mirror of https://gitee.com/openkylin/linux.git
2560 lines
63 KiB
C
2560 lines
63 KiB
C
/*
|
|
* Copyright 2017 ATMEL
|
|
* Copyright 2017 Free Electrons
|
|
*
|
|
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
*
|
|
* Derived from the atmel_nand.c driver which contained the following
|
|
* copyrights:
|
|
*
|
|
* Copyright 2003 Rick Bronson
|
|
*
|
|
* Derived from drivers/mtd/nand/autcpu12.c
|
|
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
|
|
*
|
|
* Derived from drivers/mtd/spia.c
|
|
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
|
|
*
|
|
*
|
|
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
|
|
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
|
|
*
|
|
* Derived from Das U-Boot source code
|
|
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
|
|
* Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
|
|
*
|
|
* Add Programmable Multibit ECC support for various AT91 SoC
|
|
* Copyright 2012 ATMEL, Hong Xu
|
|
*
|
|
* Add Nand Flash Controller support for SAMA5 SoC
|
|
* Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* A few words about the naming convention in this file. This convention
|
|
* applies to structure and function names.
|
|
*
|
|
* Prefixes:
|
|
*
|
|
* - atmel_nand_: all generic structures/functions
|
|
* - atmel_smc_nand_: all structures/functions specific to the SMC interface
|
|
* (at91sam9 and avr32 SoCs)
|
|
* - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
|
|
* (sama5 SoCs and later)
|
|
* - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
|
|
* that is available in the HSMC block
|
|
* - <soc>_nand_: all SoC specific structures/functions
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/genalloc.h>
|
|
#include <linux/gpio.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/mfd/syscon.h>
|
|
#include <linux/mfd/syscon/atmel-matrix.h>
|
|
#include <linux/mfd/syscon/atmel-smc.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/regmap.h>
|
|
|
|
#include "pmecc.h"
|
|
|
|
#define ATMEL_HSMC_NFC_CFG 0x0
|
|
#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
|
|
#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
|
|
#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
|
|
#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
|
|
#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
|
|
#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
|
|
#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
|
|
#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
|
|
#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
|
|
#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
|
|
|
|
#define ATMEL_HSMC_NFC_CTRL 0x4
|
|
#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
|
|
#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
|
|
|
|
#define ATMEL_HSMC_NFC_SR 0x8
|
|
#define ATMEL_HSMC_NFC_IER 0xc
|
|
#define ATMEL_HSMC_NFC_IDR 0x10
|
|
#define ATMEL_HSMC_NFC_IMR 0x14
|
|
#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
|
|
#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
|
|
#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
|
|
#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
|
|
#define ATMEL_HSMC_NFC_SR_WR BIT(11)
|
|
#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
|
|
#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
|
|
#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
|
|
#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
|
|
#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
|
|
#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
|
|
#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
|
|
#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
|
|
ATMEL_HSMC_NFC_SR_UNDEF | \
|
|
ATMEL_HSMC_NFC_SR_AWB | \
|
|
ATMEL_HSMC_NFC_SR_NFCASE)
|
|
#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
|
|
|
|
#define ATMEL_HSMC_NFC_ADDR 0x18
|
|
#define ATMEL_HSMC_NFC_BANK 0x1c
|
|
|
|
#define ATMEL_NFC_MAX_RB_ID 7
|
|
|
|
#define ATMEL_NFC_SRAM_SIZE 0x2400
|
|
|
|
#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
|
|
#define ATMEL_NFC_VCMD2 BIT(18)
|
|
#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
|
|
#define ATMEL_NFC_CSID(cs) ((cs) << 22)
|
|
#define ATMEL_NFC_DATAEN BIT(25)
|
|
#define ATMEL_NFC_NFCWR BIT(26)
|
|
|
|
#define ATMEL_NFC_MAX_ADDR_CYCLES 5
|
|
|
|
#define ATMEL_NAND_ALE_OFFSET BIT(21)
|
|
#define ATMEL_NAND_CLE_OFFSET BIT(22)
|
|
|
|
#define DEFAULT_TIMEOUT_MS 1000
|
|
#define MIN_DMA_LEN 128
|
|
|
|
enum atmel_nand_rb_type {
|
|
ATMEL_NAND_NO_RB,
|
|
ATMEL_NAND_NATIVE_RB,
|
|
ATMEL_NAND_GPIO_RB,
|
|
};
|
|
|
|
struct atmel_nand_rb {
|
|
enum atmel_nand_rb_type type;
|
|
union {
|
|
struct gpio_desc *gpio;
|
|
int id;
|
|
};
|
|
};
|
|
|
|
struct atmel_nand_cs {
|
|
int id;
|
|
struct atmel_nand_rb rb;
|
|
struct gpio_desc *csgpio;
|
|
struct {
|
|
void __iomem *virt;
|
|
dma_addr_t dma;
|
|
} io;
|
|
|
|
struct atmel_smc_cs_conf smcconf;
|
|
};
|
|
|
|
struct atmel_nand {
|
|
struct list_head node;
|
|
struct device *dev;
|
|
struct nand_chip base;
|
|
struct atmel_nand_cs *activecs;
|
|
struct atmel_pmecc_user *pmecc;
|
|
struct gpio_desc *cdgpio;
|
|
int numcs;
|
|
struct atmel_nand_cs cs[];
|
|
};
|
|
|
|
static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
|
|
{
|
|
return container_of(chip, struct atmel_nand, base);
|
|
}
|
|
|
|
enum atmel_nfc_data_xfer {
|
|
ATMEL_NFC_NO_DATA,
|
|
ATMEL_NFC_READ_DATA,
|
|
ATMEL_NFC_WRITE_DATA,
|
|
};
|
|
|
|
struct atmel_nfc_op {
|
|
u8 cs;
|
|
u8 ncmds;
|
|
u8 cmds[2];
|
|
u8 naddrs;
|
|
u8 addrs[5];
|
|
enum atmel_nfc_data_xfer data;
|
|
u32 wait;
|
|
u32 errors;
|
|
};
|
|
|
|
struct atmel_nand_controller;
|
|
struct atmel_nand_controller_caps;
|
|
|
|
struct atmel_nand_controller_ops {
|
|
int (*probe)(struct platform_device *pdev,
|
|
const struct atmel_nand_controller_caps *caps);
|
|
int (*remove)(struct atmel_nand_controller *nc);
|
|
void (*nand_init)(struct atmel_nand_controller *nc,
|
|
struct atmel_nand *nand);
|
|
int (*ecc_init)(struct atmel_nand *nand);
|
|
int (*setup_data_interface)(struct atmel_nand *nand, int csline,
|
|
const struct nand_data_interface *conf);
|
|
};
|
|
|
|
struct atmel_nand_controller_caps {
|
|
bool has_dma;
|
|
bool legacy_of_bindings;
|
|
u32 ale_offs;
|
|
u32 cle_offs;
|
|
const struct atmel_nand_controller_ops *ops;
|
|
};
|
|
|
|
struct atmel_nand_controller {
|
|
struct nand_hw_control base;
|
|
const struct atmel_nand_controller_caps *caps;
|
|
struct device *dev;
|
|
struct regmap *smc;
|
|
struct dma_chan *dmac;
|
|
struct atmel_pmecc *pmecc;
|
|
struct list_head chips;
|
|
struct clk *mck;
|
|
};
|
|
|
|
static inline struct atmel_nand_controller *
|
|
to_nand_controller(struct nand_hw_control *ctl)
|
|
{
|
|
return container_of(ctl, struct atmel_nand_controller, base);
|
|
}
|
|
|
|
struct atmel_smc_nand_controller {
|
|
struct atmel_nand_controller base;
|
|
struct regmap *matrix;
|
|
unsigned int ebi_csa_offs;
|
|
};
|
|
|
|
static inline struct atmel_smc_nand_controller *
|
|
to_smc_nand_controller(struct nand_hw_control *ctl)
|
|
{
|
|
return container_of(to_nand_controller(ctl),
|
|
struct atmel_smc_nand_controller, base);
|
|
}
|
|
|
|
struct atmel_hsmc_nand_controller {
|
|
struct atmel_nand_controller base;
|
|
struct {
|
|
struct gen_pool *pool;
|
|
void __iomem *virt;
|
|
dma_addr_t dma;
|
|
} sram;
|
|
const struct atmel_hsmc_reg_layout *hsmc_layout;
|
|
struct regmap *io;
|
|
struct atmel_nfc_op op;
|
|
struct completion complete;
|
|
int irq;
|
|
|
|
/* Only used when instantiating from legacy DT bindings. */
|
|
struct clk *clk;
|
|
};
|
|
|
|
static inline struct atmel_hsmc_nand_controller *
|
|
to_hsmc_nand_controller(struct nand_hw_control *ctl)
|
|
{
|
|
return container_of(to_nand_controller(ctl),
|
|
struct atmel_hsmc_nand_controller, base);
|
|
}
|
|
|
|
static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
|
|
{
|
|
op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
|
|
op->wait ^= status & op->wait;
|
|
|
|
return !op->wait || op->errors;
|
|
}
|
|
|
|
static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
|
|
{
|
|
struct atmel_hsmc_nand_controller *nc = data;
|
|
u32 sr, rcvd;
|
|
bool done;
|
|
|
|
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
|
|
|
|
rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
|
|
done = atmel_nfc_op_done(&nc->op, sr);
|
|
|
|
if (rcvd)
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
|
|
|
|
if (done)
|
|
complete(&nc->complete);
|
|
|
|
return rcvd ? IRQ_HANDLED : IRQ_NONE;
|
|
}
|
|
|
|
static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
|
|
unsigned int timeout_ms)
|
|
{
|
|
int ret;
|
|
|
|
if (!timeout_ms)
|
|
timeout_ms = DEFAULT_TIMEOUT_MS;
|
|
|
|
if (poll) {
|
|
u32 status;
|
|
|
|
ret = regmap_read_poll_timeout(nc->base.smc,
|
|
ATMEL_HSMC_NFC_SR, status,
|
|
atmel_nfc_op_done(&nc->op,
|
|
status),
|
|
0, timeout_ms * 1000);
|
|
} else {
|
|
init_completion(&nc->complete);
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
|
|
nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
|
|
ret = wait_for_completion_timeout(&nc->complete,
|
|
msecs_to_jiffies(timeout_ms));
|
|
if (!ret)
|
|
ret = -ETIMEDOUT;
|
|
else
|
|
ret = 0;
|
|
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
|
|
}
|
|
|
|
if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
|
|
dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
|
|
dev_err(nc->base.dev, "Access to an undefined area\n");
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
|
|
dev_err(nc->base.dev, "Access while busy\n");
|
|
ret = -EIO;
|
|
}
|
|
|
|
if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
|
|
dev_err(nc->base.dev, "Wrong access size\n");
|
|
ret = -EIO;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void atmel_nand_dma_transfer_finished(void *data)
|
|
{
|
|
struct completion *finished = data;
|
|
|
|
complete(finished);
|
|
}
|
|
|
|
static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
|
|
void *buf, dma_addr_t dev_dma, size_t len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
DECLARE_COMPLETION_ONSTACK(finished);
|
|
dma_addr_t src_dma, dst_dma, buf_dma;
|
|
struct dma_async_tx_descriptor *tx;
|
|
dma_cookie_t cookie;
|
|
|
|
buf_dma = dma_map_single(nc->dev, buf, len, dir);
|
|
if (dma_mapping_error(nc->dev, dev_dma)) {
|
|
dev_err(nc->dev,
|
|
"Failed to prepare a buffer for DMA access\n");
|
|
goto err;
|
|
}
|
|
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
src_dma = dev_dma;
|
|
dst_dma = buf_dma;
|
|
} else {
|
|
src_dma = buf_dma;
|
|
dst_dma = dev_dma;
|
|
}
|
|
|
|
tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
|
|
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
|
|
if (!tx) {
|
|
dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
tx->callback = atmel_nand_dma_transfer_finished;
|
|
tx->callback_param = &finished;
|
|
|
|
cookie = dmaengine_submit(tx);
|
|
if (dma_submit_error(cookie)) {
|
|
dev_err(nc->dev, "Failed to do DMA tx_submit\n");
|
|
goto err_unmap;
|
|
}
|
|
|
|
dma_async_issue_pending(nc->dmac);
|
|
wait_for_completion(&finished);
|
|
|
|
return 0;
|
|
|
|
err_unmap:
|
|
dma_unmap_single(nc->dev, buf_dma, len, dir);
|
|
|
|
err:
|
|
dev_dbg(nc->dev, "Fall back to CPU I/O\n");
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static u8 atmel_nand_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
return ioread8(nand->activecs->io.virt);
|
|
}
|
|
|
|
static u16 atmel_nand_read_word(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
return ioread16(nand->activecs->io.virt);
|
|
}
|
|
|
|
static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
iowrite16(byte | (byte << 8), nand->activecs->io.virt);
|
|
else
|
|
iowrite8(byte, nand->activecs->io.virt);
|
|
}
|
|
|
|
static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
/*
|
|
* If the controller supports DMA, the buffer address is DMA-able and
|
|
* len is long enough to make DMA transfers profitable, let's trigger
|
|
* a DMA transfer. If it fails, fallback to PIO mode.
|
|
*/
|
|
if (nc->dmac && virt_addr_valid(buf) &&
|
|
len >= MIN_DMA_LEN &&
|
|
!atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
|
|
DMA_FROM_DEVICE))
|
|
return;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
ioread16_rep(nand->activecs->io.virt, buf, len / 2);
|
|
else
|
|
ioread8_rep(nand->activecs->io.virt, buf, len);
|
|
}
|
|
|
|
static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
/*
|
|
* If the controller supports DMA, the buffer address is DMA-able and
|
|
* len is long enough to make DMA transfers profitable, let's trigger
|
|
* a DMA transfer. If it fails, fallback to PIO mode.
|
|
*/
|
|
if (nc->dmac && virt_addr_valid(buf) &&
|
|
len >= MIN_DMA_LEN &&
|
|
!atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
|
|
len, DMA_TO_DEVICE))
|
|
return;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
|
|
else
|
|
iowrite8_rep(nand->activecs->io.virt, buf, len);
|
|
}
|
|
|
|
static int atmel_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
return gpiod_get_value(nand->activecs->rb.gpio);
|
|
}
|
|
|
|
static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
if (cs < 0 || cs >= nand->numcs) {
|
|
nand->activecs = NULL;
|
|
chip->dev_ready = NULL;
|
|
return;
|
|
}
|
|
|
|
nand->activecs = &nand->cs[cs];
|
|
|
|
if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
|
|
chip->dev_ready = atmel_nand_dev_ready;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
u32 status;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
|
|
|
|
return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
|
|
}
|
|
|
|
static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
atmel_nand_select_chip(mtd, cs);
|
|
|
|
if (!nand->activecs) {
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
|
|
ATMEL_HSMC_NFC_CTRL_DIS);
|
|
return;
|
|
}
|
|
|
|
if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
|
|
chip->dev_ready = atmel_hsmc_nand_dev_ready;
|
|
|
|
regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
|
|
ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
|
|
ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
|
|
ATMEL_HSMC_NFC_CFG_RSPARE |
|
|
ATMEL_HSMC_NFC_CFG_WSPARE,
|
|
ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
|
|
ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
|
|
ATMEL_HSMC_NFC_CFG_RSPARE);
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
|
|
ATMEL_HSMC_NFC_CTRL_EN);
|
|
}
|
|
|
|
static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
|
|
{
|
|
u8 *addrs = nc->op.addrs;
|
|
unsigned int op = 0;
|
|
u32 addr, val;
|
|
int i, ret;
|
|
|
|
nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
|
|
|
|
for (i = 0; i < nc->op.ncmds; i++)
|
|
op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
|
|
|
|
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
|
|
|
|
op |= ATMEL_NFC_CSID(nc->op.cs) |
|
|
ATMEL_NFC_ACYCLE(nc->op.naddrs);
|
|
|
|
if (nc->op.ncmds > 1)
|
|
op |= ATMEL_NFC_VCMD2;
|
|
|
|
addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
|
|
(addrs[3] << 24);
|
|
|
|
if (nc->op.data != ATMEL_NFC_NO_DATA) {
|
|
op |= ATMEL_NFC_DATAEN;
|
|
nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
|
|
|
|
if (nc->op.data == ATMEL_NFC_WRITE_DATA)
|
|
op |= ATMEL_NFC_NFCWR;
|
|
}
|
|
|
|
/* Clear all flags. */
|
|
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
|
|
|
|
/* Send the command. */
|
|
regmap_write(nc->io, op, addr);
|
|
|
|
ret = atmel_nfc_wait(nc, poll, 0);
|
|
if (ret)
|
|
dev_err(nc->base.dev,
|
|
"Failed to send NAND command (err = %d)!",
|
|
ret);
|
|
|
|
/* Reset the op state. */
|
|
memset(&nc->op, 0, sizeof(nc->op));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
|
|
unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
if (ctrl & NAND_ALE) {
|
|
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
|
|
return;
|
|
|
|
nc->op.addrs[nc->op.naddrs++] = dat;
|
|
} else if (ctrl & NAND_CLE) {
|
|
if (nc->op.ncmds > 1)
|
|
return;
|
|
|
|
nc->op.cmds[nc->op.ncmds++] = dat;
|
|
}
|
|
|
|
if (dat == NAND_CMD_NONE) {
|
|
nc->op.cs = nand->activecs->id;
|
|
atmel_nfc_exec_op(nc, true);
|
|
}
|
|
}
|
|
|
|
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
|
|
if (ctrl & NAND_NCE)
|
|
gpiod_set_value(nand->activecs->csgpio, 0);
|
|
else
|
|
gpiod_set_value(nand->activecs->csgpio, 1);
|
|
}
|
|
|
|
if (ctrl & NAND_ALE)
|
|
writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
|
|
else if (ctrl & NAND_CLE)
|
|
writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
|
|
}
|
|
|
|
static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
|
|
bool oob_required)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
int ret = -EIO;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
if (nc->base.dmac)
|
|
ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
|
|
nc->sram.dma, mtd->writesize,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* Falling back to CPU copy. */
|
|
if (ret)
|
|
memcpy_toio(nc->sram.virt, buf, mtd->writesize);
|
|
|
|
if (oob_required)
|
|
memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
|
|
bool oob_required)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
int ret = -EIO;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
if (nc->base.dmac)
|
|
ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
|
|
mtd->writesize, DMA_FROM_DEVICE);
|
|
|
|
/* Falling back to CPU copy. */
|
|
if (ret)
|
|
memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
|
|
|
|
if (oob_required)
|
|
memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
|
|
mtd->oobsize);
|
|
}
|
|
|
|
static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
if (column >= 0) {
|
|
nc->op.addrs[nc->op.naddrs++] = column;
|
|
|
|
/*
|
|
* 2 address cycles for the column offset on large page NANDs.
|
|
*/
|
|
if (mtd->writesize > 512)
|
|
nc->op.addrs[nc->op.naddrs++] = column >> 8;
|
|
}
|
|
|
|
if (page >= 0) {
|
|
nc->op.addrs[nc->op.naddrs++] = page;
|
|
nc->op.addrs[nc->op.naddrs++] = page >> 8;
|
|
|
|
if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
|
|
(mtd->writesize <= 512 && chip->chipsize > SZ_32M))
|
|
nc->op.addrs[nc->op.naddrs++] = page >> 16;
|
|
}
|
|
}
|
|
|
|
static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
|
|
{
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if (raw)
|
|
return 0;
|
|
|
|
ret = atmel_pmecc_enable(nand->pmecc, op);
|
|
if (ret)
|
|
dev_err(nc->dev,
|
|
"Failed to enable ECC engine (err = %d)\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
|
|
{
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
|
|
if (!raw)
|
|
atmel_pmecc_disable(nand->pmecc);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
|
|
{
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand_controller *nc;
|
|
struct mtd_oob_region oobregion;
|
|
void *eccbuf;
|
|
int ret, i;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if (raw)
|
|
return 0;
|
|
|
|
ret = atmel_pmecc_wait_rdy(nand->pmecc);
|
|
if (ret) {
|
|
dev_err(nc->dev,
|
|
"Failed to transfer NAND page data (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
mtd_ooblayout_ecc(mtd, 0, &oobregion);
|
|
eccbuf = chip->oob_poi + oobregion.offset;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
|
|
eccbuf);
|
|
eccbuf += chip->ecc.bytes;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
|
|
bool raw)
|
|
{
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand_controller *nc;
|
|
struct mtd_oob_region oobregion;
|
|
int ret, i, max_bitflips = 0;
|
|
void *databuf, *eccbuf;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if (raw)
|
|
return 0;
|
|
|
|
ret = atmel_pmecc_wait_rdy(nand->pmecc);
|
|
if (ret) {
|
|
dev_err(nc->dev,
|
|
"Failed to read NAND page data (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
mtd_ooblayout_ecc(mtd, 0, &oobregion);
|
|
eccbuf = chip->oob_poi + oobregion.offset;
|
|
databuf = buf;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
|
|
eccbuf);
|
|
if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
|
|
ret = nand_check_erased_ecc_chunk(databuf,
|
|
chip->ecc.size,
|
|
eccbuf,
|
|
chip->ecc.bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
|
|
if (ret >= 0)
|
|
max_bitflips = max(ret, max_bitflips);
|
|
else
|
|
mtd->ecc_stats.failed++;
|
|
|
|
databuf += chip->ecc.size;
|
|
eccbuf += chip->ecc.bytes;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
|
|
bool oob_required, int page, bool raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
int ret;
|
|
|
|
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atmel_nand_write_buf(mtd, buf, mtd->writesize);
|
|
|
|
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
|
|
if (ret) {
|
|
atmel_pmecc_disable(nand->pmecc);
|
|
return ret;
|
|
}
|
|
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
|
|
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
|
|
bool oob_required, int page, bool raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atmel_nand_read_buf(mtd, buf, mtd->writesize);
|
|
atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
|
|
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
|
|
const u8 *buf, bool oob_required,
|
|
int page, bool raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
int ret, status;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
atmel_nfc_copy_to_sram(chip, buf, false);
|
|
|
|
nc->op.cmds[0] = NAND_CMD_SEQIN;
|
|
nc->op.ncmds = 1;
|
|
atmel_nfc_set_op_addr(chip, page, 0x0);
|
|
nc->op.cs = nand->activecs->id;
|
|
nc->op.data = ATMEL_NFC_WRITE_DATA;
|
|
|
|
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = atmel_nfc_exec_op(nc, false);
|
|
if (ret) {
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
dev_err(nc->base.dev,
|
|
"Failed to transfer NAND page data (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
|
|
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
nc->op.cmds[0] = NAND_CMD_PAGEPROG;
|
|
nc->op.ncmds = 1;
|
|
nc->op.cs = nand->activecs->id;
|
|
ret = atmel_nfc_exec_op(nc, false);
|
|
if (ret)
|
|
dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
|
|
ret);
|
|
|
|
status = chip->waitfunc(mtd, chip);
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
|
|
false);
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
|
|
true);
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
|
|
bool oob_required, int page,
|
|
bool raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_hsmc_nand_controller(chip->controller);
|
|
|
|
/*
|
|
* Optimized read page accessors only work when the NAND R/B pin is
|
|
* connected to a native SoC R/B pin. If that's not the case, fallback
|
|
* to the non-optimized one.
|
|
*/
|
|
if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
|
|
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
|
|
|
|
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
|
|
raw);
|
|
}
|
|
|
|
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
|
|
|
|
if (mtd->writesize > 512)
|
|
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
|
|
|
|
atmel_nfc_set_op_addr(chip, page, 0x0);
|
|
nc->op.cs = nand->activecs->id;
|
|
nc->op.data = ATMEL_NFC_READ_DATA;
|
|
|
|
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = atmel_nfc_exec_op(nc, false);
|
|
if (ret) {
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
dev_err(nc->base.dev,
|
|
"Failed to load NAND page data (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
atmel_nfc_copy_from_sram(chip, buf, true);
|
|
|
|
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
|
|
|
|
atmel_nand_pmecc_disable(chip, raw);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
|
|
struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
|
|
false);
|
|
}
|
|
|
|
static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
|
|
struct nand_chip *chip,
|
|
u8 *buf, int oob_required,
|
|
int page)
|
|
{
|
|
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
|
|
true);
|
|
}
|
|
|
|
static int atmel_nand_pmecc_init(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
struct atmel_pmecc_user_req req;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if (!nc->pmecc) {
|
|
dev_err(nc->dev, "HW ECC not supported\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (nc->caps->legacy_of_bindings) {
|
|
u32 val;
|
|
|
|
if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
|
|
&val))
|
|
chip->ecc.strength = val;
|
|
|
|
if (!of_property_read_u32(nc->dev->of_node,
|
|
"atmel,pmecc-sector-size",
|
|
&val))
|
|
chip->ecc.size = val;
|
|
}
|
|
|
|
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
|
|
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
|
|
else if (chip->ecc.strength)
|
|
req.ecc.strength = chip->ecc.strength;
|
|
else if (chip->ecc_strength_ds)
|
|
req.ecc.strength = chip->ecc_strength_ds;
|
|
else
|
|
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
|
|
|
|
if (chip->ecc.size)
|
|
req.ecc.sectorsize = chip->ecc.size;
|
|
else if (chip->ecc_step_ds)
|
|
req.ecc.sectorsize = chip->ecc_step_ds;
|
|
else
|
|
req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
|
|
|
|
req.pagesize = mtd->writesize;
|
|
req.oobsize = mtd->oobsize;
|
|
|
|
if (mtd->writesize <= 512) {
|
|
req.ecc.bytes = 4;
|
|
req.ecc.ooboffset = 0;
|
|
} else {
|
|
req.ecc.bytes = mtd->oobsize - 2;
|
|
req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
|
|
}
|
|
|
|
nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
|
|
if (IS_ERR(nand->pmecc))
|
|
return PTR_ERR(nand->pmecc);
|
|
|
|
chip->ecc.algo = NAND_ECC_BCH;
|
|
chip->ecc.size = req.ecc.sectorsize;
|
|
chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
|
|
chip->ecc.strength = req.ecc.strength;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_ecc_init(struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct atmel_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
switch (chip->ecc.mode) {
|
|
case NAND_ECC_NONE:
|
|
case NAND_ECC_SOFT:
|
|
/*
|
|
* Nothing to do, the core will initialize everything for us.
|
|
*/
|
|
break;
|
|
|
|
case NAND_ECC_HW:
|
|
ret = atmel_nand_pmecc_init(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.read_page = atmel_nand_pmecc_read_page;
|
|
chip->ecc.write_page = atmel_nand_pmecc_write_page;
|
|
chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
|
|
chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
|
|
break;
|
|
|
|
default:
|
|
/* Other modes are not supported. */
|
|
dev_err(nc->dev, "Unsupported ECC mode: %d\n",
|
|
chip->ecc.mode);
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
int ret;
|
|
|
|
ret = atmel_nand_ecc_init(nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->ecc.mode != NAND_ECC_HW)
|
|
return 0;
|
|
|
|
/* Adjust the ECC operations for the HSMC IP. */
|
|
chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
|
|
chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
|
|
chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
|
|
chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
|
|
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
|
|
const struct nand_data_interface *conf,
|
|
struct atmel_smc_cs_conf *smcconf)
|
|
{
|
|
u32 ncycles, totalcycles, timeps, mckperiodps;
|
|
struct atmel_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(nand->base.controller);
|
|
|
|
/* DDR interface not supported. */
|
|
if (conf->type != NAND_SDR_IFACE)
|
|
return -ENOTSUPP;
|
|
|
|
/*
|
|
* tRC < 30ns implies EDO mode. This controller does not support this
|
|
* mode.
|
|
*/
|
|
if (conf->timings.sdr.tRC_min < 30000)
|
|
return -ENOTSUPP;
|
|
|
|
atmel_smc_cs_conf_init(smcconf);
|
|
|
|
mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
|
|
mckperiodps *= 1000;
|
|
|
|
/*
|
|
* Set write pulse timing. This one is easy to extract:
|
|
*
|
|
* NWE_PULSE = tWP
|
|
*/
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
|
|
totalcycles = ncycles;
|
|
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The write setup timing depends on the operation done on the NAND.
|
|
* All operations goes through the same data bus, but the operation
|
|
* type depends on the address we are writing to (ALE/CLE address
|
|
* lines).
|
|
* Since we have no way to differentiate the different operations at
|
|
* the SMC level, we must consider the worst case (the biggest setup
|
|
* time among all operation types):
|
|
*
|
|
* NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
|
|
*/
|
|
timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
|
|
conf->timings.sdr.tALS_min);
|
|
timeps = max(timeps, conf->timings.sdr.tDS_min);
|
|
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
|
|
ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
|
|
totalcycles += ncycles;
|
|
ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* As for the write setup timing, the write hold timing depends on the
|
|
* operation done on the NAND:
|
|
*
|
|
* NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
|
|
*/
|
|
timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
|
|
conf->timings.sdr.tALH_min);
|
|
timeps = max3(timeps, conf->timings.sdr.tDH_min,
|
|
conf->timings.sdr.tWH_min);
|
|
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
|
|
totalcycles += ncycles;
|
|
|
|
/*
|
|
* The write cycle timing is directly matching tWC, but is also
|
|
* dependent on the other timings on the setup and hold timings we
|
|
* calculated earlier, which gives:
|
|
*
|
|
* NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
|
|
*/
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
|
|
ncycles = max(totalcycles, ncycles);
|
|
ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We don't want the CS line to be toggled between each byte/word
|
|
* transfer to the NAND. The only way to guarantee that is to have the
|
|
* NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
|
|
*
|
|
* NCS_WR_PULSE = NWE_CYCLE
|
|
*/
|
|
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* As for the write setup timing, the read hold timing depends on the
|
|
* operation done on the NAND:
|
|
*
|
|
* NRD_HOLD = max(tREH, tRHOH)
|
|
*/
|
|
timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
|
|
ncycles = DIV_ROUND_UP(timeps, mckperiodps);
|
|
totalcycles = ncycles;
|
|
|
|
/*
|
|
* TDF = tRHZ - NRD_HOLD
|
|
*/
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
|
|
ncycles -= totalcycles;
|
|
|
|
/*
|
|
* In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
|
|
* we might end up with a config that does not fit in the TDF field.
|
|
* Just take the max value in this case and hope that the NAND is more
|
|
* tolerant than advertised.
|
|
*/
|
|
if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
|
|
ncycles = ATMEL_SMC_MODE_TDF_MAX;
|
|
else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
|
|
ncycles = ATMEL_SMC_MODE_TDF_MIN;
|
|
|
|
smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
|
|
ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;
|
|
|
|
/*
|
|
* Read pulse timing directly matches tRP:
|
|
*
|
|
* NRD_PULSE = tRP
|
|
*/
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
|
|
totalcycles += ncycles;
|
|
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The write cycle timing is directly matching tWC, but is also
|
|
* dependent on the setup and hold timings we calculated earlier,
|
|
* which gives:
|
|
*
|
|
* NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
|
|
*
|
|
* NRD_SETUP is always 0.
|
|
*/
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
|
|
ncycles = max(totalcycles, ncycles);
|
|
ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We don't want the CS line to be toggled between each byte/word
|
|
* transfer from the NAND. The only way to guarantee that is to have
|
|
* the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
|
|
*
|
|
* NCS_RD_PULSE = NRD_CYCLE
|
|
*/
|
|
ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Txxx timings are directly matching tXXX ones. */
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
|
|
ret = atmel_smc_cs_conf_set_timing(smcconf,
|
|
ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
|
|
ret = atmel_smc_cs_conf_set_timing(smcconf,
|
|
ATMEL_HSMC_TIMINGS_TADL_SHIFT,
|
|
ncycles);
|
|
/*
|
|
* Version 4 of the ONFI spec mandates that tADL be at least 400
|
|
* nanoseconds, but, depending on the master clock rate, 400 ns may not
|
|
* fit in the tADL field of the SMC reg. We need to relax the check and
|
|
* accept the -ERANGE return code.
|
|
*
|
|
* Note that previous versions of the ONFI spec had a lower tADL_min
|
|
* (100 or 200 ns). It's not clear why this timing constraint got
|
|
* increased but it seems most NANDs are fine with values lower than
|
|
* 400ns, so we should be safe.
|
|
*/
|
|
if (ret && ret != -ERANGE)
|
|
return ret;
|
|
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
|
|
ret = atmel_smc_cs_conf_set_timing(smcconf,
|
|
ATMEL_HSMC_TIMINGS_TAR_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
|
|
ret = atmel_smc_cs_conf_set_timing(smcconf,
|
|
ATMEL_HSMC_TIMINGS_TRR_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
|
|
ret = atmel_smc_cs_conf_set_timing(smcconf,
|
|
ATMEL_HSMC_TIMINGS_TWB_SHIFT,
|
|
ncycles);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Attach the CS line to the NFC logic. */
|
|
smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;
|
|
|
|
/* Set the appropriate data bus width. */
|
|
if (nand->base.options & NAND_BUSWIDTH_16)
|
|
smcconf->mode |= ATMEL_SMC_MODE_DBW_16;
|
|
|
|
/* Operate in NRD/NWE READ/WRITEMODE. */
|
|
smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
|
|
ATMEL_SMC_MODE_WRITEMODE_NWE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand,
|
|
int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct atmel_nand_controller *nc;
|
|
struct atmel_smc_cs_conf smcconf;
|
|
struct atmel_nand_cs *cs;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(nand->base.controller);
|
|
|
|
ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
cs = &nand->cs[csline];
|
|
cs->smcconf = smcconf;
|
|
atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand,
|
|
int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
struct atmel_smc_cs_conf smcconf;
|
|
struct atmel_nand_cs *cs;
|
|
int ret;
|
|
|
|
nc = to_hsmc_nand_controller(nand->base.controller);
|
|
|
|
ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
|
|
return 0;
|
|
|
|
cs = &nand->cs[csline];
|
|
cs->smcconf = smcconf;
|
|
|
|
if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
|
|
cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);
|
|
|
|
atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
|
|
&cs->smcconf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline,
|
|
const struct nand_data_interface *conf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct atmel_nand *nand = to_atmel_nand(chip);
|
|
struct atmel_nand_controller *nc;
|
|
|
|
nc = to_nand_controller(nand->base.controller);
|
|
|
|
if (csline >= nand->numcs ||
|
|
(csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
|
|
return -EINVAL;
|
|
|
|
return nc->caps->ops->setup_data_interface(nand, csline, conf);
|
|
}
|
|
|
|
static void atmel_nand_init(struct atmel_nand_controller *nc,
|
|
struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
mtd->dev.parent = nc->dev;
|
|
nand->base.controller = &nc->base;
|
|
|
|
chip->cmd_ctrl = atmel_nand_cmd_ctrl;
|
|
chip->read_byte = atmel_nand_read_byte;
|
|
chip->read_word = atmel_nand_read_word;
|
|
chip->write_byte = atmel_nand_write_byte;
|
|
chip->read_buf = atmel_nand_read_buf;
|
|
chip->write_buf = atmel_nand_write_buf;
|
|
chip->select_chip = atmel_nand_select_chip;
|
|
|
|
if (nc->mck && nc->caps->ops->setup_data_interface)
|
|
chip->setup_data_interface = atmel_nand_setup_data_interface;
|
|
|
|
/* Some NANDs require a longer delay than the default one (20us). */
|
|
chip->chip_delay = 40;
|
|
|
|
/*
|
|
* Use a bounce buffer when the buffer passed by the MTD user is not
|
|
* suitable for DMA.
|
|
*/
|
|
if (nc->dmac)
|
|
chip->options |= NAND_USE_BOUNCE_BUFFER;
|
|
|
|
/* Default to HW ECC if pmecc is available. */
|
|
if (nc->pmecc)
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
}
|
|
|
|
static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
|
|
struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct atmel_smc_nand_controller *smc_nc;
|
|
int i;
|
|
|
|
atmel_nand_init(nc, nand);
|
|
|
|
smc_nc = to_smc_nand_controller(chip->controller);
|
|
if (!smc_nc->matrix)
|
|
return;
|
|
|
|
/* Attach the CS to the NAND Flash logic. */
|
|
for (i = 0; i < nand->numcs; i++)
|
|
regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
|
|
BIT(nand->cs[i].id), BIT(nand->cs[i].id));
|
|
}
|
|
|
|
static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
|
|
struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
|
|
atmel_nand_init(nc, nand);
|
|
|
|
/* Overload some methods for the HSMC controller. */
|
|
chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
|
|
chip->select_chip = atmel_hsmc_nand_select_chip;
|
|
}
|
|
|
|
static int atmel_nand_detect(struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
ret = nand_scan_ident(mtd, nand->numcs, NULL);
|
|
if (ret)
|
|
dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int atmel_nand_unregister(struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(mtd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nand_cleanup(chip);
|
|
list_del(&nand->node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_nand_register(struct atmel_nand *nand)
|
|
{
|
|
struct nand_chip *chip = &nand->base;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct atmel_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = to_nand_controller(chip->controller);
|
|
|
|
if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
|
|
/*
|
|
* We keep the MTD name unchanged to avoid breaking platforms
|
|
* where the MTD cmdline parser is used and the bootloader
|
|
* has not been updated to use the new naming scheme.
|
|
*/
|
|
mtd->name = "atmel_nand";
|
|
} else if (!mtd->name) {
|
|
/*
|
|
* If the new bindings are used and the bootloader has not been
|
|
* updated to pass a new mtdparts parameter on the cmdline, you
|
|
* should define the following property in your nand node:
|
|
*
|
|
* label = "atmel_nand";
|
|
*
|
|
* This way, mtd->name will be set by the core when
|
|
* nand_set_flash_node() is called.
|
|
*/
|
|
mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
|
|
"%s:nand.%d", dev_name(nc->dev),
|
|
nand->cs[0].id);
|
|
if (!mtd->name) {
|
|
dev_err(nc->dev, "Failed to allocate mtd->name\n");
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret) {
|
|
dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = mtd_device_register(mtd, NULL, 0);
|
|
if (ret) {
|
|
dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
|
|
nand_cleanup(chip);
|
|
return ret;
|
|
}
|
|
|
|
list_add_tail(&nand->node, &nc->chips);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
|
|
struct device_node *np,
|
|
int reg_cells)
|
|
{
|
|
struct atmel_nand *nand;
|
|
struct gpio_desc *gpio;
|
|
int numcs, ret, i;
|
|
|
|
numcs = of_property_count_elems_of_size(np, "reg",
|
|
reg_cells * sizeof(u32));
|
|
if (numcs < 1) {
|
|
dev_err(nc->dev, "Missing or invalid reg property\n");
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
nand = devm_kzalloc(nc->dev,
|
|
sizeof(*nand) + (numcs * sizeof(*nand->cs)),
|
|
GFP_KERNEL);
|
|
if (!nand) {
|
|
dev_err(nc->dev, "Failed to allocate NAND object\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
nand->numcs = numcs;
|
|
|
|
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
|
|
&np->fwnode, GPIOD_IN,
|
|
"nand-det");
|
|
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
|
|
dev_err(nc->dev,
|
|
"Failed to get detect gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return ERR_CAST(gpio);
|
|
}
|
|
|
|
if (!IS_ERR(gpio))
|
|
nand->cdgpio = gpio;
|
|
|
|
for (i = 0; i < numcs; i++) {
|
|
struct resource res;
|
|
u32 val;
|
|
|
|
ret = of_address_to_resource(np, 0, &res);
|
|
if (ret) {
|
|
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
|
|
ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = of_property_read_u32_index(np, "reg", i * reg_cells,
|
|
&val);
|
|
if (ret) {
|
|
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
|
|
ret);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
nand->cs[i].id = val;
|
|
|
|
nand->cs[i].io.dma = res.start;
|
|
nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
|
|
if (IS_ERR(nand->cs[i].io.virt))
|
|
return ERR_CAST(nand->cs[i].io.virt);
|
|
|
|
if (!of_property_read_u32(np, "atmel,rb", &val)) {
|
|
if (val > ATMEL_NFC_MAX_RB_ID)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
|
|
nand->cs[i].rb.id = val;
|
|
} else {
|
|
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
|
|
"rb", i, &np->fwnode,
|
|
GPIOD_IN, "nand-rb");
|
|
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
|
|
dev_err(nc->dev,
|
|
"Failed to get R/B gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return ERR_CAST(gpio);
|
|
}
|
|
|
|
if (!IS_ERR(gpio)) {
|
|
nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
|
|
nand->cs[i].rb.gpio = gpio;
|
|
}
|
|
}
|
|
|
|
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
|
|
i, &np->fwnode,
|
|
GPIOD_OUT_HIGH,
|
|
"nand-cs");
|
|
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
|
|
dev_err(nc->dev,
|
|
"Failed to get CS gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return ERR_CAST(gpio);
|
|
}
|
|
|
|
if (!IS_ERR(gpio))
|
|
nand->cs[i].csgpio = gpio;
|
|
}
|
|
|
|
nand_set_flash_node(&nand->base, np);
|
|
|
|
return nand;
|
|
}
|
|
|
|
static int
|
|
atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
|
|
struct atmel_nand *nand)
|
|
{
|
|
int ret;
|
|
|
|
/* No card inserted, skip this NAND. */
|
|
if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
|
|
dev_info(nc->dev, "No SmartMedia card inserted.\n");
|
|
return 0;
|
|
}
|
|
|
|
nc->caps->ops->nand_init(nc, nand);
|
|
|
|
ret = atmel_nand_detect(nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nc->caps->ops->ecc_init(nand);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return atmel_nand_register(nand);
|
|
}
|
|
|
|
static int
|
|
atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
|
|
{
|
|
struct atmel_nand *nand, *tmp;
|
|
int ret;
|
|
|
|
list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
|
|
ret = atmel_nand_unregister(nand);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
|
|
{
|
|
struct device *dev = nc->dev;
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct atmel_nand *nand;
|
|
struct gpio_desc *gpio;
|
|
struct resource *res;
|
|
|
|
/*
|
|
* Legacy bindings only allow connecting a single NAND with a unique CS
|
|
* line to the controller.
|
|
*/
|
|
nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
|
|
GFP_KERNEL);
|
|
if (!nand)
|
|
return -ENOMEM;
|
|
|
|
nand->numcs = 1;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(nand->cs[0].io.virt))
|
|
return PTR_ERR(nand->cs[0].io.virt);
|
|
|
|
nand->cs[0].io.dma = res->start;
|
|
|
|
/*
|
|
* The old driver was hardcoding the CS id to 3 for all sama5
|
|
* controllers. Since this id is only meaningful for the sama5
|
|
* controller we can safely assign this id to 3 no matter the
|
|
* controller.
|
|
* If one wants to connect a NAND to a different CS line, he will
|
|
* have to use the new bindings.
|
|
*/
|
|
nand->cs[0].id = 3;
|
|
|
|
/* R/B GPIO. */
|
|
gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
|
|
if (IS_ERR(gpio)) {
|
|
dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return PTR_ERR(gpio);
|
|
}
|
|
|
|
if (gpio) {
|
|
nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
|
|
nand->cs[0].rb.gpio = gpio;
|
|
}
|
|
|
|
/* CS GPIO. */
|
|
gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
|
|
if (IS_ERR(gpio)) {
|
|
dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return PTR_ERR(gpio);
|
|
}
|
|
|
|
nand->cs[0].csgpio = gpio;
|
|
|
|
/* Card detect GPIO. */
|
|
gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
|
|
if (IS_ERR(gpio)) {
|
|
dev_err(dev,
|
|
"Failed to get detect gpio (err = %ld)\n",
|
|
PTR_ERR(gpio));
|
|
return PTR_ERR(gpio);
|
|
}
|
|
|
|
nand->cdgpio = gpio;
|
|
|
|
nand_set_flash_node(&nand->base, nc->dev->of_node);
|
|
|
|
return atmel_nand_controller_add_nand(nc, nand);
|
|
}
|
|
|
|
static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
|
|
{
|
|
struct device_node *np, *nand_np;
|
|
struct device *dev = nc->dev;
|
|
int ret, reg_cells;
|
|
u32 val;
|
|
|
|
/* We do not retrieve the SMC syscon when parsing old DTs. */
|
|
if (nc->caps->legacy_of_bindings)
|
|
return atmel_nand_controller_legacy_add_nands(nc);
|
|
|
|
np = dev->of_node;
|
|
|
|
ret = of_property_read_u32(np, "#address-cells", &val);
|
|
if (ret) {
|
|
dev_err(dev, "missing #address-cells property\n");
|
|
return ret;
|
|
}
|
|
|
|
reg_cells = val;
|
|
|
|
ret = of_property_read_u32(np, "#size-cells", &val);
|
|
if (ret) {
|
|
dev_err(dev, "missing #address-cells property\n");
|
|
return ret;
|
|
}
|
|
|
|
reg_cells += val;
|
|
|
|
for_each_child_of_node(np, nand_np) {
|
|
struct atmel_nand *nand;
|
|
|
|
nand = atmel_nand_create(nc, nand_np, reg_cells);
|
|
if (IS_ERR(nand)) {
|
|
ret = PTR_ERR(nand);
|
|
goto err;
|
|
}
|
|
|
|
ret = atmel_nand_controller_add_nand(nc, nand);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err:
|
|
atmel_nand_controller_remove_nands(nc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
|
|
{
|
|
if (nc->dmac)
|
|
dma_release_channel(nc->dmac);
|
|
|
|
clk_put(nc->mck);
|
|
}
|
|
|
|
static const struct of_device_id atmel_matrix_of_ids[] = {
|
|
{
|
|
.compatible = "atmel,at91sam9260-matrix",
|
|
.data = (void *)AT91SAM9260_MATRIX_EBICSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9261-matrix",
|
|
.data = (void *)AT91SAM9261_MATRIX_EBICSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9263-matrix",
|
|
.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9rl-matrix",
|
|
.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9g45-matrix",
|
|
.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9n12-matrix",
|
|
.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9x5-matrix",
|
|
.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
|
|
},
|
|
{ /* sentinel */ },
|
|
};
|
|
|
|
static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
|
|
struct platform_device *pdev,
|
|
const struct atmel_nand_controller_caps *caps)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct device_node *np = dev->of_node;
|
|
int ret;
|
|
|
|
nand_hw_control_init(&nc->base);
|
|
INIT_LIST_HEAD(&nc->chips);
|
|
nc->dev = dev;
|
|
nc->caps = caps;
|
|
|
|
platform_set_drvdata(pdev, nc);
|
|
|
|
nc->pmecc = devm_atmel_pmecc_get(dev);
|
|
if (IS_ERR(nc->pmecc)) {
|
|
ret = PTR_ERR(nc->pmecc);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Could not get PMECC object (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
if (nc->caps->has_dma) {
|
|
dma_cap_mask_t mask;
|
|
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_MEMCPY, mask);
|
|
|
|
nc->dmac = dma_request_channel(mask, NULL, NULL);
|
|
if (!nc->dmac)
|
|
dev_err(nc->dev, "Failed to request DMA channel\n");
|
|
}
|
|
|
|
/* We do not retrieve the SMC syscon when parsing old DTs. */
|
|
if (nc->caps->legacy_of_bindings)
|
|
return 0;
|
|
|
|
nc->mck = of_clk_get(dev->parent->of_node, 0);
|
|
if (IS_ERR(nc->mck)) {
|
|
dev_err(dev, "Failed to retrieve MCK clk\n");
|
|
return PTR_ERR(nc->mck);
|
|
}
|
|
|
|
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
|
|
if (!np) {
|
|
dev_err(dev, "Missing or invalid atmel,smc property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nc->smc = syscon_node_to_regmap(np);
|
|
of_node_put(np);
|
|
if (IS_ERR(nc->smc)) {
|
|
ret = PTR_ERR(nc->smc);
|
|
dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
|
|
{
|
|
struct device *dev = nc->base.dev;
|
|
const struct of_device_id *match;
|
|
struct device_node *np;
|
|
int ret;
|
|
|
|
/* We do not retrieve the matrix syscon when parsing old DTs. */
|
|
if (nc->base.caps->legacy_of_bindings)
|
|
return 0;
|
|
|
|
np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
|
|
if (!np)
|
|
return 0;
|
|
|
|
match = of_match_node(atmel_matrix_of_ids, np);
|
|
if (!match) {
|
|
of_node_put(np);
|
|
return 0;
|
|
}
|
|
|
|
nc->matrix = syscon_node_to_regmap(np);
|
|
of_node_put(np);
|
|
if (IS_ERR(nc->matrix)) {
|
|
ret = PTR_ERR(nc->matrix);
|
|
dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
nc->ebi_csa_offs = (unsigned int)match->data;
|
|
|
|
/*
|
|
* The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
|
|
* add 4 to ->ebi_csa_offs.
|
|
*/
|
|
if (of_device_is_compatible(dev->parent->of_node,
|
|
"atmel,at91sam9263-ebi1"))
|
|
nc->ebi_csa_offs += 4;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
|
|
{
|
|
struct regmap_config regmap_conf = {
|
|
.reg_bits = 32,
|
|
.val_bits = 32,
|
|
.reg_stride = 4,
|
|
};
|
|
|
|
struct device *dev = nc->base.dev;
|
|
struct device_node *nand_np, *nfc_np;
|
|
void __iomem *iomem;
|
|
struct resource res;
|
|
int ret;
|
|
|
|
nand_np = dev->of_node;
|
|
nfc_np = of_find_compatible_node(dev->of_node, NULL,
|
|
"atmel,sama5d3-nfc");
|
|
|
|
nc->clk = of_clk_get(nfc_np, 0);
|
|
if (IS_ERR(nc->clk)) {
|
|
ret = PTR_ERR(nc->clk);
|
|
dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = clk_prepare_enable(nc->clk);
|
|
if (ret) {
|
|
dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
nc->irq = of_irq_get(nand_np, 0);
|
|
if (nc->irq <= 0) {
|
|
ret = nc->irq ?: -ENXIO;
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = of_address_to_resource(nfc_np, 0, &res);
|
|
if (ret) {
|
|
dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
iomem = devm_ioremap_resource(dev, &res);
|
|
if (IS_ERR(iomem)) {
|
|
ret = PTR_ERR(iomem);
|
|
goto out;
|
|
}
|
|
|
|
regmap_conf.name = "nfc-io";
|
|
regmap_conf.max_register = resource_size(&res) - 4;
|
|
nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf);
|
|
if (IS_ERR(nc->io)) {
|
|
ret = PTR_ERR(nc->io);
|
|
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = of_address_to_resource(nfc_np, 1, &res);
|
|
if (ret) {
|
|
dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
iomem = devm_ioremap_resource(dev, &res);
|
|
if (IS_ERR(iomem)) {
|
|
ret = PTR_ERR(iomem);
|
|
goto out;
|
|
}
|
|
|
|
regmap_conf.name = "smc";
|
|
regmap_conf.max_register = resource_size(&res) - 4;
|
|
nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf);
|
|
if (IS_ERR(nc->base.smc)) {
|
|
ret = PTR_ERR(nc->base.smc);
|
|
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = of_address_to_resource(nfc_np, 2, &res);
|
|
if (ret) {
|
|
dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
|
|
nc->sram.virt = devm_ioremap_resource(dev, &res);
|
|
if (IS_ERR(nc->sram.virt)) {
|
|
ret = PTR_ERR(nc->sram.virt);
|
|
goto out;
|
|
}
|
|
|
|
nc->sram.dma = res.start;
|
|
|
|
out:
|
|
of_node_put(nfc_np);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
|
|
{
|
|
struct device *dev = nc->base.dev;
|
|
struct device_node *np;
|
|
int ret;
|
|
|
|
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
|
|
if (!np) {
|
|
dev_err(dev, "Missing or invalid atmel,smc property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);
|
|
|
|
nc->irq = of_irq_get(np, 0);
|
|
of_node_put(np);
|
|
if (nc->irq <= 0) {
|
|
ret = nc->irq ?: -ENXIO;
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
|
|
if (!np) {
|
|
dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nc->io = syscon_node_to_regmap(np);
|
|
of_node_put(np);
|
|
if (IS_ERR(nc->io)) {
|
|
ret = PTR_ERR(nc->io);
|
|
dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
|
|
"atmel,nfc-sram", 0);
|
|
if (!nc->sram.pool) {
|
|
dev_err(nc->base.dev, "Missing SRAM\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
|
|
ATMEL_NFC_SRAM_SIZE,
|
|
&nc->sram.dma);
|
|
if (!nc->sram.virt) {
|
|
dev_err(nc->base.dev,
|
|
"Could not allocate memory from the NFC SRAM pool\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
|
|
{
|
|
struct atmel_hsmc_nand_controller *hsmc_nc;
|
|
int ret;
|
|
|
|
ret = atmel_nand_controller_remove_nands(nc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
|
|
if (hsmc_nc->sram.pool)
|
|
gen_pool_free(hsmc_nc->sram.pool,
|
|
(unsigned long)hsmc_nc->sram.virt,
|
|
ATMEL_NFC_SRAM_SIZE);
|
|
|
|
if (hsmc_nc->clk) {
|
|
clk_disable_unprepare(hsmc_nc->clk);
|
|
clk_put(hsmc_nc->clk);
|
|
}
|
|
|
|
atmel_nand_controller_cleanup(nc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
|
|
const struct atmel_nand_controller_caps *caps)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct atmel_hsmc_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
|
|
if (!nc)
|
|
return -ENOMEM;
|
|
|
|
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (caps->legacy_of_bindings)
|
|
ret = atmel_hsmc_nand_controller_legacy_init(nc);
|
|
else
|
|
ret = atmel_hsmc_nand_controller_init(nc);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Make sure all irqs are masked before registering our IRQ handler. */
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
|
|
ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
|
|
IRQF_SHARED, "nfc", nc);
|
|
if (ret) {
|
|
dev_err(dev,
|
|
"Could not get register NFC interrupt handler (err = %d)\n",
|
|
ret);
|
|
goto err;
|
|
}
|
|
|
|
/* Initial NFC configuration. */
|
|
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
|
|
ATMEL_HSMC_NFC_CFG_DTO_MAX);
|
|
|
|
ret = atmel_nand_controller_add_nands(&nc->base);
|
|
if (ret)
|
|
goto err;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
atmel_hsmc_nand_controller_remove(&nc->base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
|
|
.probe = atmel_hsmc_nand_controller_probe,
|
|
.remove = atmel_hsmc_nand_controller_remove,
|
|
.ecc_init = atmel_hsmc_nand_ecc_init,
|
|
.nand_init = atmel_hsmc_nand_init,
|
|
.setup_data_interface = atmel_hsmc_nand_setup_data_interface,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
|
|
.has_dma = true,
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_hsmc_nc_ops,
|
|
};
|
|
|
|
/* Only used to parse old bindings. */
|
|
static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
|
|
.has_dma = true,
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_hsmc_nc_ops,
|
|
.legacy_of_bindings = true,
|
|
};
|
|
|
|
static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
|
|
const struct atmel_nand_controller_caps *caps)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct atmel_smc_nand_controller *nc;
|
|
int ret;
|
|
|
|
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
|
|
if (!nc)
|
|
return -ENOMEM;
|
|
|
|
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = atmel_smc_nand_controller_init(nc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return atmel_nand_controller_add_nands(&nc->base);
|
|
}
|
|
|
|
static int
|
|
atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
|
|
{
|
|
int ret;
|
|
|
|
ret = atmel_nand_controller_remove_nands(nc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
atmel_nand_controller_cleanup(nc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The SMC reg layout of at91rm9200 is completely different which prevents us
|
|
* from re-using atmel_smc_nand_setup_data_interface() for the
|
|
* ->setup_data_interface() hook.
|
|
* At this point, there's no support for the at91rm9200 SMC IP, so we leave
|
|
* ->setup_data_interface() unassigned.
|
|
*/
|
|
static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
|
|
.probe = atmel_smc_nand_controller_probe,
|
|
.remove = atmel_smc_nand_controller_remove,
|
|
.ecc_init = atmel_nand_ecc_init,
|
|
.nand_init = atmel_smc_nand_init,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &at91rm9200_nc_ops,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
|
|
.probe = atmel_smc_nand_controller_probe,
|
|
.remove = atmel_smc_nand_controller_remove,
|
|
.ecc_init = atmel_nand_ecc_init,
|
|
.nand_init = atmel_smc_nand_init,
|
|
.setup_data_interface = atmel_smc_nand_setup_data_interface,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_smc_nc_ops,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
|
|
.ale_offs = BIT(22),
|
|
.cle_offs = BIT(21),
|
|
.ops = &atmel_smc_nc_ops,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
|
|
.has_dma = true,
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_smc_nc_ops,
|
|
};
|
|
|
|
/* Only used to parse old bindings. */
|
|
static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_smc_nc_ops,
|
|
.legacy_of_bindings = true,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
|
|
.ale_offs = BIT(22),
|
|
.cle_offs = BIT(21),
|
|
.ops = &atmel_smc_nc_ops,
|
|
.legacy_of_bindings = true,
|
|
};
|
|
|
|
static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
|
|
.has_dma = true,
|
|
.ale_offs = BIT(21),
|
|
.cle_offs = BIT(22),
|
|
.ops = &atmel_smc_nc_ops,
|
|
.legacy_of_bindings = true,
|
|
};
|
|
|
|
static const struct of_device_id atmel_nand_controller_of_ids[] = {
|
|
{
|
|
.compatible = "atmel,at91rm9200-nand-controller",
|
|
.data = &atmel_rm9200_nc_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9260-nand-controller",
|
|
.data = &atmel_sam9260_nc_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9261-nand-controller",
|
|
.data = &atmel_sam9261_nc_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,at91sam9g45-nand-controller",
|
|
.data = &atmel_sam9g45_nc_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,sama5d3-nand-controller",
|
|
.data = &atmel_sama5_nc_caps,
|
|
},
|
|
/* Support for old/deprecated bindings: */
|
|
{
|
|
.compatible = "atmel,at91rm9200-nand",
|
|
.data = &atmel_rm9200_nand_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,sama5d4-nand",
|
|
.data = &atmel_rm9200_nand_caps,
|
|
},
|
|
{
|
|
.compatible = "atmel,sama5d2-nand",
|
|
.data = &atmel_rm9200_nand_caps,
|
|
},
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
|
|
|
|
static int atmel_nand_controller_probe(struct platform_device *pdev)
|
|
{
|
|
const struct atmel_nand_controller_caps *caps;
|
|
|
|
if (pdev->id_entry)
|
|
caps = (void *)pdev->id_entry->driver_data;
|
|
else
|
|
caps = of_device_get_match_data(&pdev->dev);
|
|
|
|
if (!caps) {
|
|
dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (caps->legacy_of_bindings) {
|
|
u32 ale_offs = 21;
|
|
|
|
/*
|
|
* If we are parsing legacy DT props and the DT contains a
|
|
* valid NFC node, forward the request to the sama5 logic.
|
|
*/
|
|
if (of_find_compatible_node(pdev->dev.of_node, NULL,
|
|
"atmel,sama5d3-nfc"))
|
|
caps = &atmel_sama5_nand_caps;
|
|
|
|
/*
|
|
* Even if the compatible says we are dealing with an
|
|
* at91rm9200 controller, the atmel,nand-has-dma specify that
|
|
* this controller supports DMA, which means we are in fact
|
|
* dealing with an at91sam9g45+ controller.
|
|
*/
|
|
if (!caps->has_dma &&
|
|
of_property_read_bool(pdev->dev.of_node,
|
|
"atmel,nand-has-dma"))
|
|
caps = &atmel_sam9g45_nand_caps;
|
|
|
|
/*
|
|
* All SoCs except the at91sam9261 are assigning ALE to A21 and
|
|
* CLE to A22. If atmel,nand-addr-offset != 21 this means we're
|
|
* actually dealing with an at91sam9261 controller.
|
|
*/
|
|
of_property_read_u32(pdev->dev.of_node,
|
|
"atmel,nand-addr-offset", &ale_offs);
|
|
if (ale_offs != 21)
|
|
caps = &atmel_sam9261_nand_caps;
|
|
}
|
|
|
|
return caps->ops->probe(pdev, caps);
|
|
}
|
|
|
|
static int atmel_nand_controller_remove(struct platform_device *pdev)
|
|
{
|
|
struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
|
|
|
|
return nc->caps->ops->remove(nc);
|
|
}
|
|
|
|
static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
|
|
{
|
|
struct atmel_nand_controller *nc = dev_get_drvdata(dev);
|
|
struct atmel_nand *nand;
|
|
|
|
list_for_each_entry(nand, &nc->chips, node) {
|
|
int i;
|
|
|
|
for (i = 0; i < nand->numcs; i++)
|
|
nand_reset(&nand->base, i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
|
|
atmel_nand_controller_resume);
|
|
|
|
static struct platform_driver atmel_nand_controller_driver = {
|
|
.driver = {
|
|
.name = "atmel-nand-controller",
|
|
.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
|
|
},
|
|
.probe = atmel_nand_controller_probe,
|
|
.remove = atmel_nand_controller_remove,
|
|
};
|
|
module_platform_driver(atmel_nand_controller_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
|
|
MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
|
|
MODULE_ALIAS("platform:atmel-nand-controller");
|