linux/drivers/usb/gadget/udc/pxa25x_udc.c

2547 lines
68 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Intel PXA25x and IXP4xx on-chip full speed USB device controllers
*
* Copyright (C) 2002 Intrinsyc, Inc. (Frank Becker)
* Copyright (C) 2003 Robert Schwebel, Pengutronix
* Copyright (C) 2003 Benedikt Spranger, Pengutronix
* Copyright (C) 2003 David Brownell
* Copyright (C) 2003 Joshua Wise
*/
/* #define VERBOSE_DEBUG */
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/platform_data/pxa2xx_udc.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/seq_file.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/prefetch.h>
#include <asm/byteorder.h>
#include <asm/dma.h>
#include <asm/mach-types.h>
#include <asm/unaligned.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/usb/otg.h>
#ifdef CONFIG_ARCH_LUBBOCK
#include <mach/lubbock.h>
#endif
#define UDCCR 0x0000 /* UDC Control Register */
#define UDC_RES1 0x0004 /* UDC Undocumented - Reserved1 */
#define UDC_RES2 0x0008 /* UDC Undocumented - Reserved2 */
#define UDC_RES3 0x000C /* UDC Undocumented - Reserved3 */
#define UDCCS0 0x0010 /* UDC Endpoint 0 Control/Status Register */
#define UDCCS1 0x0014 /* UDC Endpoint 1 (IN) Control/Status Register */
#define UDCCS2 0x0018 /* UDC Endpoint 2 (OUT) Control/Status Register */
#define UDCCS3 0x001C /* UDC Endpoint 3 (IN) Control/Status Register */
#define UDCCS4 0x0020 /* UDC Endpoint 4 (OUT) Control/Status Register */
#define UDCCS5 0x0024 /* UDC Endpoint 5 (Interrupt) Control/Status Register */
#define UDCCS6 0x0028 /* UDC Endpoint 6 (IN) Control/Status Register */
#define UDCCS7 0x002C /* UDC Endpoint 7 (OUT) Control/Status Register */
#define UDCCS8 0x0030 /* UDC Endpoint 8 (IN) Control/Status Register */
#define UDCCS9 0x0034 /* UDC Endpoint 9 (OUT) Control/Status Register */
#define UDCCS10 0x0038 /* UDC Endpoint 10 (Interrupt) Control/Status Register */
#define UDCCS11 0x003C /* UDC Endpoint 11 (IN) Control/Status Register */
#define UDCCS12 0x0040 /* UDC Endpoint 12 (OUT) Control/Status Register */
#define UDCCS13 0x0044 /* UDC Endpoint 13 (IN) Control/Status Register */
#define UDCCS14 0x0048 /* UDC Endpoint 14 (OUT) Control/Status Register */
#define UDCCS15 0x004C /* UDC Endpoint 15 (Interrupt) Control/Status Register */
#define UFNRH 0x0060 /* UDC Frame Number Register High */
#define UFNRL 0x0064 /* UDC Frame Number Register Low */
#define UBCR2 0x0068 /* UDC Byte Count Reg 2 */
#define UBCR4 0x006c /* UDC Byte Count Reg 4 */
#define UBCR7 0x0070 /* UDC Byte Count Reg 7 */
#define UBCR9 0x0074 /* UDC Byte Count Reg 9 */
#define UBCR12 0x0078 /* UDC Byte Count Reg 12 */
#define UBCR14 0x007c /* UDC Byte Count Reg 14 */
#define UDDR0 0x0080 /* UDC Endpoint 0 Data Register */
#define UDDR1 0x0100 /* UDC Endpoint 1 Data Register */
#define UDDR2 0x0180 /* UDC Endpoint 2 Data Register */
#define UDDR3 0x0200 /* UDC Endpoint 3 Data Register */
#define UDDR4 0x0400 /* UDC Endpoint 4 Data Register */
#define UDDR5 0x00A0 /* UDC Endpoint 5 Data Register */
#define UDDR6 0x0600 /* UDC Endpoint 6 Data Register */
#define UDDR7 0x0680 /* UDC Endpoint 7 Data Register */
#define UDDR8 0x0700 /* UDC Endpoint 8 Data Register */
#define UDDR9 0x0900 /* UDC Endpoint 9 Data Register */
#define UDDR10 0x00C0 /* UDC Endpoint 10 Data Register */
#define UDDR11 0x0B00 /* UDC Endpoint 11 Data Register */
#define UDDR12 0x0B80 /* UDC Endpoint 12 Data Register */
#define UDDR13 0x0C00 /* UDC Endpoint 13 Data Register */
#define UDDR14 0x0E00 /* UDC Endpoint 14 Data Register */
#define UDDR15 0x00E0 /* UDC Endpoint 15 Data Register */
#define UICR0 0x0050 /* UDC Interrupt Control Register 0 */
#define UICR1 0x0054 /* UDC Interrupt Control Register 1 */
#define USIR0 0x0058 /* UDC Status Interrupt Register 0 */
#define USIR1 0x005C /* UDC Status Interrupt Register 1 */
#define UDCCR_UDE (1 << 0) /* UDC enable */
#define UDCCR_UDA (1 << 1) /* UDC active */
#define UDCCR_RSM (1 << 2) /* Device resume */
#define UDCCR_RESIR (1 << 3) /* Resume interrupt request */
#define UDCCR_SUSIR (1 << 4) /* Suspend interrupt request */
#define UDCCR_SRM (1 << 5) /* Suspend/resume interrupt mask */
#define UDCCR_RSTIR (1 << 6) /* Reset interrupt request */
#define UDCCR_REM (1 << 7) /* Reset interrupt mask */
#define UDCCS0_OPR (1 << 0) /* OUT packet ready */
#define UDCCS0_IPR (1 << 1) /* IN packet ready */
#define UDCCS0_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS0_DRWF (1 << 3) /* Device remote wakeup feature */
#define UDCCS0_SST (1 << 4) /* Sent stall */
#define UDCCS0_FST (1 << 5) /* Force stall */
#define UDCCS0_RNE (1 << 6) /* Receive FIFO no empty */
#define UDCCS0_SA (1 << 7) /* Setup active */
#define UDCCS_BI_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_BI_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_BI_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_BI_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_BI_SST (1 << 4) /* Sent stall */
#define UDCCS_BI_FST (1 << 5) /* Force stall */
#define UDCCS_BI_TSP (1 << 7) /* Transmit short packet */
#define UDCCS_BO_RFS (1 << 0) /* Receive FIFO service */
#define UDCCS_BO_RPC (1 << 1) /* Receive packet complete */
#define UDCCS_BO_DME (1 << 3) /* DMA enable */
#define UDCCS_BO_SST (1 << 4) /* Sent stall */
#define UDCCS_BO_FST (1 << 5) /* Force stall */
#define UDCCS_BO_RNE (1 << 6) /* Receive FIFO not empty */
#define UDCCS_BO_RSP (1 << 7) /* Receive short packet */
#define UDCCS_II_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_II_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_II_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_II_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_II_TSP (1 << 7) /* Transmit short packet */
#define UDCCS_IO_RFS (1 << 0) /* Receive FIFO service */
#define UDCCS_IO_RPC (1 << 1) /* Receive packet complete */
#ifdef CONFIG_ARCH_IXP4XX /* FIXME: is this right?, datasheed says '2' */
#define UDCCS_IO_ROF (1 << 3) /* Receive overflow */
#endif
#ifdef CONFIG_ARCH_PXA
#define UDCCS_IO_ROF (1 << 2) /* Receive overflow */
#endif
#define UDCCS_IO_DME (1 << 3) /* DMA enable */
#define UDCCS_IO_RNE (1 << 6) /* Receive FIFO not empty */
#define UDCCS_IO_RSP (1 << 7) /* Receive short packet */
#define UDCCS_INT_TFS (1 << 0) /* Transmit FIFO service */
#define UDCCS_INT_TPC (1 << 1) /* Transmit packet complete */
#define UDCCS_INT_FTF (1 << 2) /* Flush Tx FIFO */
#define UDCCS_INT_TUR (1 << 3) /* Transmit FIFO underrun */
#define UDCCS_INT_SST (1 << 4) /* Sent stall */
#define UDCCS_INT_FST (1 << 5) /* Force stall */
#define UDCCS_INT_TSP (1 << 7) /* Transmit short packet */
#define UICR0_IM0 (1 << 0) /* Interrupt mask ep 0 */
#define UICR0_IM1 (1 << 1) /* Interrupt mask ep 1 */
#define UICR0_IM2 (1 << 2) /* Interrupt mask ep 2 */
#define UICR0_IM3 (1 << 3) /* Interrupt mask ep 3 */
#define UICR0_IM4 (1 << 4) /* Interrupt mask ep 4 */
#define UICR0_IM5 (1 << 5) /* Interrupt mask ep 5 */
#define UICR0_IM6 (1 << 6) /* Interrupt mask ep 6 */
#define UICR0_IM7 (1 << 7) /* Interrupt mask ep 7 */
#define UICR1_IM8 (1 << 0) /* Interrupt mask ep 8 */
#define UICR1_IM9 (1 << 1) /* Interrupt mask ep 9 */
#define UICR1_IM10 (1 << 2) /* Interrupt mask ep 10 */
#define UICR1_IM11 (1 << 3) /* Interrupt mask ep 11 */
#define UICR1_IM12 (1 << 4) /* Interrupt mask ep 12 */
#define UICR1_IM13 (1 << 5) /* Interrupt mask ep 13 */
#define UICR1_IM14 (1 << 6) /* Interrupt mask ep 14 */
#define UICR1_IM15 (1 << 7) /* Interrupt mask ep 15 */
#define USIR0_IR0 (1 << 0) /* Interrupt request ep 0 */
#define USIR0_IR1 (1 << 1) /* Interrupt request ep 1 */
#define USIR0_IR2 (1 << 2) /* Interrupt request ep 2 */
#define USIR0_IR3 (1 << 3) /* Interrupt request ep 3 */
#define USIR0_IR4 (1 << 4) /* Interrupt request ep 4 */
#define USIR0_IR5 (1 << 5) /* Interrupt request ep 5 */
#define USIR0_IR6 (1 << 6) /* Interrupt request ep 6 */
#define USIR0_IR7 (1 << 7) /* Interrupt request ep 7 */
#define USIR1_IR8 (1 << 0) /* Interrupt request ep 8 */
#define USIR1_IR9 (1 << 1) /* Interrupt request ep 9 */
#define USIR1_IR10 (1 << 2) /* Interrupt request ep 10 */
#define USIR1_IR11 (1 << 3) /* Interrupt request ep 11 */
#define USIR1_IR12 (1 << 4) /* Interrupt request ep 12 */
#define USIR1_IR13 (1 << 5) /* Interrupt request ep 13 */
#define USIR1_IR14 (1 << 6) /* Interrupt request ep 14 */
#define USIR1_IR15 (1 << 7) /* Interrupt request ep 15 */
/*
* This driver handles the USB Device Controller (UDC) in Intel's PXA 25x
* series processors. The UDC for the IXP 4xx series is very similar.
* There are fifteen endpoints, in addition to ep0.
*
* Such controller drivers work with a gadget driver. The gadget driver
* returns descriptors, implements configuration and data protocols used
* by the host to interact with this device, and allocates endpoints to
* the different protocol interfaces. The controller driver virtualizes
* usb hardware so that the gadget drivers will be more portable.
*
* This UDC hardware wants to implement a bit too much USB protocol, so
* it constrains the sorts of USB configuration change events that work.
* The errata for these chips are misleading; some "fixed" bugs from
* pxa250 a0/a1 b0/b1/b2 sure act like they're still there.
*
* Note that the UDC hardware supports DMA (except on IXP) but that's
* not used here. IN-DMA (to host) is simple enough, when the data is
* suitably aligned (16 bytes) ... the network stack doesn't do that,
* other software can. OUT-DMA is buggy in most chip versions, as well
* as poorly designed (data toggle not automatic). So this driver won't
* bother using DMA. (Mostly-working IN-DMA support was available in
* kernels before 2.6.23, but was never enabled or well tested.)
*/
#define DRIVER_VERSION "30-June-2007"
#define DRIVER_DESC "PXA 25x USB Device Controller driver"
static const char driver_name [] = "pxa25x_udc";
static const char ep0name [] = "ep0";
#ifdef CONFIG_ARCH_IXP4XX
/* cpu-specific register addresses are compiled in to this code */
#ifdef CONFIG_ARCH_PXA
#error "Can't configure both IXP and PXA"
#endif
/* IXP doesn't yet support <linux/clk.h> */
#define clk_get(dev,name) NULL
#define clk_enable(clk) do { } while (0)
#define clk_disable(clk) do { } while (0)
#define clk_put(clk) do { } while (0)
#endif
#include "pxa25x_udc.h"
#ifdef CONFIG_USB_PXA25X_SMALL
#define SIZE_STR " (small)"
#else
#define SIZE_STR ""
#endif
/* ---------------------------------------------------------------------------
* endpoint related parts of the api to the usb controller hardware,
* used by gadget driver; and the inner talker-to-hardware core.
* ---------------------------------------------------------------------------
*/
static void pxa25x_ep_fifo_flush (struct usb_ep *ep);
static void nuke (struct pxa25x_ep *, int status);
/* one GPIO should control a D+ pullup, so host sees this device (or not) */
static void pullup_off(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
int off_level = mach->gpio_pullup_inverted;
if (gpio_is_valid(mach->gpio_pullup))
gpio_set_value(mach->gpio_pullup, off_level);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_DISCONNECT);
}
static void pullup_on(void)
{
struct pxa2xx_udc_mach_info *mach = the_controller->mach;
int on_level = !mach->gpio_pullup_inverted;
if (gpio_is_valid(mach->gpio_pullup))
gpio_set_value(mach->gpio_pullup, on_level);
else if (mach->udc_command)
mach->udc_command(PXA2XX_UDC_CMD_CONNECT);
}
#if defined(CONFIG_CPU_BIG_ENDIAN)
/*
* IXP4xx has its buses wired up in a way that relies on never doing any
* byte swaps, independent of whether it runs in big-endian or little-endian
* mode, as explained by Krzysztof Hałasa.
*
* We only support pxa25x in little-endian mode, but it is very likely
* that it works the same way.
*/
static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val)
{
iowrite32be(val, dev->regs + reg);
}
static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg)
{
return ioread32be(dev->regs + reg);
}
#else
static inline void udc_set_reg(struct pxa25x_udc *dev, u32 reg, u32 val)
{
writel(val, dev->regs + reg);
}
static inline u32 udc_get_reg(struct pxa25x_udc *dev, u32 reg)
{
return readl(dev->regs + reg);
}
#endif
static void pio_irq_enable(struct pxa25x_ep *ep)
{
u32 bEndpointAddress = ep->bEndpointAddress & 0xf;
if (bEndpointAddress < 8)
udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) &
~(1 << bEndpointAddress));
else {
bEndpointAddress -= 8;
udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) &
~(1 << bEndpointAddress));
}
}
static void pio_irq_disable(struct pxa25x_ep *ep)
{
u32 bEndpointAddress = ep->bEndpointAddress & 0xf;
if (bEndpointAddress < 8)
udc_set_reg(ep->dev, UICR0, udc_get_reg(ep->dev, UICR0) |
(1 << bEndpointAddress));
else {
bEndpointAddress -= 8;
udc_set_reg(ep->dev, UICR1, udc_get_reg(ep->dev, UICR1) |
(1 << bEndpointAddress));
}
}
/* The UDCCR reg contains mask and interrupt status bits,
* so using '|=' isn't safe as it may ack an interrupt.
*/
#define UDCCR_MASK_BITS (UDCCR_REM | UDCCR_SRM | UDCCR_UDE)
static inline void udc_set_mask_UDCCR(struct pxa25x_udc *dev, int mask)
{
u32 udccr = udc_get_reg(dev, UDCCR);
udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) | (mask & UDCCR_MASK_BITS), UDCCR);
}
static inline void udc_clear_mask_UDCCR(struct pxa25x_udc *dev, int mask)
{
u32 udccr = udc_get_reg(dev, UDCCR);
udc_set_reg(dev, (udccr & UDCCR_MASK_BITS) & ~(mask & UDCCR_MASK_BITS), UDCCR);
}
static inline void udc_ack_int_UDCCR(struct pxa25x_udc *dev, int mask)
{
/* udccr contains the bits we dont want to change */
u32 udccr = udc_get_reg(dev, UDCCR) & UDCCR_MASK_BITS;
udc_set_reg(dev, udccr | (mask & ~UDCCR_MASK_BITS), UDCCR);
}
static inline u32 udc_ep_get_UDCCS(struct pxa25x_ep *ep)
{
return udc_get_reg(ep->dev, ep->regoff_udccs);
}
static inline void udc_ep_set_UDCCS(struct pxa25x_ep *ep, u32 data)
{
udc_set_reg(ep->dev, data, ep->regoff_udccs);
}
static inline u32 udc_ep0_get_UDCCS(struct pxa25x_udc *dev)
{
return udc_get_reg(dev, UDCCS0);
}
static inline void udc_ep0_set_UDCCS(struct pxa25x_udc *dev, u32 data)
{
udc_set_reg(dev, data, UDCCS0);
}
static inline u32 udc_ep_get_UDDR(struct pxa25x_ep *ep)
{
return udc_get_reg(ep->dev, ep->regoff_uddr);
}
static inline void udc_ep_set_UDDR(struct pxa25x_ep *ep, u32 data)
{
udc_set_reg(ep->dev, data, ep->regoff_uddr);
}
static inline u32 udc_ep_get_UBCR(struct pxa25x_ep *ep)
{
return udc_get_reg(ep->dev, ep->regoff_ubcr);
}
/*
* endpoint enable/disable
*
* we need to verify the descriptors used to enable endpoints. since pxa25x
* endpoint configurations are fixed, and are pretty much always enabled,
* there's not a lot to manage here.
*
* because pxa25x can't selectively initialize bulk (or interrupt) endpoints,
* (resetting endpoint halt and toggle), SET_INTERFACE is unusable except
* for a single interface (with only the default altsetting) and for gadget
* drivers that don't halt endpoints (not reset by set_interface). that also
* means that if you use ISO, you must violate the USB spec rule that all
* iso endpoints must be in non-default altsettings.
*/
static int pxa25x_ep_enable (struct usb_ep *_ep,
const struct usb_endpoint_descriptor *desc)
{
struct pxa25x_ep *ep;
struct pxa25x_udc *dev;
ep = container_of (_ep, struct pxa25x_ep, ep);
if (!_ep || !desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| ep->bEndpointAddress != desc->bEndpointAddress
|| ep->fifo_size < usb_endpoint_maxp (desc)) {
DMSG("%s, bad ep or descriptor\n", __func__);
return -EINVAL;
}
/* xfer types must match, except that interrupt ~= bulk */
if (ep->bmAttributes != desc->bmAttributes
&& ep->bmAttributes != USB_ENDPOINT_XFER_BULK
&& desc->bmAttributes != USB_ENDPOINT_XFER_INT) {
DMSG("%s, %s type mismatch\n", __func__, _ep->name);
return -EINVAL;
}
/* hardware _could_ do smaller, but driver doesn't */
if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
&& usb_endpoint_maxp (desc)
!= BULK_FIFO_SIZE)
|| !desc->wMaxPacketSize) {
DMSG("%s, bad %s maxpacket\n", __func__, _ep->name);
return -ERANGE;
}
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN) {
DMSG("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
ep->ep.desc = desc;
ep->stopped = 0;
ep->pio_irqs = 0;
ep->ep.maxpacket = usb_endpoint_maxp (desc);
/* flush fifo (mostly for OUT buffers) */
pxa25x_ep_fifo_flush (_ep);
/* ... reset halt state too, if we could ... */
DBG(DBG_VERBOSE, "enabled %s\n", _ep->name);
return 0;
}
static int pxa25x_ep_disable (struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
unsigned long flags;
ep = container_of (_ep, struct pxa25x_ep, ep);
if (!_ep || !ep->ep.desc) {
DMSG("%s, %s not enabled\n", __func__,
_ep ? ep->ep.name : NULL);
return -EINVAL;
}
local_irq_save(flags);
nuke (ep, -ESHUTDOWN);
/* flush fifo (mostly for IN buffers) */
pxa25x_ep_fifo_flush (_ep);
ep->ep.desc = NULL;
ep->stopped = 1;
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s disabled\n", _ep->name);
return 0;
}
/*-------------------------------------------------------------------------*/
/* for the pxa25x, these can just wrap kmalloc/kfree. gadget drivers
* must still pass correctly initialized endpoints, since other controller
* drivers may care about how it's currently set up (dma issues etc).
*/
/*
* pxa25x_ep_alloc_request - allocate a request data structure
*/
static struct usb_request *
pxa25x_ep_alloc_request (struct usb_ep *_ep, gfp_t gfp_flags)
{
struct pxa25x_request *req;
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD (&req->queue);
return &req->req;
}
/*
* pxa25x_ep_free_request - deallocate a request data structure
*/
static void
pxa25x_ep_free_request (struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa25x_request *req;
req = container_of (_req, struct pxa25x_request, req);
WARN_ON(!list_empty (&req->queue));
kfree(req);
}
/*-------------------------------------------------------------------------*/
/*
* done - retire a request; caller blocked irqs
*/
static void done(struct pxa25x_ep *ep, struct pxa25x_request *req, int status)
{
unsigned stopped = ep->stopped;
list_del_init(&req->queue);
if (likely (req->req.status == -EINPROGRESS))
req->req.status = status;
else
status = req->req.status;
if (status && status != -ESHUTDOWN)
DBG(DBG_VERBOSE, "complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
usb_gadget_giveback_request(&ep->ep, &req->req);
ep->stopped = stopped;
}
static inline void ep0_idle (struct pxa25x_udc *dev)
{
dev->ep0state = EP0_IDLE;
}
static int
write_packet(struct pxa25x_ep *ep, struct pxa25x_request *req, unsigned max)
{
u8 *buf;
unsigned length, count;
buf = req->req.buf + req->req.actual;
prefetch(buf);
/* how big will this packet be? */
length = min(req->req.length - req->req.actual, max);
req->req.actual += length;
count = length;
while (likely(count--))
udc_ep_set_UDDR(ep, *buf++);
return length;
}
/*
* write to an IN endpoint fifo, as many packets as possible.
* irqs will use this to write the rest later.
* caller guarantees at least one packet buffer is ready (or a zlp).
*/
static int
write_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
{
unsigned max;
max = usb_endpoint_maxp(ep->ep.desc);
do {
unsigned count;
int is_last, is_short;
count = write_packet(ep, req, max);
/* last packet is usually short (or a zlp) */
if (unlikely (count != max))
is_last = is_short = 1;
else {
if (likely(req->req.length != req->req.actual)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
/* interrupt/iso maxpacket may not fill the fifo */
is_short = unlikely (max < ep->fifo_size);
}
DBG(DBG_VERY_NOISY, "wrote %s %d bytes%s%s %d left %p\n",
ep->ep.name, count,
is_last ? "/L" : "", is_short ? "/S" : "",
req->req.length - req->req.actual, req);
/* let loose that packet. maybe try writing another one,
* double buffering might work. TSP, TPC, and TFS
* bit values are the same for all normal IN endpoints.
*/
udc_ep_set_UDCCS(ep, UDCCS_BI_TPC);
if (is_short)
udc_ep_set_UDCCS(ep, UDCCS_BI_TSP);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
done (ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable(ep);
return 1;
}
// TODO experiment: how robust can fifo mode tweaking be?
// double buffering is off in the default fifo mode, which
// prevents TFS from being set here.
} while (udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS);
return 0;
}
/* caller asserts req->pending (ep0 irq status nyet cleared); starts
* ep0 data stage. these chips want very simple state transitions.
*/
static inline
void ep0start(struct pxa25x_udc *dev, u32 flags, const char *tag)
{
udc_ep0_set_UDCCS(dev, flags|UDCCS0_SA|UDCCS0_OPR);
udc_set_reg(dev, USIR0, USIR0_IR0);
dev->req_pending = 0;
DBG(DBG_VERY_NOISY, "%s %s, %02x/%02x\n",
__func__, tag, udc_ep0_get_UDCCS(dev), flags);
}
static int
write_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
{
struct pxa25x_udc *dev = ep->dev;
unsigned count;
int is_short;
count = write_packet(&dev->ep[0], req, EP0_FIFO_SIZE);
ep->dev->stats.write.bytes += count;
/* last packet "must be" short (or a zlp) */
is_short = (count != EP0_FIFO_SIZE);
DBG(DBG_VERY_NOISY, "ep0in %d bytes %d left %p\n", count,
req->req.length - req->req.actual, req);
if (unlikely (is_short)) {
if (ep->dev->req_pending)
ep0start(ep->dev, UDCCS0_IPR, "short IN");
else
udc_ep0_set_UDCCS(dev, UDCCS0_IPR);
count = req->req.length;
done (ep, req, 0);
ep0_idle(ep->dev);
#ifndef CONFIG_ARCH_IXP4XX
#if 1
/* This seems to get rid of lost status irqs in some cases:
* host responds quickly, or next request involves config
* change automagic, or should have been hidden, or ...
*
* FIXME get rid of all udelays possible...
*/
if (count >= EP0_FIFO_SIZE) {
count = 100;
do {
if ((udc_ep0_get_UDCCS(dev) & UDCCS0_OPR) != 0) {
/* clear OPR, generate ack */
udc_ep0_set_UDCCS(dev, UDCCS0_OPR);
break;
}
count--;
udelay(1);
} while (count);
}
#endif
#endif
} else if (ep->dev->req_pending)
ep0start(ep->dev, 0, "IN");
return is_short;
}
/*
* read_fifo - unload packet(s) from the fifo we use for usb OUT
* transfers and put them into the request. caller should have made
* sure there's at least one packet ready.
*
* returns true if the request completed because of short packet or the
* request buffer having filled (and maybe overran till end-of-packet).
*/
static int
read_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
{
for (;;) {
u32 udccs;
u8 *buf;
unsigned bufferspace, count, is_short;
/* make sure there's a packet in the FIFO.
* UDCCS_{BO,IO}_RPC are all the same bit value.
* UDCCS_{BO,IO}_RNE are all the same bit value.
*/
udccs = udc_ep_get_UDCCS(ep);
if (unlikely ((udccs & UDCCS_BO_RPC) == 0))
break;
buf = req->req.buf + req->req.actual;
prefetchw(buf);
bufferspace = req->req.length - req->req.actual;
/* read all bytes from this packet */
if (likely (udccs & UDCCS_BO_RNE)) {
count = 1 + (0x0ff & udc_ep_get_UBCR(ep));
req->req.actual += min (count, bufferspace);
} else /* zlp */
count = 0;
is_short = (count < ep->ep.maxpacket);
DBG(DBG_VERY_NOISY, "read %s %02x, %d bytes%s req %p %d/%d\n",
ep->ep.name, udccs, count,
is_short ? "/S" : "",
req, req->req.actual, req->req.length);
while (likely (count-- != 0)) {
u8 byte = (u8) udc_ep_get_UDDR(ep);
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow %d\n",
ep->ep.name, count);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
bufferspace--;
}
}
udc_ep_set_UDCCS(ep, UDCCS_BO_RPC);
/* RPC/RSP/RNE could now reflect the other packet buffer */
/* iso is one request per packet */
if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
if (udccs & UDCCS_IO_ROF)
req->req.status = -EHOSTUNREACH;
/* more like "is_done" */
is_short = 1;
}
/* completion */
if (is_short || req->req.actual == req->req.length) {
done (ep, req, 0);
if (list_empty(&ep->queue))
pio_irq_disable(ep);
return 1;
}
/* finished that packet. the next one may be waiting... */
}
return 0;
}
/*
* special ep0 version of the above. no UBCR0 or double buffering; status
* handshaking is magic. most device protocols don't need control-OUT.
* CDC vendor commands (and RNDIS), mass storage CB/CBI, and some other
* protocols do use them.
*/
static int
read_ep0_fifo (struct pxa25x_ep *ep, struct pxa25x_request *req)
{
u8 *buf, byte;
unsigned bufferspace;
buf = req->req.buf + req->req.actual;
bufferspace = req->req.length - req->req.actual;
while (udc_ep_get_UDCCS(ep) & UDCCS0_RNE) {
byte = (u8) UDDR0;
if (unlikely (bufferspace == 0)) {
/* this happens when the driver's buffer
* is smaller than what the host sent.
* discard the extra data.
*/
if (req->req.status != -EOVERFLOW)
DMSG("%s overflow\n", ep->ep.name);
req->req.status = -EOVERFLOW;
} else {
*buf++ = byte;
req->req.actual++;
bufferspace--;
}
}
udc_ep_set_UDCCS(ep, UDCCS0_OPR | UDCCS0_IPR);
/* completion */
if (req->req.actual >= req->req.length)
return 1;
/* finished that packet. the next one may be waiting... */
return 0;
}
/*-------------------------------------------------------------------------*/
static int
pxa25x_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct pxa25x_request *req;
struct pxa25x_ep *ep;
struct pxa25x_udc *dev;
unsigned long flags;
req = container_of(_req, struct pxa25x_request, req);
if (unlikely (!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
DMSG("%s, bad params\n", __func__);
return -EINVAL;
}
ep = container_of(_ep, struct pxa25x_ep, ep);
if (unlikely(!_ep || (!ep->ep.desc && ep->ep.name != ep0name))) {
DMSG("%s, bad ep\n", __func__);
return -EINVAL;
}
dev = ep->dev;
if (unlikely (!dev->driver
|| dev->gadget.speed == USB_SPEED_UNKNOWN)) {
DMSG("%s, bogus device state\n", __func__);
return -ESHUTDOWN;
}
/* iso is always one packet per request, that's the only way
* we can report per-packet status. that also helps with dma.
*/
if (unlikely (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
&& req->req.length > usb_endpoint_maxp(ep->ep.desc)))
return -EMSGSIZE;
DBG(DBG_NOISY, "%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
local_irq_save(flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
if (list_empty(&ep->queue) && !ep->stopped) {
if (ep->ep.desc == NULL/* ep0 */) {
unsigned length = _req->length;
switch (dev->ep0state) {
case EP0_IN_DATA_PHASE:
dev->stats.write.ops++;
if (write_ep0_fifo(ep, req))
req = NULL;
break;
case EP0_OUT_DATA_PHASE:
dev->stats.read.ops++;
/* messy ... */
if (dev->req_config) {
DBG(DBG_VERBOSE, "ep0 config ack%s\n",
dev->has_cfr ? "" : " raced");
if (dev->has_cfr)
udc_set_reg(dev, UDCCFR, UDCCFR_AREN |
UDCCFR_ACM | UDCCFR_MB1);
done(ep, req, 0);
dev->ep0state = EP0_END_XFER;
local_irq_restore (flags);
return 0;
}
if (dev->req_pending)
ep0start(dev, UDCCS0_IPR, "OUT");
if (length == 0 || ((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0
&& read_ep0_fifo(ep, req))) {
ep0_idle(dev);
done(ep, req, 0);
req = NULL;
}
break;
default:
DMSG("ep0 i/o, odd state %d\n", dev->ep0state);
local_irq_restore (flags);
return -EL2HLT;
}
/* can the FIFO can satisfy the request immediately? */
} else if ((ep->bEndpointAddress & USB_DIR_IN) != 0) {
if ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) != 0
&& write_fifo(ep, req))
req = NULL;
} else if ((udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) != 0
&& read_fifo(ep, req)) {
req = NULL;
}
if (likely(req && ep->ep.desc))
pio_irq_enable(ep);
}
/* pio or dma irq handler advances the queue. */
if (likely(req != NULL))
list_add_tail(&req->queue, &ep->queue);
local_irq_restore(flags);
return 0;
}
/*
* nuke - dequeue ALL requests
*/
static void nuke(struct pxa25x_ep *ep, int status)
{
struct pxa25x_request *req;
/* called with irqs blocked */
while (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct pxa25x_request,
queue);
done(ep, req, status);
}
if (ep->ep.desc)
pio_irq_disable(ep);
}
/* dequeue JUST ONE request */
static int pxa25x_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct pxa25x_ep *ep;
struct pxa25x_request *req;
unsigned long flags;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || ep->ep.name == ep0name)
return -EINVAL;
local_irq_save(flags);
/* make sure it's actually queued on this endpoint */
list_for_each_entry (req, &ep->queue, queue) {
if (&req->req == _req)
break;
}
if (&req->req != _req) {
local_irq_restore(flags);
return -EINVAL;
}
done(ep, req, -ECONNRESET);
local_irq_restore(flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static int pxa25x_ep_set_halt(struct usb_ep *_ep, int value)
{
struct pxa25x_ep *ep;
unsigned long flags;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (unlikely (!_ep
|| (!ep->ep.desc && ep->ep.name != ep0name))
|| ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
DMSG("%s, bad ep\n", __func__);
return -EINVAL;
}
if (value == 0) {
/* this path (reset toggle+halt) is needed to implement
* SET_INTERFACE on normal hardware. but it can't be
* done from software on the PXA UDC, and the hardware
* forgets to do it as part of SET_INTERFACE automagic.
*/
DMSG("only host can clear %s halt\n", _ep->name);
return -EROFS;
}
local_irq_save(flags);
if ((ep->bEndpointAddress & USB_DIR_IN) != 0
&& ((udc_ep_get_UDCCS(ep) & UDCCS_BI_TFS) == 0
|| !list_empty(&ep->queue))) {
local_irq_restore(flags);
return -EAGAIN;
}
/* FST bit is the same for control, bulk in, bulk out, interrupt in */
udc_ep_set_UDCCS(ep, UDCCS_BI_FST|UDCCS_BI_FTF);
/* ep0 needs special care */
if (!ep->ep.desc) {
start_watchdog(ep->dev);
ep->dev->req_pending = 0;
ep->dev->ep0state = EP0_STALL;
/* and bulk/intr endpoints like dropping stalls too */
} else {
unsigned i;
for (i = 0; i < 1000; i += 20) {
if (udc_ep_get_UDCCS(ep) & UDCCS_BI_SST)
break;
udelay(20);
}
}
local_irq_restore(flags);
DBG(DBG_VERBOSE, "%s halt\n", _ep->name);
return 0;
}
static int pxa25x_ep_fifo_status(struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep) {
DMSG("%s, bad ep\n", __func__);
return -ENODEV;
}
/* pxa can't report unclaimed bytes from IN fifos */
if ((ep->bEndpointAddress & USB_DIR_IN) != 0)
return -EOPNOTSUPP;
if (ep->dev->gadget.speed == USB_SPEED_UNKNOWN
|| (udc_ep_get_UDCCS(ep) & UDCCS_BO_RFS) == 0)
return 0;
else
return (udc_ep_get_UBCR(ep) & 0xfff) + 1;
}
static void pxa25x_ep_fifo_flush(struct usb_ep *_ep)
{
struct pxa25x_ep *ep;
ep = container_of(_ep, struct pxa25x_ep, ep);
if (!_ep || ep->ep.name == ep0name || !list_empty(&ep->queue)) {
DMSG("%s, bad ep\n", __func__);
return;
}
/* toggle and halt bits stay unchanged */
/* for OUT, just read and discard the FIFO contents. */
if ((ep->bEndpointAddress & USB_DIR_IN) == 0) {
while (((udc_ep_get_UDCCS(ep)) & UDCCS_BO_RNE) != 0)
(void)udc_ep_get_UDDR(ep);
return;
}
/* most IN status is the same, but ISO can't stall */
udc_ep_set_UDCCS(ep, UDCCS_BI_TPC|UDCCS_BI_FTF|UDCCS_BI_TUR
| (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC
? 0 : UDCCS_BI_SST));
}
static struct usb_ep_ops pxa25x_ep_ops = {
.enable = pxa25x_ep_enable,
.disable = pxa25x_ep_disable,
.alloc_request = pxa25x_ep_alloc_request,
.free_request = pxa25x_ep_free_request,
.queue = pxa25x_ep_queue,
.dequeue = pxa25x_ep_dequeue,
.set_halt = pxa25x_ep_set_halt,
.fifo_status = pxa25x_ep_fifo_status,
.fifo_flush = pxa25x_ep_fifo_flush,
};
/* ---------------------------------------------------------------------------
* device-scoped parts of the api to the usb controller hardware
* ---------------------------------------------------------------------------
*/
static int pxa25x_udc_get_frame(struct usb_gadget *_gadget)
{
struct pxa25x_udc *dev;
dev = container_of(_gadget, struct pxa25x_udc, gadget);
return ((udc_get_reg(dev, UFNRH) & 0x07) << 8) |
(udc_get_reg(dev, UFNRL) & 0xff);
}
static int pxa25x_udc_wakeup(struct usb_gadget *_gadget)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
/* host may not have enabled remote wakeup */
if ((udc_ep0_get_UDCCS(udc) & UDCCS0_DRWF) == 0)
return -EHOSTUNREACH;
udc_set_mask_UDCCR(udc, UDCCR_RSM);
return 0;
}
static void stop_activity(struct pxa25x_udc *, struct usb_gadget_driver *);
static void udc_enable (struct pxa25x_udc *);
static void udc_disable(struct pxa25x_udc *);
/* We disable the UDC -- and its 48 MHz clock -- whenever it's not
* in active use.
*/
static int pullup(struct pxa25x_udc *udc)
{
int is_active = udc->vbus && udc->pullup && !udc->suspended;
DMSG("%s\n", is_active ? "active" : "inactive");
if (is_active) {
if (!udc->active) {
udc->active = 1;
/* Enable clock for USB device */
clk_enable(udc->clk);
udc_enable(udc);
}
} else {
if (udc->active) {
if (udc->gadget.speed != USB_SPEED_UNKNOWN) {
DMSG("disconnect %s\n", udc->driver
? udc->driver->driver.name
: "(no driver)");
stop_activity(udc, udc->driver);
}
udc_disable(udc);
/* Disable clock for USB device */
clk_disable(udc->clk);
udc->active = 0;
}
}
return 0;
}
/* VBUS reporting logically comes from a transceiver */
static int pxa25x_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
udc->vbus = is_active;
DMSG("vbus %s\n", is_active ? "supplied" : "inactive");
pullup(udc);
return 0;
}
/* drivers may have software control over D+ pullup */
static int pxa25x_udc_pullup(struct usb_gadget *_gadget, int is_active)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
/* not all boards support pullup control */
if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
return -EOPNOTSUPP;
udc->pullup = (is_active != 0);
pullup(udc);
return 0;
}
/* boards may consume current from VBUS, up to 100-500mA based on config.
* the 500uA suspend ceiling means that exclusively vbus-powered PXA designs
* violate USB specs.
*/
static int pxa25x_udc_vbus_draw(struct usb_gadget *_gadget, unsigned mA)
{
struct pxa25x_udc *udc;
udc = container_of(_gadget, struct pxa25x_udc, gadget);
if (!IS_ERR_OR_NULL(udc->transceiver))
return usb_phy_set_power(udc->transceiver, mA);
return -EOPNOTSUPP;
}
static int pxa25x_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver);
static int pxa25x_udc_stop(struct usb_gadget *g);
static const struct usb_gadget_ops pxa25x_udc_ops = {
.get_frame = pxa25x_udc_get_frame,
.wakeup = pxa25x_udc_wakeup,
.vbus_session = pxa25x_udc_vbus_session,
.pullup = pxa25x_udc_pullup,
.vbus_draw = pxa25x_udc_vbus_draw,
.udc_start = pxa25x_udc_start,
.udc_stop = pxa25x_udc_stop,
};
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_USB_GADGET_DEBUG_FS
static int udc_debug_show(struct seq_file *m, void *_d)
{
struct pxa25x_udc *dev = m->private;
unsigned long flags;
int i;
u32 tmp;
local_irq_save(flags);
/* basic device status */
seq_printf(m, DRIVER_DESC "\n"
"%s version: %s\nGadget driver: %s\nHost %s\n\n",
driver_name, DRIVER_VERSION SIZE_STR "(pio)",
dev->driver ? dev->driver->driver.name : "(none)",
dev->gadget.speed == USB_SPEED_FULL ? "full speed" : "disconnected");
/* registers for device and ep0 */
seq_printf(m,
"uicr %02X.%02X, usir %02X.%02x, ufnr %02X.%02X\n",
udc_get_reg(dev, UICR1), udc_get_reg(dev, UICR0),
udc_get_reg(dev, USIR1), udc_get_reg(dev, USIR0),
udc_get_reg(dev, UFNRH), udc_get_reg(dev, UFNRL));
tmp = udc_get_reg(dev, UDCCR);
seq_printf(m,
"udccr %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCR_REM) ? " rem" : "",
(tmp & UDCCR_RSTIR) ? " rstir" : "",
(tmp & UDCCR_SRM) ? " srm" : "",
(tmp & UDCCR_SUSIR) ? " susir" : "",
(tmp & UDCCR_RESIR) ? " resir" : "",
(tmp & UDCCR_RSM) ? " rsm" : "",
(tmp & UDCCR_UDA) ? " uda" : "",
(tmp & UDCCR_UDE) ? " ude" : "");
tmp = udc_ep0_get_UDCCS(dev);
seq_printf(m,
"udccs0 %02X =%s%s%s%s%s%s%s%s\n", tmp,
(tmp & UDCCS0_SA) ? " sa" : "",
(tmp & UDCCS0_RNE) ? " rne" : "",
(tmp & UDCCS0_FST) ? " fst" : "",
(tmp & UDCCS0_SST) ? " sst" : "",
(tmp & UDCCS0_DRWF) ? " dwrf" : "",
(tmp & UDCCS0_FTF) ? " ftf" : "",
(tmp & UDCCS0_IPR) ? " ipr" : "",
(tmp & UDCCS0_OPR) ? " opr" : "");
if (dev->has_cfr) {
tmp = udc_get_reg(dev, UDCCFR);
seq_printf(m,
"udccfr %02X =%s%s\n", tmp,
(tmp & UDCCFR_AREN) ? " aren" : "",
(tmp & UDCCFR_ACM) ? " acm" : "");
}
if (dev->gadget.speed != USB_SPEED_FULL || !dev->driver)
goto done;
seq_printf(m, "ep0 IN %lu/%lu, OUT %lu/%lu\nirqs %lu\n\n",
dev->stats.write.bytes, dev->stats.write.ops,
dev->stats.read.bytes, dev->stats.read.ops,
dev->stats.irqs);
/* dump endpoint queues */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep [i];
struct pxa25x_request *req;
if (i != 0) {
const struct usb_endpoint_descriptor *desc;
desc = ep->ep.desc;
if (!desc)
continue;
tmp = udc_ep_get_UDCCS(&dev->ep[i]);
seq_printf(m,
"%s max %d %s udccs %02x irqs %lu\n",
ep->ep.name, usb_endpoint_maxp(desc),
"pio", tmp, ep->pio_irqs);
/* TODO translate all five groups of udccs bits! */
} else /* ep0 should only have one transfer queued */
seq_printf(m, "ep0 max 16 pio irqs %lu\n",
ep->pio_irqs);
if (list_empty(&ep->queue)) {
seq_printf(m, "\t(nothing queued)\n");
continue;
}
list_for_each_entry(req, &ep->queue, queue) {
seq_printf(m,
"\treq %p len %d/%d buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
}
}
done:
local_irq_restore(flags);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(udc_debug);
#define create_debug_files(dev) \
do { \
dev->debugfs_udc = debugfs_create_file(dev->gadget.name, \
S_IRUGO, NULL, dev, &udc_debug_fops); \
} while (0)
#define remove_debug_files(dev) debugfs_remove(dev->debugfs_udc)
#else /* !CONFIG_USB_GADGET_DEBUG_FILES */
#define create_debug_files(dev) do {} while (0)
#define remove_debug_files(dev) do {} while (0)
#endif /* CONFIG_USB_GADGET_DEBUG_FILES */
/*-------------------------------------------------------------------------*/
/*
* udc_disable - disable USB device controller
*/
static void udc_disable(struct pxa25x_udc *dev)
{
/* block all irqs */
udc_set_mask_UDCCR(dev, UDCCR_SRM|UDCCR_REM);
udc_set_reg(dev, UICR0, 0xff);
udc_set_reg(dev, UICR1, 0xff);
udc_set_reg(dev, UFNRH, UFNRH_SIM);
/* if hardware supports it, disconnect from usb */
pullup_off();
udc_clear_mask_UDCCR(dev, UDCCR_UDE);
ep0_idle (dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
}
/*
* udc_reinit - initialize software state
*/
static void udc_reinit(struct pxa25x_udc *dev)
{
u32 i;
/* device/ep0 records init */
INIT_LIST_HEAD (&dev->gadget.ep_list);
INIT_LIST_HEAD (&dev->gadget.ep0->ep_list);
dev->ep0state = EP0_IDLE;
dev->gadget.quirk_altset_not_supp = 1;
/* basic endpoint records init */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep[i];
if (i != 0)
list_add_tail (&ep->ep.ep_list, &dev->gadget.ep_list);
ep->ep.desc = NULL;
ep->stopped = 0;
INIT_LIST_HEAD (&ep->queue);
ep->pio_irqs = 0;
usb_ep_set_maxpacket_limit(&ep->ep, ep->ep.maxpacket);
}
/* the rest was statically initialized, and is read-only */
}
/* until it's enabled, this UDC should be completely invisible
* to any USB host.
*/
static void udc_enable (struct pxa25x_udc *dev)
{
udc_clear_mask_UDCCR(dev, UDCCR_UDE);
/* try to clear these bits before we enable the udc */
udc_ack_int_UDCCR(dev, UDCCR_SUSIR|/*UDCCR_RSTIR|*/UDCCR_RESIR);
ep0_idle(dev);
dev->gadget.speed = USB_SPEED_UNKNOWN;
dev->stats.irqs = 0;
/*
* sequence taken from chapter 12.5.10, PXA250 AppProcDevManual:
* - enable UDC
* - if RESET is already in progress, ack interrupt
* - unmask reset interrupt
*/
udc_set_mask_UDCCR(dev, UDCCR_UDE);
if (!(udc_get_reg(dev, UDCCR) & UDCCR_UDA))
udc_ack_int_UDCCR(dev, UDCCR_RSTIR);
if (dev->has_cfr /* UDC_RES2 is defined */) {
/* pxa255 (a0+) can avoid a set_config race that could
* prevent gadget drivers from configuring correctly
*/
udc_set_reg(dev, UDCCFR, UDCCFR_ACM | UDCCFR_MB1);
} else {
/* "USB test mode" for pxa250 errata 40-42 (stepping a0, a1)
* which could result in missing packets and interrupts.
* supposedly one bit per endpoint, controlling whether it
* double buffers or not; ACM/AREN bits fit into the holes.
* zero bits (like USIR0_IRx) disable double buffering.
*/
udc_set_reg(dev, UDC_RES1, 0x00);
udc_set_reg(dev, UDC_RES2, 0x00);
}
/* enable suspend/resume and reset irqs */
udc_clear_mask_UDCCR(dev, UDCCR_SRM | UDCCR_REM);
/* enable ep0 irqs */
udc_set_reg(dev, UICR0, udc_get_reg(dev, UICR0) & ~UICR0_IM0);
/* if hardware supports it, pullup D+ and wait for reset */
pullup_on();
}
/* when a driver is successfully registered, it will receive
* control requests including set_configuration(), which enables
* non-control requests. then usb traffic follows until a
* disconnect is reported. then a host may connect again, or
* the driver might get unbound.
*/
static int pxa25x_udc_start(struct usb_gadget *g,
struct usb_gadget_driver *driver)
{
struct pxa25x_udc *dev = to_pxa25x(g);
int retval;
/* first hook up the driver ... */
dev->driver = driver;
dev->pullup = 1;
/* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
*/
/* connect to bus through transceiver */
if (!IS_ERR_OR_NULL(dev->transceiver)) {
retval = otg_set_peripheral(dev->transceiver->otg,
&dev->gadget);
if (retval)
goto bind_fail;
}
dump_state(dev);
return 0;
bind_fail:
return retval;
}
static void
reset_gadget(struct pxa25x_udc *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
del_timer_sync(&dev->timer);
/* report reset; the driver is already quiesced */
if (driver)
usb_gadget_udc_reset(&dev->gadget, driver);
/* re-init driver-visible data structures */
udc_reinit(dev);
}
static void
stop_activity(struct pxa25x_udc *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect drivers more than once */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = NULL;
dev->gadget.speed = USB_SPEED_UNKNOWN;
/* prevent new request submissions, kill any outstanding requests */
for (i = 0; i < PXA_UDC_NUM_ENDPOINTS; i++) {
struct pxa25x_ep *ep = &dev->ep[i];
ep->stopped = 1;
nuke(ep, -ESHUTDOWN);
}
del_timer_sync(&dev->timer);
/* report disconnect; the driver is already quiesced */
if (driver)
driver->disconnect(&dev->gadget);
/* re-init driver-visible data structures */
udc_reinit(dev);
}
static int pxa25x_udc_stop(struct usb_gadget*g)
{
struct pxa25x_udc *dev = to_pxa25x(g);
local_irq_disable();
dev->pullup = 0;
stop_activity(dev, NULL);
local_irq_enable();
if (!IS_ERR_OR_NULL(dev->transceiver))
(void) otg_set_peripheral(dev->transceiver->otg, NULL);
dev->driver = NULL;
dump_state(dev);
return 0;
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_ARCH_LUBBOCK
/* Lubbock has separate connect and disconnect irqs. More typical designs
* use one GPIO as the VBUS IRQ, and another to control the D+ pullup.
*/
static irqreturn_t
lubbock_vbus_irq(int irq, void *_dev)
{
struct pxa25x_udc *dev = _dev;
int vbus;
dev->stats.irqs++;
switch (irq) {
case LUBBOCK_USB_IRQ:
vbus = 1;
disable_irq(LUBBOCK_USB_IRQ);
enable_irq(LUBBOCK_USB_DISC_IRQ);
break;
case LUBBOCK_USB_DISC_IRQ:
vbus = 0;
disable_irq(LUBBOCK_USB_DISC_IRQ);
enable_irq(LUBBOCK_USB_IRQ);
break;
default:
return IRQ_NONE;
}
pxa25x_udc_vbus_session(&dev->gadget, vbus);
return IRQ_HANDLED;
}
#endif
/*-------------------------------------------------------------------------*/
static inline void clear_ep_state (struct pxa25x_udc *dev)
{
unsigned i;
/* hardware SET_{CONFIGURATION,INTERFACE} automagic resets endpoint
* fifos, and pending transactions mustn't be continued in any case.
*/
for (i = 1; i < PXA_UDC_NUM_ENDPOINTS; i++)
nuke(&dev->ep[i], -ECONNABORTED);
}
static void udc_watchdog(struct timer_list *t)
{
struct pxa25x_udc *dev = from_timer(dev, t, timer);
local_irq_disable();
if (dev->ep0state == EP0_STALL
&& (udc_ep0_get_UDCCS(dev) & UDCCS0_FST) == 0
&& (udc_ep0_get_UDCCS(dev) & UDCCS0_SST) == 0) {
udc_ep0_set_UDCCS(dev, UDCCS0_FST|UDCCS0_FTF);
DBG(DBG_VERBOSE, "ep0 re-stall\n");
start_watchdog(dev);
}
local_irq_enable();
}
static void handle_ep0 (struct pxa25x_udc *dev)
{
u32 udccs0 = udc_ep0_get_UDCCS(dev);
struct pxa25x_ep *ep = &dev->ep [0];
struct pxa25x_request *req;
union {
struct usb_ctrlrequest r;
u8 raw [8];
u32 word [2];
} u;
if (list_empty(&ep->queue))
req = NULL;
else
req = list_entry(ep->queue.next, struct pxa25x_request, queue);
/* clear stall status */
if (udccs0 & UDCCS0_SST) {
nuke(ep, -EPIPE);
udc_ep0_set_UDCCS(dev, UDCCS0_SST);
del_timer(&dev->timer);
ep0_idle(dev);
}
/* previous request unfinished? non-error iff back-to-back ... */
if ((udccs0 & UDCCS0_SA) != 0 && dev->ep0state != EP0_IDLE) {
nuke(ep, 0);
del_timer(&dev->timer);
ep0_idle(dev);
}
switch (dev->ep0state) {
case EP0_IDLE:
/* late-breaking status? */
udccs0 = udc_ep0_get_UDCCS(dev);
/* start control request? */
if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))
== (UDCCS0_OPR|UDCCS0_SA|UDCCS0_RNE))) {
int i;
nuke (ep, -EPROTO);
/* read SETUP packet */
for (i = 0; i < 8; i++) {
if (unlikely(!(udc_ep0_get_UDCCS(dev) & UDCCS0_RNE))) {
bad_setup:
DMSG("SETUP %d!\n", i);
goto stall;
}
u.raw [i] = (u8) UDDR0;
}
if (unlikely((udc_ep0_get_UDCCS(dev) & UDCCS0_RNE) != 0))
goto bad_setup;
got_setup:
DBG(DBG_VERBOSE, "SETUP %02x.%02x v%04x i%04x l%04x\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu(u.r.wValue),
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wLength));
/* cope with automagic for some standard requests. */
dev->req_std = (u.r.bRequestType & USB_TYPE_MASK)
== USB_TYPE_STANDARD;
dev->req_config = 0;
dev->req_pending = 1;
switch (u.r.bRequest) {
/* hardware restricts gadget drivers here! */
case USB_REQ_SET_CONFIGURATION:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
/* reflect hardware's automagic
* up to the gadget driver.
*/
config_change:
dev->req_config = 1;
clear_ep_state(dev);
/* if !has_cfr, there's no synch
* else use AREN (later) not SA|OPR
* USIR0_IR0 acts edge sensitive
*/
}
break;
/* ... and here, even more ... */
case USB_REQ_SET_INTERFACE:
if (u.r.bRequestType == USB_RECIP_INTERFACE) {
/* udc hardware is broken by design:
* - altsetting may only be zero;
* - hw resets all interfaces' eps;
* - ep reset doesn't include halt(?).
*/
DMSG("broken set_interface (%d/%d)\n",
le16_to_cpu(u.r.wIndex),
le16_to_cpu(u.r.wValue));
goto config_change;
}
break;
/* hardware was supposed to hide this */
case USB_REQ_SET_ADDRESS:
if (u.r.bRequestType == USB_RECIP_DEVICE) {
ep0start(dev, 0, "address");
return;
}
break;
}
if (u.r.bRequestType & USB_DIR_IN)
dev->ep0state = EP0_IN_DATA_PHASE;
else
dev->ep0state = EP0_OUT_DATA_PHASE;
i = dev->driver->setup(&dev->gadget, &u.r);
if (i < 0) {
/* hardware automagic preventing STALL... */
if (dev->req_config) {
/* hardware sometimes neglects to tell
* tell us about config change events,
* so later ones may fail...
*/
WARNING("config change %02x fail %d?\n",
u.r.bRequest, i);
return;
/* TODO experiment: if has_cfr,
* hardware didn't ACK; maybe we
* could actually STALL!
*/
}
DBG(DBG_VERBOSE, "protocol STALL, "
"%02x err %d\n", udc_ep0_get_UDCCS(dev), i);
stall:
/* the watchdog timer helps deal with cases
* where udc seems to clear FST wrongly, and
* then NAKs instead of STALLing.
*/
ep0start(dev, UDCCS0_FST|UDCCS0_FTF, "stall");
start_watchdog(dev);
dev->ep0state = EP0_STALL;
/* deferred i/o == no response yet */
} else if (dev->req_pending) {
if (likely(dev->ep0state == EP0_IN_DATA_PHASE
|| dev->req_std || u.r.wLength))
ep0start(dev, 0, "defer");
else
ep0start(dev, UDCCS0_IPR, "defer/IPR");
}
/* expect at least one data or status stage irq */
return;
} else if (likely((udccs0 & (UDCCS0_OPR|UDCCS0_SA))
== (UDCCS0_OPR|UDCCS0_SA))) {
unsigned i;
/* pxa210/250 erratum 131 for B0/B1 says RNE lies.
* still observed on a pxa255 a0.
*/
DBG(DBG_VERBOSE, "e131\n");
nuke(ep, -EPROTO);
/* read SETUP data, but don't trust it too much */
for (i = 0; i < 8; i++)
u.raw [i] = (u8) UDDR0;
if ((u.r.bRequestType & USB_RECIP_MASK)
> USB_RECIP_OTHER)
goto stall;
if (u.word [0] == 0 && u.word [1] == 0)
goto stall;
goto got_setup;
} else {
/* some random early IRQ:
* - we acked FST
* - IPR cleared
* - OPR got set, without SA (likely status stage)
*/
udc_ep0_set_UDCCS(dev, udccs0 & (UDCCS0_SA|UDCCS0_OPR));
}
break;
case EP0_IN_DATA_PHASE: /* GET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
udc_ep0_set_UDCCS(dev, UDCCS0_OPR|UDCCS0_FTF);
DBG(DBG_VERBOSE, "ep0in premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
} else /* irq was IPR clearing */ {
if (req) {
/* this IN packet might finish the request */
(void) write_ep0_fifo(ep, req);
} /* else IN token before response was written */
}
break;
case EP0_OUT_DATA_PHASE: /* SET_DESCRIPTOR etc */
if (udccs0 & UDCCS0_OPR) {
if (req) {
/* this OUT packet might finish the request */
if (read_ep0_fifo(ep, req))
done(ep, req, 0);
/* else more OUT packets expected */
} /* else OUT token before read was issued */
} else /* irq was IPR clearing */ {
DBG(DBG_VERBOSE, "ep0out premature status\n");
if (req)
done(ep, req, 0);
ep0_idle(dev);
}
break;
case EP0_END_XFER:
if (req)
done(ep, req, 0);
/* ack control-IN status (maybe in-zlp was skipped)
* also appears after some config change events.
*/
if (udccs0 & UDCCS0_OPR)
udc_ep0_set_UDCCS(dev, UDCCS0_OPR);
ep0_idle(dev);
break;
case EP0_STALL:
udc_ep0_set_UDCCS(dev, UDCCS0_FST);
break;
}
udc_set_reg(dev, USIR0, USIR0_IR0);
}
static void handle_ep(struct pxa25x_ep *ep)
{
struct pxa25x_request *req;
int is_in = ep->bEndpointAddress & USB_DIR_IN;
int completed;
u32 udccs, tmp;
do {
completed = 0;
if (likely (!list_empty(&ep->queue)))
req = list_entry(ep->queue.next,
struct pxa25x_request, queue);
else
req = NULL;
// TODO check FST handling
udccs = udc_ep_get_UDCCS(ep);
if (unlikely(is_in)) { /* irq from TPC, SST, or (ISO) TUR */
tmp = UDCCS_BI_TUR;
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp |= UDCCS_BI_SST;
tmp &= udccs;
if (likely (tmp))
udc_ep_set_UDCCS(ep, tmp);
if (req && likely ((udccs & UDCCS_BI_TFS) != 0))
completed = write_fifo(ep, req);
} else { /* irq from RPC (or for ISO, ROF) */
if (likely(ep->bmAttributes == USB_ENDPOINT_XFER_BULK))
tmp = UDCCS_BO_SST | UDCCS_BO_DME;
else
tmp = UDCCS_IO_ROF | UDCCS_IO_DME;
tmp &= udccs;
if (likely(tmp))
udc_ep_set_UDCCS(ep, tmp);
/* fifos can hold packets, ready for reading... */
if (likely(req)) {
completed = read_fifo(ep, req);
} else
pio_irq_disable(ep);
}
ep->pio_irqs++;
} while (completed);
}
/*
* pxa25x_udc_irq - interrupt handler
*
* avoid delays in ep0 processing. the control handshaking isn't always
* under software control (pxa250c0 and the pxa255 are better), and delays
* could cause usb protocol errors.
*/
static irqreturn_t
pxa25x_udc_irq(int irq, void *_dev)
{
struct pxa25x_udc *dev = _dev;
int handled;
dev->stats.irqs++;
do {
u32 udccr = udc_get_reg(dev, UDCCR);
handled = 0;
/* SUSpend Interrupt Request */
if (unlikely(udccr & UDCCR_SUSIR)) {
udc_ack_int_UDCCR(dev, UDCCR_SUSIR);
handled = 1;
DBG(DBG_VERBOSE, "USB suspend\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->suspend)
dev->driver->suspend(&dev->gadget);
ep0_idle (dev);
}
/* RESume Interrupt Request */
if (unlikely(udccr & UDCCR_RESIR)) {
udc_ack_int_UDCCR(dev, UDCCR_RESIR);
handled = 1;
DBG(DBG_VERBOSE, "USB resume\n");
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume)
dev->driver->resume(&dev->gadget);
}
/* ReSeT Interrupt Request - USB reset */
if (unlikely(udccr & UDCCR_RSTIR)) {
udc_ack_int_UDCCR(dev, UDCCR_RSTIR);
handled = 1;
if ((udc_get_reg(dev, UDCCR) & UDCCR_UDA) == 0) {
DBG(DBG_VERBOSE, "USB reset start\n");
/* reset driver and endpoints,
* in case that's not yet done
*/
reset_gadget(dev, dev->driver);
} else {
DBG(DBG_VERBOSE, "USB reset end\n");
dev->gadget.speed = USB_SPEED_FULL;
memset(&dev->stats, 0, sizeof dev->stats);
/* driver and endpoints are still reset */
}
} else {
u32 usir0 = udc_get_reg(dev, USIR0) &
~udc_get_reg(dev, UICR0);
u32 usir1 = udc_get_reg(dev, USIR1) &
~udc_get_reg(dev, UICR1);
int i;
if (unlikely (!usir0 && !usir1))
continue;
DBG(DBG_VERY_NOISY, "irq %02x.%02x\n", usir1, usir0);
/* control traffic */
if (usir0 & USIR0_IR0) {
dev->ep[0].pio_irqs++;
handle_ep0(dev);
handled = 1;
}
/* endpoint data transfers */
for (i = 0; i < 8; i++) {
u32 tmp = 1 << i;
if (i && (usir0 & tmp)) {
handle_ep(&dev->ep[i]);
udc_set_reg(dev, USIR0,
udc_get_reg(dev, USIR0) | tmp);
handled = 1;
}
#ifndef CONFIG_USB_PXA25X_SMALL
if (usir1 & tmp) {
handle_ep(&dev->ep[i+8]);
udc_set_reg(dev, USIR1,
udc_get_reg(dev, USIR1) | tmp);
handled = 1;
}
#endif
}
}
/* we could also ask for 1 msec SOF (SIR) interrupts */
} while (handled);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
static void nop_release (struct device *dev)
{
DMSG("%s %s\n", __func__, dev_name(dev));
}
/* this uses load-time allocation and initialization (instead of
* doing it at run-time) to save code, eliminate fault paths, and
* be more obviously correct.
*/
static struct pxa25x_udc memory = {
.gadget = {
.ops = &pxa25x_udc_ops,
.ep0 = &memory.ep[0].ep,
.name = driver_name,
.dev = {
.init_name = "gadget",
.release = nop_release,
},
},
/* control endpoint */
.ep[0] = {
.ep = {
.name = ep0name,
.ops = &pxa25x_ep_ops,
.maxpacket = EP0_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL,
USB_EP_CAPS_DIR_ALL),
},
.dev = &memory,
.regoff_udccs = UDCCS0,
.regoff_uddr = UDDR0,
},
/* first group of endpoints */
.ep[1] = {
.ep = {
.name = "ep1in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 1,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS1,
.regoff_uddr = UDDR1,
},
.ep[2] = {
.ep = {
.name = "ep2out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 2,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS2,
.regoff_ubcr = UBCR2,
.regoff_uddr = UDDR2,
},
#ifndef CONFIG_USB_PXA25X_SMALL
.ep[3] = {
.ep = {
.name = "ep3in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 3,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS3,
.regoff_uddr = UDDR3,
},
.ep[4] = {
.ep = {
.name = "ep4out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 4,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS4,
.regoff_ubcr = UBCR4,
.regoff_uddr = UDDR4,
},
.ep[5] = {
.ep = {
.name = "ep5in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
.caps = USB_EP_CAPS(0, 0),
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 5,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.regoff_udccs = UDCCS5,
.regoff_uddr = UDDR5,
},
/* second group of endpoints */
.ep[6] = {
.ep = {
.name = "ep6in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 6,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS6,
.regoff_uddr = UDDR6,
},
.ep[7] = {
.ep = {
.name = "ep7out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 7,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS7,
.regoff_ubcr = UBCR7,
.regoff_uddr = UDDR7,
},
.ep[8] = {
.ep = {
.name = "ep8in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 8,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS8,
.regoff_uddr = UDDR8,
},
.ep[9] = {
.ep = {
.name = "ep9out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 9,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS9,
.regoff_ubcr = UBCR9,
.regoff_uddr = UDDR9,
},
.ep[10] = {
.ep = {
.name = "ep10in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
.caps = USB_EP_CAPS(0, 0),
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 10,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.regoff_udccs = UDCCS10,
.regoff_uddr = UDDR10,
},
/* third group of endpoints */
.ep[11] = {
.ep = {
.name = "ep11in-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 11,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS11,
.regoff_uddr = UDDR11,
},
.ep[12] = {
.ep = {
.name = "ep12out-bulk",
.ops = &pxa25x_ep_ops,
.maxpacket = BULK_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = BULK_FIFO_SIZE,
.bEndpointAddress = 12,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.regoff_udccs = UDCCS12,
.regoff_ubcr = UBCR12,
.regoff_uddr = UDDR12,
},
.ep[13] = {
.ep = {
.name = "ep13in-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_IN),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 13,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS13,
.regoff_uddr = UDDR13,
},
.ep[14] = {
.ep = {
.name = "ep14out-iso",
.ops = &pxa25x_ep_ops,
.maxpacket = ISO_FIFO_SIZE,
.caps = USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO,
USB_EP_CAPS_DIR_OUT),
},
.dev = &memory,
.fifo_size = ISO_FIFO_SIZE,
.bEndpointAddress = 14,
.bmAttributes = USB_ENDPOINT_XFER_ISOC,
.regoff_udccs = UDCCS14,
.regoff_ubcr = UBCR14,
.regoff_uddr = UDDR14,
},
.ep[15] = {
.ep = {
.name = "ep15in-int",
.ops = &pxa25x_ep_ops,
.maxpacket = INT_FIFO_SIZE,
.caps = USB_EP_CAPS(0, 0),
},
.dev = &memory,
.fifo_size = INT_FIFO_SIZE,
.bEndpointAddress = USB_DIR_IN | 15,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.regoff_udccs = UDCCS15,
.regoff_uddr = UDDR15,
},
#endif /* !CONFIG_USB_PXA25X_SMALL */
};
#define CP15R0_VENDOR_MASK 0xffffe000
#if defined(CONFIG_ARCH_PXA)
#define CP15R0_XSCALE_VALUE 0x69052000 /* intel/arm/xscale */
#elif defined(CONFIG_ARCH_IXP4XX)
#define CP15R0_XSCALE_VALUE 0x69054000 /* intel/arm/ixp4xx */
#endif
#define CP15R0_PROD_MASK 0x000003f0
#define PXA25x 0x00000100 /* and PXA26x */
#define PXA210 0x00000120
#define CP15R0_REV_MASK 0x0000000f
#define CP15R0_PRODREV_MASK (CP15R0_PROD_MASK | CP15R0_REV_MASK)
#define PXA255_A0 0x00000106 /* or PXA260_B1 */
#define PXA250_C0 0x00000105 /* or PXA26x_B0 */
#define PXA250_B2 0x00000104
#define PXA250_B1 0x00000103 /* or PXA260_A0 */
#define PXA250_B0 0x00000102
#define PXA250_A1 0x00000101
#define PXA250_A0 0x00000100
#define PXA210_C0 0x00000125
#define PXA210_B2 0x00000124
#define PXA210_B1 0x00000123
#define PXA210_B0 0x00000122
#define IXP425_A0 0x000001c1
#define IXP425_B0 0x000001f1
#define IXP465_AD 0x00000200
/*
* probe - binds to the platform device
*/
static int pxa25x_udc_probe(struct platform_device *pdev)
{
struct pxa25x_udc *dev = &memory;
int retval, irq;
u32 chiprev;
pr_info("%s: version %s\n", driver_name, DRIVER_VERSION);
/* insist on Intel/ARM/XScale */
asm("mrc%? p15, 0, %0, c0, c0" : "=r" (chiprev));
if ((chiprev & CP15R0_VENDOR_MASK) != CP15R0_XSCALE_VALUE) {
pr_err("%s: not XScale!\n", driver_name);
return -ENODEV;
}
/* trigger chiprev-specific logic */
switch (chiprev & CP15R0_PRODREV_MASK) {
#if defined(CONFIG_ARCH_PXA)
case PXA255_A0:
dev->has_cfr = 1;
break;
case PXA250_A0:
case PXA250_A1:
/* A0/A1 "not released"; ep 13, 15 unusable */
/* fall through */
case PXA250_B2: case PXA210_B2:
case PXA250_B1: case PXA210_B1:
case PXA250_B0: case PXA210_B0:
/* OUT-DMA is broken ... */
/* fall through */
case PXA250_C0: case PXA210_C0:
break;
#elif defined(CONFIG_ARCH_IXP4XX)
case IXP425_A0:
case IXP425_B0:
case IXP465_AD:
dev->has_cfr = 1;
break;
#endif
default:
pr_err("%s: unrecognized processor: %08x\n",
driver_name, chiprev);
/* iop3xx, ixp4xx, ... */
return -ENODEV;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return -ENODEV;
dev->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(dev->regs))
return PTR_ERR(dev->regs);
dev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dev->clk))
return PTR_ERR(dev->clk);
pr_debug("%s: IRQ %d%s%s\n", driver_name, irq,
dev->has_cfr ? "" : " (!cfr)",
SIZE_STR "(pio)"
);
/* other non-static parts of init */
dev->dev = &pdev->dev;
dev->mach = dev_get_platdata(&pdev->dev);
dev->transceiver = devm_usb_get_phy(&pdev->dev, USB_PHY_TYPE_USB2);
if (gpio_is_valid(dev->mach->gpio_pullup)) {
retval = devm_gpio_request(&pdev->dev, dev->mach->gpio_pullup,
"pca25x_udc GPIO PULLUP");
if (retval) {
dev_dbg(&pdev->dev,
"can't get pullup gpio %d, err: %d\n",
dev->mach->gpio_pullup, retval);
goto err;
}
gpio_direction_output(dev->mach->gpio_pullup, 0);
}
timer_setup(&dev->timer, udc_watchdog, 0);
the_controller = dev;
platform_set_drvdata(pdev, dev);
udc_disable(dev);
udc_reinit(dev);
dev->vbus = 0;
/* irq setup after old hardware state is cleaned up */
retval = devm_request_irq(&pdev->dev, irq, pxa25x_udc_irq, 0,
driver_name, dev);
if (retval != 0) {
pr_err("%s: can't get irq %d, err %d\n",
driver_name, irq, retval);
goto err;
}
dev->got_irq = 1;
#ifdef CONFIG_ARCH_LUBBOCK
if (machine_is_lubbock()) {
retval = devm_request_irq(&pdev->dev, LUBBOCK_USB_DISC_IRQ,
lubbock_vbus_irq, 0, driver_name,
dev);
if (retval != 0) {
pr_err("%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_DISC_IRQ, retval);
goto err;
}
retval = devm_request_irq(&pdev->dev, LUBBOCK_USB_IRQ,
lubbock_vbus_irq, 0, driver_name,
dev);
if (retval != 0) {
pr_err("%s: can't get irq %i, err %d\n",
driver_name, LUBBOCK_USB_IRQ, retval);
goto err;
}
} else
#endif
create_debug_files(dev);
retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
if (!retval)
return retval;
remove_debug_files(dev);
err:
if (!IS_ERR_OR_NULL(dev->transceiver))
dev->transceiver = NULL;
return retval;
}
static void pxa25x_udc_shutdown(struct platform_device *_dev)
{
pullup_off();
}
static int pxa25x_udc_remove(struct platform_device *pdev)
{
struct pxa25x_udc *dev = platform_get_drvdata(pdev);
if (dev->driver)
return -EBUSY;
usb_del_gadget_udc(&dev->gadget);
dev->pullup = 0;
pullup(dev);
remove_debug_files(dev);
if (!IS_ERR_OR_NULL(dev->transceiver))
dev->transceiver = NULL;
the_controller = NULL;
return 0;
}
/*-------------------------------------------------------------------------*/
#ifdef CONFIG_PM
/* USB suspend (controlled by the host) and system suspend (controlled
* by the PXA) don't necessarily work well together. If USB is active,
* the 48 MHz clock is required; so the system can't enter 33 MHz idle
* mode, or any deeper PM saving state.
*
* For now, we punt and forcibly disconnect from the USB host when PXA
* enters any suspend state. While we're disconnected, we always disable
* the 48MHz USB clock ... allowing PXA sleep and/or 33 MHz idle states.
* Boards without software pullup control shouldn't use those states.
* VBUS IRQs should probably be ignored so that the PXA device just acts
* "dead" to USB hosts until system resume.
*/
static int pxa25x_udc_suspend(struct platform_device *dev, pm_message_t state)
{
struct pxa25x_udc *udc = platform_get_drvdata(dev);
unsigned long flags;
if (!gpio_is_valid(udc->mach->gpio_pullup) && !udc->mach->udc_command)
WARNING("USB host won't detect disconnect!\n");
udc->suspended = 1;
local_irq_save(flags);
pullup(udc);
local_irq_restore(flags);
return 0;
}
static int pxa25x_udc_resume(struct platform_device *dev)
{
struct pxa25x_udc *udc = platform_get_drvdata(dev);
unsigned long flags;
udc->suspended = 0;
local_irq_save(flags);
pullup(udc);
local_irq_restore(flags);
return 0;
}
#else
#define pxa25x_udc_suspend NULL
#define pxa25x_udc_resume NULL
#endif
/*-------------------------------------------------------------------------*/
static struct platform_driver udc_driver = {
.shutdown = pxa25x_udc_shutdown,
.probe = pxa25x_udc_probe,
.remove = pxa25x_udc_remove,
.suspend = pxa25x_udc_suspend,
.resume = pxa25x_udc_resume,
.driver = {
.name = "pxa25x-udc",
},
};
module_platform_driver(udc_driver);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR("Frank Becker, Robert Schwebel, David Brownell");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:pxa25x-udc");