mirror of https://gitee.com/openkylin/linux.git
715 lines
20 KiB
C
715 lines
20 KiB
C
/*
|
|
* Video Capture Driver (Video for Linux 1/2)
|
|
* for the Matrox Marvel G200,G400 and Rainbow Runner-G series
|
|
*
|
|
* This module is an interface to the KS0127 video decoder chip.
|
|
*
|
|
* Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*****************************************************************************
|
|
*
|
|
* Modified and extended by
|
|
* Mike Bernson <mike@mlb.org>
|
|
* Gerard v.d. Horst
|
|
* Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
|
|
* Gernot Ziegler <gz@lysator.liu.se>
|
|
*
|
|
* Version History:
|
|
* V1.0 Ryan Drake Initial version by Ryan Drake
|
|
* V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/slab.h>
|
|
#include <media/v4l2-device.h>
|
|
#include "ks0127.h"
|
|
|
|
MODULE_DESCRIPTION("KS0127 video decoder driver");
|
|
MODULE_AUTHOR("Ryan Drake");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* Addresses */
|
|
#define I2C_KS0127_ADDON 0xD8
|
|
#define I2C_KS0127_ONBOARD 0xDA
|
|
|
|
|
|
/* ks0127 control registers */
|
|
#define KS_STAT 0x00
|
|
#define KS_CMDA 0x01
|
|
#define KS_CMDB 0x02
|
|
#define KS_CMDC 0x03
|
|
#define KS_CMDD 0x04
|
|
#define KS_HAVB 0x05
|
|
#define KS_HAVE 0x06
|
|
#define KS_HS1B 0x07
|
|
#define KS_HS1E 0x08
|
|
#define KS_HS2B 0x09
|
|
#define KS_HS2E 0x0a
|
|
#define KS_AGC 0x0b
|
|
#define KS_HXTRA 0x0c
|
|
#define KS_CDEM 0x0d
|
|
#define KS_PORTAB 0x0e
|
|
#define KS_LUMA 0x0f
|
|
#define KS_CON 0x10
|
|
#define KS_BRT 0x11
|
|
#define KS_CHROMA 0x12
|
|
#define KS_CHROMB 0x13
|
|
#define KS_DEMOD 0x14
|
|
#define KS_SAT 0x15
|
|
#define KS_HUE 0x16
|
|
#define KS_VERTIA 0x17
|
|
#define KS_VERTIB 0x18
|
|
#define KS_VERTIC 0x19
|
|
#define KS_HSCLL 0x1a
|
|
#define KS_HSCLH 0x1b
|
|
#define KS_VSCLL 0x1c
|
|
#define KS_VSCLH 0x1d
|
|
#define KS_OFMTA 0x1e
|
|
#define KS_OFMTB 0x1f
|
|
#define KS_VBICTL 0x20
|
|
#define KS_CCDAT2 0x21
|
|
#define KS_CCDAT1 0x22
|
|
#define KS_VBIL30 0x23
|
|
#define KS_VBIL74 0x24
|
|
#define KS_VBIL118 0x25
|
|
#define KS_VBIL1512 0x26
|
|
#define KS_TTFRAM 0x27
|
|
#define KS_TESTA 0x28
|
|
#define KS_UVOFFH 0x29
|
|
#define KS_UVOFFL 0x2a
|
|
#define KS_UGAIN 0x2b
|
|
#define KS_VGAIN 0x2c
|
|
#define KS_VAVB 0x2d
|
|
#define KS_VAVE 0x2e
|
|
#define KS_CTRACK 0x2f
|
|
#define KS_POLCTL 0x30
|
|
#define KS_REFCOD 0x31
|
|
#define KS_INVALY 0x32
|
|
#define KS_INVALU 0x33
|
|
#define KS_INVALV 0x34
|
|
#define KS_UNUSEY 0x35
|
|
#define KS_UNUSEU 0x36
|
|
#define KS_UNUSEV 0x37
|
|
#define KS_USRSAV 0x38
|
|
#define KS_USREAV 0x39
|
|
#define KS_SHS1A 0x3a
|
|
#define KS_SHS1B 0x3b
|
|
#define KS_SHS1C 0x3c
|
|
#define KS_CMDE 0x3d
|
|
#define KS_VSDEL 0x3e
|
|
#define KS_CMDF 0x3f
|
|
#define KS_GAMMA0 0x40
|
|
#define KS_GAMMA1 0x41
|
|
#define KS_GAMMA2 0x42
|
|
#define KS_GAMMA3 0x43
|
|
#define KS_GAMMA4 0x44
|
|
#define KS_GAMMA5 0x45
|
|
#define KS_GAMMA6 0x46
|
|
#define KS_GAMMA7 0x47
|
|
#define KS_GAMMA8 0x48
|
|
#define KS_GAMMA9 0x49
|
|
#define KS_GAMMA10 0x4a
|
|
#define KS_GAMMA11 0x4b
|
|
#define KS_GAMMA12 0x4c
|
|
#define KS_GAMMA13 0x4d
|
|
#define KS_GAMMA14 0x4e
|
|
#define KS_GAMMA15 0x4f
|
|
#define KS_GAMMA16 0x50
|
|
#define KS_GAMMA17 0x51
|
|
#define KS_GAMMA18 0x52
|
|
#define KS_GAMMA19 0x53
|
|
#define KS_GAMMA20 0x54
|
|
#define KS_GAMMA21 0x55
|
|
#define KS_GAMMA22 0x56
|
|
#define KS_GAMMA23 0x57
|
|
#define KS_GAMMA24 0x58
|
|
#define KS_GAMMA25 0x59
|
|
#define KS_GAMMA26 0x5a
|
|
#define KS_GAMMA27 0x5b
|
|
#define KS_GAMMA28 0x5c
|
|
#define KS_GAMMA29 0x5d
|
|
#define KS_GAMMA30 0x5e
|
|
#define KS_GAMMA31 0x5f
|
|
#define KS_GAMMAD0 0x60
|
|
#define KS_GAMMAD1 0x61
|
|
#define KS_GAMMAD2 0x62
|
|
#define KS_GAMMAD3 0x63
|
|
#define KS_GAMMAD4 0x64
|
|
#define KS_GAMMAD5 0x65
|
|
#define KS_GAMMAD6 0x66
|
|
#define KS_GAMMAD7 0x67
|
|
#define KS_GAMMAD8 0x68
|
|
#define KS_GAMMAD9 0x69
|
|
#define KS_GAMMAD10 0x6a
|
|
#define KS_GAMMAD11 0x6b
|
|
#define KS_GAMMAD12 0x6c
|
|
#define KS_GAMMAD13 0x6d
|
|
#define KS_GAMMAD14 0x6e
|
|
#define KS_GAMMAD15 0x6f
|
|
#define KS_GAMMAD16 0x70
|
|
#define KS_GAMMAD17 0x71
|
|
#define KS_GAMMAD18 0x72
|
|
#define KS_GAMMAD19 0x73
|
|
#define KS_GAMMAD20 0x74
|
|
#define KS_GAMMAD21 0x75
|
|
#define KS_GAMMAD22 0x76
|
|
#define KS_GAMMAD23 0x77
|
|
#define KS_GAMMAD24 0x78
|
|
#define KS_GAMMAD25 0x79
|
|
#define KS_GAMMAD26 0x7a
|
|
#define KS_GAMMAD27 0x7b
|
|
#define KS_GAMMAD28 0x7c
|
|
#define KS_GAMMAD29 0x7d
|
|
#define KS_GAMMAD30 0x7e
|
|
#define KS_GAMMAD31 0x7f
|
|
|
|
|
|
/****************************************************************************
|
|
* mga_dev : represents one ks0127 chip.
|
|
****************************************************************************/
|
|
|
|
struct adjust {
|
|
int contrast;
|
|
int bright;
|
|
int hue;
|
|
int ugain;
|
|
int vgain;
|
|
};
|
|
|
|
struct ks0127 {
|
|
struct v4l2_subdev sd;
|
|
v4l2_std_id norm;
|
|
u8 regs[256];
|
|
};
|
|
|
|
static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
|
|
{
|
|
return container_of(sd, struct ks0127, sd);
|
|
}
|
|
|
|
|
|
static int debug; /* insmod parameter */
|
|
|
|
module_param(debug, int, 0);
|
|
MODULE_PARM_DESC(debug, "Debug output");
|
|
|
|
static u8 reg_defaults[64];
|
|
|
|
static void init_reg_defaults(void)
|
|
{
|
|
static int initialized;
|
|
u8 *table = reg_defaults;
|
|
|
|
if (initialized)
|
|
return;
|
|
initialized = 1;
|
|
|
|
table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
|
|
table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
|
|
table[KS_CMDC] = 0x00; /* Test options */
|
|
/* clock & input select, write 1 to PORTA */
|
|
table[KS_CMDD] = 0x01;
|
|
table[KS_HAVB] = 0x00; /* HAV Start Control */
|
|
table[KS_HAVE] = 0x00; /* HAV End Control */
|
|
table[KS_HS1B] = 0x10; /* HS1 Start Control */
|
|
table[KS_HS1E] = 0x00; /* HS1 End Control */
|
|
table[KS_HS2B] = 0x00; /* HS2 Start Control */
|
|
table[KS_HS2E] = 0x00; /* HS2 End Control */
|
|
table[KS_AGC] = 0x53; /* Manual setting for AGC */
|
|
table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
|
|
table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
|
|
table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
|
|
table[KS_LUMA] = 0x01; /* Luma control */
|
|
table[KS_CON] = 0x00; /* Contrast Control */
|
|
table[KS_BRT] = 0x00; /* Brightness Control */
|
|
table[KS_CHROMA] = 0x2a; /* Chroma control A */
|
|
table[KS_CHROMB] = 0x90; /* Chroma control B */
|
|
table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
|
|
table[KS_SAT] = 0x00; /* Color Saturation Control*/
|
|
table[KS_HUE] = 0x00; /* Hue Control */
|
|
table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
|
|
/* Vertical Processing Control B, luma 1 line delayed */
|
|
table[KS_VERTIB] = 0x12;
|
|
table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
|
|
table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
|
|
table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
|
|
table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
|
|
table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
|
|
/* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
|
|
table[KS_OFMTA] = 0x30;
|
|
table[KS_OFMTB] = 0x00; /* Output Control B */
|
|
/* VBI Decoder Control; 4bit fmt: avoid Y overflow */
|
|
table[KS_VBICTL] = 0x5d;
|
|
table[KS_CCDAT2] = 0x00; /* Read Only register */
|
|
table[KS_CCDAT1] = 0x00; /* Read Only register */
|
|
table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
|
|
table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
|
|
table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
|
|
table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
|
|
table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
|
|
table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
|
|
table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
|
|
table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
|
|
table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
|
|
table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
|
|
table[KS_VAVB] = 0x07; /* VAV Begin */
|
|
table[KS_VAVE] = 0x00; /* VAV End */
|
|
table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
|
|
table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
|
|
table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
|
|
table[KS_INVALY] = 0x10; /* Invalid Y Code */
|
|
table[KS_INVALU] = 0x80; /* Invalid U Code */
|
|
table[KS_INVALV] = 0x80; /* Invalid V Code */
|
|
table[KS_UNUSEY] = 0x10; /* Unused Y Code */
|
|
table[KS_UNUSEU] = 0x80; /* Unused U Code */
|
|
table[KS_UNUSEV] = 0x80; /* Unused V Code */
|
|
table[KS_USRSAV] = 0x00; /* reserved */
|
|
table[KS_USREAV] = 0x00; /* reserved */
|
|
table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
|
|
/* User Defined SHS1 B, ALT656=1 on 0127B */
|
|
table[KS_SHS1B] = 0x80;
|
|
table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
|
|
table[KS_CMDE] = 0x00; /* Command Register E */
|
|
table[KS_VSDEL] = 0x00; /* VS Delay Control */
|
|
/* Command Register F, update -immediately- */
|
|
/* (there might come no vsync)*/
|
|
table[KS_CMDF] = 0x02;
|
|
}
|
|
|
|
|
|
/* We need to manually read because of a bug in the KS0127 chip.
|
|
*
|
|
* An explanation from kayork@mail.utexas.edu:
|
|
*
|
|
* During I2C reads, the KS0127 only samples for a stop condition
|
|
* during the place where the acknowledge bit should be. Any standard
|
|
* I2C implementation (correctly) throws in another clock transition
|
|
* at the 9th bit, and the KS0127 will not recognize the stop condition
|
|
* and will continue to clock out data.
|
|
*
|
|
* So we have to do the read ourself. Big deal.
|
|
* workaround in i2c-algo-bit
|
|
*/
|
|
|
|
|
|
static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
char val = 0;
|
|
struct i2c_msg msgs[] = {
|
|
{
|
|
.addr = client->addr,
|
|
.len = sizeof(reg),
|
|
.buf = ®
|
|
},
|
|
{
|
|
.addr = client->addr,
|
|
.flags = I2C_M_RD | I2C_M_NO_RD_ACK,
|
|
.len = sizeof(val),
|
|
.buf = &val
|
|
}
|
|
};
|
|
int ret;
|
|
|
|
ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
|
|
if (ret != ARRAY_SIZE(msgs))
|
|
v4l2_dbg(1, debug, sd, "read error\n");
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
|
|
{
|
|
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
|
struct ks0127 *ks = to_ks0127(sd);
|
|
char msg[] = { reg, val };
|
|
|
|
if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
|
|
v4l2_dbg(1, debug, sd, "write error\n");
|
|
|
|
ks->regs[reg] = val;
|
|
}
|
|
|
|
|
|
/* generic bit-twiddling */
|
|
static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
|
|
{
|
|
struct ks0127 *ks = to_ks0127(sd);
|
|
|
|
u8 val = ks->regs[reg];
|
|
val = (val & and_v) | or_v;
|
|
ks0127_write(sd, reg, val);
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************
|
|
* ks0127 private api
|
|
****************************************************************************/
|
|
static void ks0127_init(struct v4l2_subdev *sd)
|
|
{
|
|
u8 *table = reg_defaults;
|
|
int i;
|
|
|
|
v4l2_dbg(1, debug, sd, "reset\n");
|
|
msleep(1);
|
|
|
|
/* initialize all registers to known values */
|
|
/* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
|
|
|
|
for (i = 1; i < 33; i++)
|
|
ks0127_write(sd, i, table[i]);
|
|
|
|
for (i = 35; i < 40; i++)
|
|
ks0127_write(sd, i, table[i]);
|
|
|
|
for (i = 41; i < 56; i++)
|
|
ks0127_write(sd, i, table[i]);
|
|
|
|
for (i = 58; i < 64; i++)
|
|
ks0127_write(sd, i, table[i]);
|
|
|
|
|
|
if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
|
|
v4l2_dbg(1, debug, sd, "ks0122s found\n");
|
|
return;
|
|
}
|
|
|
|
switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
|
|
case 0:
|
|
v4l2_dbg(1, debug, sd, "ks0127 found\n");
|
|
break;
|
|
|
|
case 9:
|
|
v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
|
|
break;
|
|
|
|
default:
|
|
v4l2_dbg(1, debug, sd, "unknown revision\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int ks0127_s_routing(struct v4l2_subdev *sd,
|
|
u32 input, u32 output, u32 config)
|
|
{
|
|
struct ks0127 *ks = to_ks0127(sd);
|
|
|
|
switch (input) {
|
|
case KS_INPUT_COMPOSITE_1:
|
|
case KS_INPUT_COMPOSITE_2:
|
|
case KS_INPUT_COMPOSITE_3:
|
|
case KS_INPUT_COMPOSITE_4:
|
|
case KS_INPUT_COMPOSITE_5:
|
|
case KS_INPUT_COMPOSITE_6:
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_routing %d: Composite\n", input);
|
|
/* autodetect 50/60 Hz */
|
|
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
|
|
/* VSE=0 */
|
|
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
|
|
/* set input line */
|
|
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
|
|
/* non-freerunning mode */
|
|
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
|
|
/* analog input */
|
|
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
|
|
/* enable chroma demodulation */
|
|
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
|
|
/* chroma trap, HYBWR=1 */
|
|
ks0127_and_or(sd, KS_LUMA, 0x00,
|
|
(reg_defaults[KS_LUMA])|0x0c);
|
|
/* scaler fullbw, luma comb off */
|
|
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
|
|
/* manual chroma comb .25 .5 .25 */
|
|
ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
|
|
|
|
/* chroma path delay */
|
|
ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
|
|
|
|
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
|
|
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
|
|
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
|
|
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
|
|
break;
|
|
|
|
case KS_INPUT_SVIDEO_1:
|
|
case KS_INPUT_SVIDEO_2:
|
|
case KS_INPUT_SVIDEO_3:
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_routing %d: S-Video\n", input);
|
|
/* autodetect 50/60 Hz */
|
|
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
|
|
/* VSE=0 */
|
|
ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
|
|
/* set input line */
|
|
ks0127_and_or(sd, KS_CMDB, 0xb0, input);
|
|
/* non-freerunning mode */
|
|
ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
|
|
/* analog input */
|
|
ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
|
|
/* enable chroma demodulation */
|
|
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
|
|
ks0127_and_or(sd, KS_LUMA, 0x00,
|
|
reg_defaults[KS_LUMA]);
|
|
/* disable luma comb */
|
|
ks0127_and_or(sd, KS_VERTIA, 0x08,
|
|
(reg_defaults[KS_VERTIA]&0xf0)|0x01);
|
|
ks0127_and_or(sd, KS_VERTIC, 0x0f,
|
|
reg_defaults[KS_VERTIC]&0xf0);
|
|
|
|
ks0127_and_or(sd, KS_CHROMB, 0x0f,
|
|
reg_defaults[KS_CHROMB]&0xf0);
|
|
|
|
ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
|
|
ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
|
|
ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
|
|
ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
|
|
break;
|
|
|
|
case KS_INPUT_YUV656:
|
|
v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
|
|
if (ks->norm & V4L2_STD_525_60)
|
|
/* force 60 Hz */
|
|
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
|
|
else
|
|
/* force 50 Hz */
|
|
ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
|
|
|
|
ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
|
|
/* set input line and VALIGN */
|
|
ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
|
|
/* freerunning mode, */
|
|
/* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
|
|
ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
|
|
/* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
|
|
ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
|
|
/* disable chroma demodulation */
|
|
ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
|
|
/* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
|
|
ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
|
|
ks0127_and_or(sd, KS_VERTIC, 0x0f,
|
|
reg_defaults[KS_VERTIC]&0xf0);
|
|
|
|
/* scaler fullbw, luma comb off */
|
|
ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
|
|
|
|
ks0127_and_or(sd, KS_CHROMB, 0x0f,
|
|
reg_defaults[KS_CHROMB]&0xf0);
|
|
|
|
ks0127_and_or(sd, KS_CON, 0x00, 0x00);
|
|
ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
|
|
/* spec: 229 (e5) */
|
|
ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
|
|
ks0127_and_or(sd, KS_HUE, 0x00, 0);
|
|
|
|
ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
|
|
ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
|
|
|
|
/*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
|
|
ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
|
|
ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
|
|
break;
|
|
|
|
default:
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_routing: Unknown input %d\n", input);
|
|
break;
|
|
}
|
|
|
|
/* hack: CDMLPF sometimes spontaneously switches on; */
|
|
/* force back off */
|
|
ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
|
|
return 0;
|
|
}
|
|
|
|
static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
|
|
{
|
|
struct ks0127 *ks = to_ks0127(sd);
|
|
|
|
/* Set to automatic SECAM/Fsc mode */
|
|
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
|
|
|
|
ks->norm = std;
|
|
if (std & V4L2_STD_NTSC) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_std: NTSC_M\n");
|
|
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
|
|
} else if (std & V4L2_STD_PAL_N) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_std: NTSC_N (fixme)\n");
|
|
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
|
|
} else if (std & V4L2_STD_PAL) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_std: PAL_N\n");
|
|
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
|
|
} else if (std & V4L2_STD_PAL_M) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_std: PAL_M (fixme)\n");
|
|
ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
|
|
} else if (std & V4L2_STD_SECAM) {
|
|
v4l2_dbg(1, debug, sd,
|
|
"s_std: SECAM\n");
|
|
|
|
/* set to secam autodetection */
|
|
ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
|
|
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
|
|
schedule_timeout_interruptible(HZ/10+1);
|
|
|
|
/* did it autodetect? */
|
|
if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
|
|
/* force to secam mode */
|
|
ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
|
|
} else {
|
|
v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
|
|
(unsigned long long)std);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
|
|
if (enable) {
|
|
/* All output pins on */
|
|
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
|
|
/* Obey the OEN pin */
|
|
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
|
|
} else {
|
|
/* Video output pins off */
|
|
ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
|
|
/* Ignore the OEN pin */
|
|
ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
|
|
{
|
|
int stat = V4L2_IN_ST_NO_SIGNAL;
|
|
u8 status;
|
|
v4l2_std_id std = pstd ? *pstd : V4L2_STD_ALL;
|
|
|
|
status = ks0127_read(sd, KS_STAT);
|
|
if (!(status & 0x20)) /* NOVID not set */
|
|
stat = 0;
|
|
if (!(status & 0x01)) { /* CLOCK set */
|
|
stat |= V4L2_IN_ST_NO_COLOR;
|
|
std = V4L2_STD_UNKNOWN;
|
|
} else {
|
|
if ((status & 0x08)) /* PALDET set */
|
|
std &= V4L2_STD_PAL;
|
|
else
|
|
std &= V4L2_STD_NTSC;
|
|
}
|
|
if ((status & 0x10)) /* PALDET set */
|
|
std &= V4L2_STD_525_60;
|
|
else
|
|
std &= V4L2_STD_625_50;
|
|
if (pstd)
|
|
*pstd = std;
|
|
if (pstatus)
|
|
*pstatus = stat;
|
|
return 0;
|
|
}
|
|
|
|
static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "querystd\n");
|
|
return ks0127_status(sd, NULL, std);
|
|
}
|
|
|
|
static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
|
|
{
|
|
v4l2_dbg(1, debug, sd, "g_input_status\n");
|
|
return ks0127_status(sd, status, NULL);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
static const struct v4l2_subdev_video_ops ks0127_video_ops = {
|
|
.s_std = ks0127_s_std,
|
|
.s_routing = ks0127_s_routing,
|
|
.s_stream = ks0127_s_stream,
|
|
.querystd = ks0127_querystd,
|
|
.g_input_status = ks0127_g_input_status,
|
|
};
|
|
|
|
static const struct v4l2_subdev_ops ks0127_ops = {
|
|
.video = &ks0127_video_ops,
|
|
};
|
|
|
|
/* ----------------------------------------------------------------------- */
|
|
|
|
|
|
static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
|
|
{
|
|
struct ks0127 *ks;
|
|
struct v4l2_subdev *sd;
|
|
|
|
v4l_info(client, "%s chip found @ 0x%x (%s)\n",
|
|
client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
|
|
client->addr << 1, client->adapter->name);
|
|
|
|
ks = devm_kzalloc(&client->dev, sizeof(*ks), GFP_KERNEL);
|
|
if (ks == NULL)
|
|
return -ENOMEM;
|
|
sd = &ks->sd;
|
|
v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
|
|
|
|
/* power up */
|
|
init_reg_defaults();
|
|
ks0127_write(sd, KS_CMDA, 0x2c);
|
|
mdelay(10);
|
|
|
|
/* reset the device */
|
|
ks0127_init(sd);
|
|
return 0;
|
|
}
|
|
|
|
static int ks0127_remove(struct i2c_client *client)
|
|
{
|
|
struct v4l2_subdev *sd = i2c_get_clientdata(client);
|
|
|
|
v4l2_device_unregister_subdev(sd);
|
|
ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
|
|
ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
|
|
return 0;
|
|
}
|
|
|
|
static const struct i2c_device_id ks0127_id[] = {
|
|
{ "ks0127", 0 },
|
|
{ "ks0127b", 0 },
|
|
{ "ks0122s", 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, ks0127_id);
|
|
|
|
static struct i2c_driver ks0127_driver = {
|
|
.driver = {
|
|
.name = "ks0127",
|
|
},
|
|
.probe = ks0127_probe,
|
|
.remove = ks0127_remove,
|
|
.id_table = ks0127_id,
|
|
};
|
|
|
|
module_i2c_driver(ks0127_driver);
|