cx24123_writereg(state, 0x0f, 0x02);
|
|
break;
|
|
case FEC_2_3:
|
|
dprintk("%s: set FEC to 2/3\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x02);
|
|
cx24123_writereg(state, 0x0f, 0x04);
|
|
break;
|
|
case FEC_3_4:
|
|
dprintk("%s: set FEC to 3/4\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x03);
|
|
cx24123_writereg(state, 0x0f, 0x08);
|
|
break;
|
|
case FEC_4_5:
|
|
dprintk("%s: set FEC to 4/5\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x04);
|
|
cx24123_writereg(state, 0x0f, 0x10);
|
|
break;
|
|
case FEC_5_6:
|
|
dprintk("%s: set FEC to 5/6\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x05);
|
|
cx24123_writereg(state, 0x0f, 0x20);
|
|
break;
|
|
case FEC_6_7:
|
|
dprintk("%s: set FEC to 6/7\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x06);
|
|
cx24123_writereg(state, 0x0f, 0x40);
|
|
break;
|
|
case FEC_7_8:
|
|
dprintk("%s: set FEC to 7/8\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0e, nom_reg | 0x07);
|
|
cx24123_writereg(state, 0x0f, 0x80);
|
|
break;
|
|
case FEC_AUTO:
|
|
dprintk("%s: set FEC to auto\n",__FUNCTION__);
|
|
cx24123_writereg(state, 0x0f, 0xfe);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_get_fec(struct cx24123_state* state, fe_code_rate_t *fec)
|
|
{
|
|
int ret;
|
|
|
|
ret = cx24123_readreg (state, 0x1b);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = ret & 0x07;
|
|
|
|
switch (ret) {
|
|
case 1:
|
|
*fec = FEC_1_2;
|
|
break;
|
|
case 2:
|
|
*fec = FEC_2_3;
|
|
break;
|
|
case 3:
|
|
*fec = FEC_3_4;
|
|
break;
|
|
case 4:
|
|
*fec = FEC_4_5;
|
|
break;
|
|
case 5:
|
|
*fec = FEC_5_6;
|
|
break;
|
|
case 6:
|
|
*fec = FEC_6_7;
|
|
break;
|
|
case 7:
|
|
*fec = FEC_7_8;
|
|
break;
|
|
default:
|
|
/* this can happen when there's no lock */
|
|
*fec = FEC_NONE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Approximation of closest integer of log2(a/b). It actually gives the
|
|
lowest integer i such that 2^i >= round(a/b) */
|
|
static u32 cx24123_int_log2(u32 a, u32 b)
|
|
{
|
|
u32 exp, nearest = 0;
|
|
u32 div = a / b;
|
|
if(a % b >= b / 2) ++div;
|
|
if(div < (1 << 31))
|
|
{
|
|
for(exp = 1; div > exp; nearest++)
|
|
exp += exp;
|
|
}
|
|
return nearest;
|
|
}
|
|
|
|
static int cx24123_set_symbolrate(struct cx24123_state* state, u32 srate)
|
|
{
|
|
u32 tmp, sample_rate, ratio, sample_gain;
|
|
u8 pll_mult;
|
|
|
|
/* check if symbol rate is within limits */
|
|
if ((srate > state->frontend.ops.info.symbol_rate_max) ||
|
|
(srate < state->frontend.ops.info.symbol_rate_min))
|
|
return -EOPNOTSUPP;;
|
|
|
|
/* choose the sampling rate high enough for the required operation,
|
|
while optimizing the power consumed by the demodulator */
|
|
if (srate < (XTAL*2)/2)
|
|
pll_mult = 2;
|
|
else if (srate < (XTAL*3)/2)
|
|
pll_mult = 3;
|
|
else if (srate < (XTAL*4)/2)
|
|
pll_mult = 4;
|
|
else if (srate < (XTAL*5)/2)
|
|
pll_mult = 5;
|
|
else if (srate < (XTAL*6)/2)
|
|
pll_mult = 6;
|
|
else if (srate < (XTAL*7)/2)
|
|
pll_mult = 7;
|
|
else if (srate < (XTAL*8)/2)
|
|
pll_mult = 8;
|
|
else
|
|
pll_mult = 9;
|
|
|
|
|
|
sample_rate = pll_mult * XTAL;
|
|
|
|
/*
|
|
SYSSymbolRate[21:0] = (srate << 23) / sample_rate
|
|
|
|
We have to use 32 bit unsigned arithmetic without precision loss.
|
|
The maximum srate is 45000000 or 0x02AEA540. This number has
|
|
only 6 clear bits on top, hence we can shift it left only 6 bits
|
|
at a time. Borrowed from cx24110.c
|
|
*/
|
|
|
|
tmp = srate << 6;
|
|
ratio = tmp / sample_rate;
|
|
|
|
tmp = (tmp % sample_rate) << 6;
|
|
ratio = (ratio << 6) + (tmp / sample_rate);
|
|
|
|
tmp = (tmp % sample_rate) << 6;
|
|
ratio = (ratio << 6) + (tmp / sample_rate);
|
|
|
|
tmp = (tmp % sample_rate) << 5;
|
|
ratio = (ratio << 5) + (tmp / sample_rate);
|
|
|
|
|
|
cx24123_writereg(state, 0x01, pll_mult * 6);
|
|
|
|
cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f );
|
|
cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff );
|
|
cx24123_writereg(state, 0x0a, (ratio ) & 0xff );
|
|
|
|
/* also set the demodulator sample gain */
|
|
sample_gain = cx24123_int_log2(sample_rate, srate);
|
|
tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
|
|
cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
|
|
|
|
dprintk("%s: srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n", __FUNCTION__, srate, ratio, sample_rate, sample_gain);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Based on the required frequency and symbolrate, the tuner AGC has to be configured
|
|
* and the correct band selected. Calculate those values
|
|
*/
|
|
static int cx24123_pll_calculate(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
u32 ndiv = 0, adiv = 0, vco_div = 0;
|
|
int i = 0;
|
|
int pump = 2;
|
|
int band = 0;
|
|
int num_bands = sizeof(cx24123_bandselect_vals) / sizeof(cx24123_bandselect_vals[0]);
|
|
|
|
/* Defaults for low freq, low rate */
|
|
state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
|
|
state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
|
|
state->bandselectarg = cx24123_bandselect_vals[0].progdata;
|
|
vco_div = cx24123_bandselect_vals[0].VCOdivider;
|
|
|
|
/* For the given symbol rate, determine the VCA, VGA and FILTUNE programming bits */
|
|
for (i = 0; i < sizeof(cx24123_AGC_vals) / sizeof(cx24123_AGC_vals[0]); i++)
|
|
{
|
|
if ((cx24123_AGC_vals[i].symbolrate_low <= p->u.qpsk.symbol_rate) &&
|
|
(cx24123_AGC_vals[i].symbolrate_high >= p->u.qpsk.symbol_rate) ) {
|
|
state->VCAarg = cx24123_AGC_vals[i].VCAprogdata;
|
|
state->VGAarg = cx24123_AGC_vals[i].VGAprogdata;
|
|
state->FILTune = cx24123_AGC_vals[i].FILTune;
|
|
}
|
|
}
|
|
|
|
/* determine the band to use */
|
|
if(force_band < 1 || force_band > num_bands)
|
|
{
|
|
for (i = 0; i < num_bands; i++)
|
|
{
|
|
if ((cx24123_bandselect_vals[i].freq_low <= p->frequency) &&
|
|
(cx24123_bandselect_vals[i].freq_high >= p->frequency) )
|
|
band = i;
|
|
}
|
|
}
|
|
else
|
|
band = force_band - 1;
|
|
|
|
state->bandselectarg = cx24123_bandselect_vals[band].progdata;
|
|
vco_div = cx24123_bandselect_vals[band].VCOdivider;
|
|
|
|
/* determine the charge pump current */
|
|
if ( p->frequency < (cx24123_bandselect_vals[band].freq_low + cx24123_bandselect_vals[band].freq_high)/2 )
|
|
pump = 0x01;
|
|
else
|
|
pump = 0x02;
|
|
|
|
/* Determine the N/A dividers for the requested lband freq (in kHz). */
|
|
/* Note: the reference divider R=10, frequency is in KHz, XTAL is in Hz */
|
|
ndiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) / 32) & 0x1ff;
|
|
adiv = ( ((p->frequency * vco_div * 10) / (2 * XTAL / 1000)) % 32) & 0x1f;
|
|
|
|
if (adiv == 0)
|
|
ndiv++;
|
|
|
|
/* control bits 11, refdiv 11, charge pump polarity 1, charge pump current, ndiv, adiv */
|
|
state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) | (pump << 14) | (ndiv << 5) | adiv;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Tuner data is 21 bits long, must be left-aligned in data.
|
|
* Tuner cx24109 is written through a dedicated 3wire interface on the demod chip.
|
|
*/
|
|
static int cx24123_pll_writereg(struct dvb_frontend* fe, struct dvb_frontend_parameters *p, u32 data)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
unsigned long timeout;
|
|
|
|
dprintk("%s: pll writereg called, data=0x%08x\n",__FUNCTION__,data);
|
|
|
|
/* align the 21 bytes into to bit23 boundary */
|
|
data = data << 3;
|
|
|
|
/* Reset the demod pll word length to 0x15 bits */
|
|
cx24123_writereg(state, 0x21, 0x15);
|
|
|
|
/* write the msb 8 bits, wait for the send to be completed */
|
|
timeout = jiffies + msecs_to_jiffies(40);
|
|
cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
|
|
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
|
|
return -EREMOTEIO;
|
|
}
|
|
msleep(10);
|
|
}
|
|
|
|
/* send another 8 bytes, wait for the send to be completed */
|
|
timeout = jiffies + msecs_to_jiffies(40);
|
|
cx24123_writereg(state, 0x22, (data>>8) & 0xff );
|
|
while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
|
|
return -EREMOTEIO;
|
|
}
|
|
msleep(10);
|
|
}
|
|
|
|
/* send the lower 5 bits of this byte, padded with 3 LBB, wait for the send to be completed */
|
|
timeout = jiffies + msecs_to_jiffies(40);
|
|
cx24123_writereg(state, 0x22, (data) & 0xff );
|
|
while ((cx24123_readreg(state, 0x20) & 0x80)) {
|
|
if (time_after(jiffies, timeout)) {
|
|
printk("%s: demodulator is not responding, possibly hung, aborting.\n", __FUNCTION__);
|
|
return -EREMOTEIO;
|
|
}
|
|
msleep(10);
|
|
}
|
|
|
|
/* Trigger the demod to configure the tuner */
|
|
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
|
|
cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_pll_tune(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
u8 val;
|
|
|
|
dprintk("frequency=%i\n", p->frequency);
|
|
|
|
if (cx24123_pll_calculate(fe, p) != 0) {
|
|
printk("%s: cx24123_pll_calcutate failed\n",__FUNCTION__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Write the new VCO/VGA */
|
|
cx24123_pll_writereg(fe, p, state->VCAarg);
|
|
cx24123_pll_writereg(fe, p, state->VGAarg);
|
|
|
|
/* Write the new bandselect and pll args */
|
|
cx24123_pll_writereg(fe, p, state->bandselectarg);
|
|
cx24123_pll_writereg(fe, p, state->pllarg);
|
|
|
|
/* set the FILTUNE voltage */
|
|
val = cx24123_readreg(state, 0x28) & ~0x3;
|
|
cx24123_writereg(state, 0x27, state->FILTune >> 2);
|
|
cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
|
|
|
|
dprintk("%s: pll tune VCA=%d, band=%d, pll=%d\n",__FUNCTION__,state->VCAarg,
|
|
state->bandselectarg,state->pllarg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_initfe(struct dvb_frontend* fe)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
int i;
|
|
|
|
dprintk("%s: init frontend\n",__FUNCTION__);
|
|
|
|
/* Configure the demod to a good set of defaults */
|
|
for (i = 0; i < sizeof(cx24123_regdata) / sizeof(cx24123_regdata[0]); i++)
|
|
cx24123_writereg(state, cx24123_regdata[i].reg, cx24123_regdata[i].data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_set_voltage(struct dvb_frontend* fe, fe_sec_voltage_t voltage)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
u8 val;
|
|
|
|
val = cx24123_readreg(state, 0x29) & ~0x40;
|
|
|
|
switch (voltage) {
|
|
case SEC_VOLTAGE_13:
|
|
dprintk("%s: setting voltage 13V\n", __FUNCTION__);
|
|
return cx24123_writereg(state, 0x29, val & 0x7f);
|
|
case SEC_VOLTAGE_18:
|
|
dprintk("%s: setting voltage 18V\n", __FUNCTION__);
|
|
return cx24123_writereg(state, 0x29, val | 0x80);
|
|
default:
|
|
return -EINVAL;
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* wait for diseqc queue to become ready (or timeout) */
|
|
static void cx24123_wait_for_diseqc(struct cx24123_state *state)
|
|
{
|
|
unsigned long timeout = jiffies + msecs_to_jiffies(200);
|
|
while (!(cx24123_readreg(state, 0x29) & 0x40)) {
|
|
if(time_after(jiffies, timeout)) {
|
|
printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
|
|
break;
|
|
}
|
|
msleep(10);
|
|
}
|
|
}
|
|
|
|
static int cx24123_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
int i, val, tone;
|
|
|
|
dprintk("%s:\n",__FUNCTION__);
|
|
|
|
/* stop continuous tone if enabled */
|
|
tone = cx24123_readreg(state, 0x29);
|
|
if (tone & 0x10)
|
|
cx24123_writereg(state, 0x29, tone & ~0x50);
|
|
|
|
/* wait for diseqc queue ready */
|
|
cx24123_wait_for_diseqc(state);
|
|
|
|
/* select tone mode */
|
|
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
|
|
|
|
for (i = 0; i < cmd->msg_len; i++)
|
|
cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
|
|
|
|
val = cx24123_readreg(state, 0x29);
|
|
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) | ((cmd->msg_len-3) & 3));
|
|
|
|
/* wait for diseqc message to finish sending */
|
|
cx24123_wait_for_diseqc(state);
|
|
|
|
/* restart continuous tone if enabled */
|
|
if (tone & 0x10) {
|
|
cx24123_writereg(state, 0x29, tone & ~0x40);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_diseqc_send_burst(struct dvb_frontend* fe, fe_sec_mini_cmd_t burst)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
int val, tone;
|
|
|
|
dprintk("%s:\n", __FUNCTION__);
|
|
|
|
/* stop continuous tone if enabled */
|
|
tone = cx24123_readreg(state, 0x29);
|
|
if (tone & 0x10)
|
|
cx24123_writereg(state, 0x29, tone & ~0x50);
|
|
|
|
/* wait for diseqc queue ready */
|
|
cx24123_wait_for_diseqc(state);
|
|
|
|
/* select tone mode */
|
|
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
|
|
msleep(30);
|
|
val = cx24123_readreg(state, 0x29);
|
|
if (burst == SEC_MINI_A)
|
|
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
|
|
else if (burst == SEC_MINI_B)
|
|
cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
|
|
else
|
|
return -EINVAL;
|
|
|
|
cx24123_wait_for_diseqc(state);
|
|
cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
|
|
|
|
/* restart continuous tone if enabled */
|
|
if (tone & 0x10) {
|
|
cx24123_writereg(state, 0x29, tone & ~0x40);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_read_status(struct dvb_frontend* fe, fe_status_t* status)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
int sync = cx24123_readreg(state, 0x14);
|
|
int lock = cx24123_readreg(state, 0x20);
|
|
|
|
*status = 0;
|
|
if (lock & 0x01)
|
|
*status |= FE_HAS_SIGNAL;
|
|
if (sync & 0x02)
|
|
*status |= FE_HAS_CARRIER; /* Phase locked */
|
|
if (sync & 0x04)
|
|
*status |= FE_HAS_VITERBI;
|
|
|
|
/* Reed-Solomon Status */
|
|
if (sync & 0x08)
|
|
*status |= FE_HAS_SYNC;
|
|
if (sync & 0x80)
|
|
*status |= FE_HAS_LOCK; /*Full Sync */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configured to return the measurement of errors in blocks, because no UCBLOCKS value
|
|
* is available, so this value doubles up to satisfy both measurements
|
|
*/
|
|
static int cx24123_read_ber(struct dvb_frontend* fe, u32* ber)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
/* The true bit error rate is this value divided by
|
|
the window size (set as 256 * 255) */
|
|
*ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
|
|
(cx24123_readreg(state, 0x1d) << 8 |
|
|
cx24123_readreg(state, 0x1e));
|
|
|
|
dprintk("%s: BER = %d\n",__FUNCTION__,*ber);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
*signal_strength = cx24123_readreg(state, 0x3b) << 8; /* larger = better */
|
|
|
|
dprintk("%s: Signal strength = %d\n",__FUNCTION__,*signal_strength);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_read_snr(struct dvb_frontend* fe, u16* snr)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
/* Inverted raw Es/N0 count, totally bogus but better than the
|
|
BER threshold. */
|
|
*snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
|
|
(u16)cx24123_readreg(state, 0x19));
|
|
|
|
dprintk("%s: read S/N index = %d\n",__FUNCTION__,*snr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
dprintk("%s: set_frontend\n",__FUNCTION__);
|
|
|
|
if (state->config->set_ts_params)
|
|
state->config->set_ts_params(fe, 0);
|
|
|
|
state->currentfreq=p->frequency;
|
|
state->currentsymbolrate = p->u.qpsk.symbol_rate;
|
|
|
|
cx24123_set_inversion(state, p->inversion);
|
|
cx24123_set_fec(state, p->u.qpsk.fec_inner);
|
|
cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
|
|
cx24123_pll_tune(fe, p);
|
|
|
|
/* Enable automatic aquisition and reset cycle */
|
|
cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
|
|
cx24123_writereg(state, 0x00, 0x10);
|
|
cx24123_writereg(state, 0x00, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *p)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
|
|
dprintk("%s: get_frontend\n",__FUNCTION__);
|
|
|
|
if (cx24123_get_inversion(state, &p->inversion) != 0) {
|
|
printk("%s: Failed to get inversion status\n",__FUNCTION__);
|
|
return -EREMOTEIO;
|
|
}
|
|
if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
|
|
printk("%s: Failed to get fec status\n",__FUNCTION__);
|
|
return -EREMOTEIO;
|
|
}
|
|
p->frequency = state->currentfreq;
|
|
p->u.qpsk.symbol_rate = state->currentsymbolrate;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_set_tone(struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
|
|
{
|
|
struct cx24123_state *state = fe->demodulator_priv;
|
|
u8 val;
|
|
|
|
/* wait for diseqc queue ready */
|
|
cx24123_wait_for_diseqc(state);
|
|
|
|
val = cx24123_readreg(state, 0x29) & ~0x40;
|
|
|
|
switch (tone) {
|
|
case SEC_TONE_ON:
|
|
dprintk("%s: setting tone on\n", __FUNCTION__);
|
|
return cx24123_writereg(state, 0x29, val | 0x10);
|
|
case SEC_TONE_OFF:
|
|
dprintk("%s: setting tone off\n",__FUNCTION__);
|
|
return cx24123_writereg(state, 0x29, val & 0xef);
|
|
default:
|
|
printk("%s: CASE reached default with tone=%d\n", __FUNCTION__, tone);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cx24123_tune(struct dvb_frontend* fe,
|
|
struct dvb_frontend_parameters* params,
|
|
unsigned int mode_flags,
|
|
int *delay,
|
|
fe_status_t *status)
|
|
{
|
|
int retval = 0;
|
|
|
|
if (params != NULL)
|
|
retval = cx24123_set_frontend(fe, params);
|
|
|
|
if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
|
|
cx24123_read_status(fe, status);
|
|
*delay = HZ/10;
|
|
|
|
return retval;
|
|
}
|
|
|
|
static int cx24123_get_algo(struct dvb_frontend *fe)
|
|
{
|
|
return 1; //FE_ALGO_HW
|
|
}
|
|
|
|
static void cx24123_release(struct dvb_frontend* fe)
|
|
{
|
|
struct cx24123_state* state = fe->demodulator_priv;
|
|
dprintk("%s\n",__FUNCTION__);
|
|
kfree(state);
|
|
}
|
|
|
|
static struct dvb_frontend_ops cx24123_ops;
|
|
|
|
struct dvb_frontend* cx24123_attach(const struct cx24123_config* config,
|
|
struct i2c_adapter* i2c)
|
|
{
|
|
struct cx24123_state* state = NULL;
|
|
int ret;
|
|
|
|
dprintk("%s\n",__FUNCTION__);
|
|
|
|
/* allocate memory for the internal state */
|
|
state = kmalloc(sizeof(struct cx24123_state), GFP_KERNEL);
|
|
if (state == NULL) {
|
|
printk("Unable to kmalloc\n");
|
|
goto error;
|
|
}
|
|
|
|
/* setup the state */
|
|
state->config = config;
|
|
state->i2c = i2c;
|
|
state->VCAarg = 0;
|
|
state->VGAarg = 0;
|
|
state->bandselectarg = 0;
|
|
state->pllarg = 0;
|
|
state->currentfreq = 0;
|
|
state->currentsymbolrate = 0;
|
|
|
|
/* check if the demod is there */
|
|
ret = cx24123_readreg(state, 0x00);
|
|
if ((ret != 0xd1) && (ret != 0xe1)) {
|
|
printk("Version != d1 or e1\n");
|
|
goto error;
|
|
}
|
|
|
|
/* create dvb_frontend */
|
|
memcpy(&state->frontend.ops, &cx24123_ops, sizeof(struct dvb_frontend_ops));
|
|
state->frontend.demodulator_priv = state;
|
|
return &state->frontend;
|
|
|
|
error:
|
|
kfree(state);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct dvb_frontend_ops cx24123_ops = {
|
|
|
|
.info = {
|
|
.name = "Conexant CX24123/CX24109",
|
|
.type = FE_QPSK,
|
|
.frequency_min = 950000,
|
|
.frequency_max = 2150000,
|
|
.frequency_stepsize = 1011, /* kHz for QPSK frontends */
|
|
.frequency_tolerance = 5000,
|
|
.symbol_rate_min = 1000000,
|
|
.symbol_rate_max = 45000000,
|
|
.caps = FE_CAN_INVERSION_AUTO |
|
|
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
|
|
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
|
|
FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
|
|
FE_CAN_QPSK | FE_CAN_RECOVER
|
|
},
|
|
|
|
.release = cx24123_release,
|
|
|
|
.init = cx24123_initfe,
|
|
.set_frontend = cx24123_set_frontend,
|
|
.get_frontend = cx24123_get_frontend,
|
|
.read_status = cx24123_read_status,
|
|
.read_ber = cx24123_read_ber,
|
|
.read_signal_strength = cx24123_read_signal_strength,
|
|
.read_snr = cx24123_read_snr,
|
|
.diseqc_send_master_cmd = cx24123_send_diseqc_msg,
|
|
.diseqc_send_burst = cx24123_diseqc_send_burst,
|
|
.set_tone = cx24123_set_tone,
|
|
.set_voltage = cx24123_set_voltage,
|
|
.tune = cx24123_tune,
|
|
.get_frontend_algo = cx24123_get_algo,
|
|
};
|
|
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
|
|
|
|
module_param(force_band, int, 0644);
|
|
MODULE_PARM_DESC(force_band, "Force a specific band select (1-9, default:off).");
|
|
|
|
MODULE_DESCRIPTION("DVB Frontend module for Conexant cx24123/cx24109 hardware");
|
|
MODULE_AUTHOR("Steven Toth");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
EXPORT_SYMBOL(cx24123_attach);
|