linux/crypto/testmgr.c

3978 lines
86 KiB
C

/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
*/
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <crypto/rng.h>
#include <crypto/drbg.h>
#include <crypto/akcipher.h>
#include "internal.h"
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Indexes into the xbuf to simulate cross-page access.
*/
#define IDX1 32
#define IDX2 32400
#define IDX3 1
#define IDX4 8193
#define IDX5 22222
#define IDX6 17101
#define IDX7 27333
#define IDX8 3000
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct tcrypt_result {
struct completion completion;
int err;
};
struct aead_test_suite {
struct {
struct aead_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct cipher_test_suite {
struct {
struct cipher_testvec *vecs;
unsigned int count;
} enc, dec;
};
struct comp_test_suite {
struct {
struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct pcomp_test_suite {
struct {
struct pcomp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
struct cprng_testvec *vecs;
unsigned int count;
};
struct drbg_test_suite {
struct drbg_testvec *vecs;
unsigned int count;
};
struct akcipher_test_suite {
struct akcipher_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct pcomp_test_suite pcomp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher;
} suite;
};
static unsigned int IDX[8] = { IDX1, IDX2, IDX3, IDX4, IDX5, IDX6, IDX7, IDX8 };
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static void tcrypt_complete(struct crypto_async_request *req, int err)
{
struct tcrypt_result *res = req->data;
if (err == -EINPROGRESS)
return;
res->err = err;
complete(&res->completion);
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (void *)__get_free_page(GFP_KERNEL);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_page((unsigned long)buf[i]);
return -ENOMEM;
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_page((unsigned long)buf[i]);
}
static int wait_async_op(struct tcrypt_result *tr, int ret)
{
if (ret == -EINPROGRESS || ret == -EBUSY) {
wait_for_completion(&tr->completion);
reinit_completion(&tr->completion);
ret = tr->err;
}
return ret;
}
static int __test_hash(struct crypto_ahash *tfm, struct hash_testvec *template,
unsigned int tcount, bool use_digest,
const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
unsigned int i, j, k, temp;
struct scatterlist sg[8];
char *result;
char *key;
struct ahash_request *req;
struct tcrypt_result tresult;
void *hash_buff;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
result = kmalloc(MAX_DIGEST_SIZE, GFP_KERNEL);
if (!result)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_nobuf;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
init_completion(&tresult.completion);
req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!req) {
printk(KERN_ERR "alg: hash: Failed to allocate request for "
"%s\n", algo);
goto out_noreq;
}
ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &tresult);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].psize > PAGE_SIZE))
goto out;
j++;
memset(result, 0, MAX_DIGEST_SIZE);
hash_buff = xbuf[0];
hash_buff += align_offset;
memcpy(hash_buff, template[i].plaintext, template[i].psize);
sg_init_one(&sg[0], hash_buff, template[i].psize);
if (template[i].ksize) {
crypto_ahash_clear_flags(tfm, ~0);
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey failed on "
"test %d for %s: ret=%d\n", j, algo,
-ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
if (use_digest) {
ret = wait_async_op(&tresult, crypto_ahash_digest(req));
if (ret) {
pr_err("alg: hash: digest failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
} else {
ret = wait_async_op(&tresult, crypto_ahash_init(req));
if (ret) {
pr_err("alt: hash: init failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = wait_async_op(&tresult, crypto_ahash_update(req));
if (ret) {
pr_err("alt: hash: update failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
ret = wait_async_op(&tresult, crypto_ahash_final(req));
if (ret) {
pr_err("alt: hash: final failed on test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Test %d failed for %s\n",
j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
memset(result, 0, MAX_DIGEST_SIZE);
temp = 0;
sg_init_table(sg, template[i].np);
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].plaintext + temp,
template[i].tap[k]),
template[i].tap[k]);
temp += template[i].tap[k];
}
if (template[i].ksize) {
if (template[i].ksize > MAX_KEYLEN) {
pr_err("alg: hash: setkey failed on test %d for %s: key size %d > %d\n",
j, algo, template[i].ksize, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
crypto_ahash_clear_flags(tfm, ~0);
memcpy(key, template[i].key, template[i].ksize);
ret = crypto_ahash_setkey(tfm, key, template[i].ksize);
if (ret) {
printk(KERN_ERR "alg: hash: setkey "
"failed on chunking test %d "
"for %s: ret=%d\n", j, algo, -ret);
goto out;
}
}
ahash_request_set_crypt(req, sg, result, template[i].psize);
ret = crypto_ahash_digest(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&tresult.completion);
reinit_completion(&tresult.completion);
ret = tresult.err;
if (!ret)
break;
/* fall through */
default:
printk(KERN_ERR "alg: hash: digest failed "
"on chunking test %d for %s: "
"ret=%d\n", j, algo, -ret);
goto out;
}
if (memcmp(result, template[i].digest,
crypto_ahash_digestsize(tfm))) {
printk(KERN_ERR "alg: hash: Chunking test %d "
"failed for %s\n", j, algo);
hexdump(result, crypto_ahash_digestsize(tfm));
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
ahash_request_free(req);
out_noreq:
testmgr_free_buf(xbuf);
out_nobuf:
kfree(key);
kfree(result);
return ret;
}
static int test_hash(struct crypto_ahash *tfm, struct hash_testvec *template,
unsigned int tcount, bool use_digest)
{
unsigned int alignmask;
int ret;
ret = __test_hash(tfm, template, tcount, use_digest, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_hash(tfm, template, tcount, use_digest, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_hash(tfm, template, tcount, use_digest,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int __test_aead(struct crypto_aead *tfm, int enc,
struct aead_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
unsigned int i, j, k, n, temp;
int ret = -ENOMEM;
char *q;
char *key;
struct aead_request *req;
struct scatterlist *sg;
struct scatterlist *sgout;
const char *e, *d;
struct tcrypt_result result;
unsigned int authsize, iv_len;
void *input;
void *output;
void *assoc;
char *iv;
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
char *axbuf[XBUFSIZE];
iv = kzalloc(MAX_IVLEN, GFP_KERNEL);
if (!iv)
return ret;
key = kmalloc(MAX_KEYLEN, GFP_KERNEL);
if (!key)
goto out_noxbuf;
if (testmgr_alloc_buf(xbuf))
goto out_noxbuf;
if (testmgr_alloc_buf(axbuf))
goto out_noaxbuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
/* avoid "the frame size is larger than 1024 bytes" compiler warning */
sg = kmalloc(sizeof(*sg) * 8 * (diff_dst ? 4 : 2), GFP_KERNEL);
if (!sg)
goto out_nosg;
sgout = &sg[16];
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: aead%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
for (i = 0, j = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
/* some templates have no input data but they will
* touch input
*/
input = xbuf[0];
input += align_offset;
assoc = axbuf[0];
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen >
PAGE_SIZE || template[i].alen > PAGE_SIZE))
goto out;
memcpy(input, template[i].input, template[i].ilen);
memcpy(assoc, template[i].assoc, template[i].alen);
iv_len = crypto_aead_ivsize(tfm);
if (template[i].iv)
memcpy(iv, template[i].iv, iv_len);
else
memset(iv, 0, iv_len);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen,
MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (!ret == template[i].fail) {
pr_err("alg: aead%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on test %d for %s\n",
d, authsize, j, algo);
goto out;
}
k = !!template[i].alen;
sg_init_table(sg, k + 1);
sg_set_buf(&sg[0], assoc, template[i].alen);
sg_set_buf(&sg[k], input,
template[i].ilen + (enc ? authsize : 0));
output = input;
if (diff_dst) {
sg_init_table(sgout, k + 1);
sg_set_buf(&sgout[0], assoc, template[i].alen);
output = xoutbuf[0];
output += align_offset;
sg_set_buf(&sgout[k], output,
template[i].rlen + (enc ? 0 : authsize));
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
aead_request_set_ad(req, template[i].alen);
ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = output;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: aead%s: Test %d failed on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0, j = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
j++;
if (template[i].iv)
memcpy(iv, template[i].iv, MAX_IVLEN);
else
memset(iv, 0, MAX_IVLEN);
crypto_aead_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
if (template[i].klen > MAX_KEYLEN) {
pr_err("alg: aead%s: setkey failed on test %d for %s: key size %d > %d\n",
d, j, algo, template[i].klen, MAX_KEYLEN);
ret = -EINVAL;
goto out;
}
memcpy(key, template[i].key, template[i].klen);
ret = crypto_aead_setkey(tfm, key, template[i].klen);
if (!ret == template[i].fail) {
pr_err("alg: aead%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_aead_get_flags(tfm));
goto out;
} else if (ret)
continue;
authsize = abs(template[i].rlen - template[i].ilen);
ret = -EINVAL;
sg_init_table(sg, template[i].anp + template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].anp + template[i].np);
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].anp; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].atap[k] > PAGE_SIZE))
goto out;
sg_set_buf(&sg[k],
memcpy(axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].assoc + temp,
template[i].atap[k]),
template[i].atap[k]);
if (diff_dst)
sg_set_buf(&sgout[k],
axbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]),
template[i].atap[k]);
temp += template[i].atap[k];
}
for (k = 0, temp = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
sg_set_buf(&sg[template[i].anp + k],
q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
memset(q, 0, template[i].tap[k]);
sg_set_buf(&sgout[template[i].anp + k],
q, template[i].tap[k]);
}
n = template[i].tap[k];
if (k == template[i].np - 1 && enc)
n += authsize;
if (offset_in_page(q) + n < PAGE_SIZE)
q[n] = 0;
temp += template[i].tap[k];
}
ret = crypto_aead_setauthsize(tfm, authsize);
if (ret) {
pr_err("alg: aead%s: Failed to set authsize to %u on chunk test %d for %s\n",
d, authsize, j, algo);
goto out;
}
if (enc) {
if (WARN_ON(sg[template[i].anp + k - 1].offset +
sg[template[i].anp + k - 1].length +
authsize > PAGE_SIZE)) {
ret = -EINVAL;
goto out;
}
if (diff_dst)
sgout[template[i].anp + k - 1].length +=
authsize;
sg[template[i].anp + k - 1].length += authsize;
}
aead_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen,
iv);
aead_request_set_ad(req, template[i].alen);
ret = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
switch (ret) {
case 0:
if (template[i].novrfy) {
/* verification was supposed to fail */
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret was 0, expected -EBADMSG\n",
d, e, j, algo);
/* so really, we got a bad message */
ret = -EBADMSG;
goto out;
}
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
case -EBADMSG:
if (template[i].novrfy)
/* verification failure was expected */
continue;
/* fall through */
default:
pr_err("alg: aead%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
ret = -EINVAL;
for (k = 0, temp = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
n = template[i].tap[k];
if (k == template[i].np - 1)
n += enc ? authsize : -authsize;
if (memcmp(q, template[i].result + temp, n)) {
pr_err("alg: aead%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, n);
goto out;
}
q += n;
if (k == template[i].np - 1 && !enc) {
if (!diff_dst &&
memcmp(q, template[i].input +
temp + n, authsize))
n = authsize;
else
n = 0;
} else {
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
}
if (n) {
pr_err("alg: aead%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
aead_request_free(req);
kfree(sg);
out_nosg:
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(axbuf);
out_noaxbuf:
testmgr_free_buf(xbuf);
out_noxbuf:
kfree(key);
kfree(iv);
return ret;
}
static int test_aead(struct crypto_aead *tfm, int enc,
struct aead_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_aead(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_aead(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_aead(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_aead(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np)
continue;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, template[i].input, template[i].ilen);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
printk(KERN_ERR "alg: cipher: setkey failed "
"on test %d for %s: flags=%x\n", j,
algo, crypto_cipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
for (k = 0; k < template[i].ilen;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int __test_skcipher(struct crypto_skcipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount,
const bool diff_dst, const int align_offset)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
unsigned int i, j, k, n, temp;
char *q;
struct skcipher_request *req;
struct scatterlist sg[8];
struct scatterlist sgout[8];
const char *e, *d;
struct tcrypt_result result;
void *data;
char iv[MAX_IVLEN];
char *xbuf[XBUFSIZE];
char *xoutbuf[XBUFSIZE];
int ret = -ENOMEM;
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (diff_dst && testmgr_alloc_buf(xoutbuf))
goto out_nooutbuf;
if (diff_dst)
d = "-ddst";
else
d = "";
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
init_completion(&result.completion);
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: skcipher%s: Failed to allocate request for %s\n",
d, algo);
goto out;
}
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
j = 0;
for (i = 0; i < tcount; i++) {
if (template[i].np && !template[i].also_non_np)
continue;
if (template[i].iv)
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
j++;
ret = -EINVAL;
if (WARN_ON(align_offset + template[i].ilen > PAGE_SIZE))
goto out;
data = xbuf[0];
data += align_offset;
memcpy(data, template[i].input, template[i].ilen);
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
pr_err("alg: skcipher%s: setkey failed on test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
sg_init_one(&sg[0], data, template[i].ilen);
if (diff_dst) {
data = xoutbuf[0];
data += align_offset;
sg_init_one(&sgout[0], data, template[i].ilen);
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
ret = enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
/* fall through */
default:
pr_err("alg: skcipher%s: %s failed on test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
q = data;
if (memcmp(q, template[i].result, template[i].rlen)) {
pr_err("alg: skcipher%s: Test %d failed (invalid result) on %s for %s\n",
d, j, e, algo);
hexdump(q, template[i].rlen);
ret = -EINVAL;
goto out;
}
if (template[i].iv_out &&
memcmp(iv, template[i].iv_out,
crypto_skcipher_ivsize(tfm))) {
pr_err("alg: skcipher%s: Test %d failed (invalid output IV) on %s for %s\n",
d, j, e, algo);
hexdump(iv, crypto_skcipher_ivsize(tfm));
ret = -EINVAL;
goto out;
}
}
j = 0;
for (i = 0; i < tcount; i++) {
/* alignment tests are only done with continuous buffers */
if (align_offset != 0)
break;
if (!template[i].np)
continue;
if (template[i].iv)
memcpy(iv, template[i].iv, ivsize);
else
memset(iv, 0, MAX_IVLEN);
j++;
crypto_skcipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_skcipher_set_flags(tfm,
CRYPTO_TFM_REQ_WEAK_KEY);
ret = crypto_skcipher_setkey(tfm, template[i].key,
template[i].klen);
if (!ret == template[i].fail) {
pr_err("alg: skcipher%s: setkey failed on chunk test %d for %s: flags=%x\n",
d, j, algo, crypto_skcipher_get_flags(tfm));
goto out;
} else if (ret)
continue;
temp = 0;
ret = -EINVAL;
sg_init_table(sg, template[i].np);
if (diff_dst)
sg_init_table(sgout, template[i].np);
for (k = 0; k < template[i].np; k++) {
if (WARN_ON(offset_in_page(IDX[k]) +
template[i].tap[k] > PAGE_SIZE))
goto out;
q = xbuf[IDX[k] >> PAGE_SHIFT] + offset_in_page(IDX[k]);
memcpy(q, template[i].input + temp, template[i].tap[k]);
if (offset_in_page(q) + template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
sg_set_buf(&sg[k], q, template[i].tap[k]);
if (diff_dst) {
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
sg_set_buf(&sgout[k], q, template[i].tap[k]);
memset(q, 0, template[i].tap[k]);
if (offset_in_page(q) +
template[i].tap[k] < PAGE_SIZE)
q[template[i].tap[k]] = 0;
}
temp += template[i].tap[k];
}
skcipher_request_set_crypt(req, sg, (diff_dst) ? sgout : sg,
template[i].ilen, iv);
ret = enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
switch (ret) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
wait_for_completion(&result.completion);
reinit_completion(&result.completion);
ret = result.err;
if (!ret)
break;
/* fall through */
default:
pr_err("alg: skcipher%s: %s failed on chunk test %d for %s: ret=%d\n",
d, e, j, algo, -ret);
goto out;
}
temp = 0;
ret = -EINVAL;
for (k = 0; k < template[i].np; k++) {
if (diff_dst)
q = xoutbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
else
q = xbuf[IDX[k] >> PAGE_SHIFT] +
offset_in_page(IDX[k]);
if (memcmp(q, template[i].result + temp,
template[i].tap[k])) {
pr_err("alg: skcipher%s: Chunk test %d failed on %s at page %u for %s\n",
d, j, e, k, algo);
hexdump(q, template[i].tap[k]);
goto out;
}
q += template[i].tap[k];
for (n = 0; offset_in_page(q + n) && q[n]; n++)
;
if (n) {
pr_err("alg: skcipher%s: Result buffer corruption in chunk test %d on %s at page %u for %s: %u bytes:\n",
d, j, e, k, algo, n);
hexdump(q, n);
goto out;
}
temp += template[i].tap[k];
}
}
ret = 0;
out:
skcipher_request_free(req);
if (diff_dst)
testmgr_free_buf(xoutbuf);
out_nooutbuf:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher(struct crypto_skcipher *tfm, int enc,
struct cipher_testvec *template, unsigned int tcount)
{
unsigned int alignmask;
int ret;
/* test 'dst == src' case */
ret = __test_skcipher(tfm, enc, template, tcount, false, 0);
if (ret)
return ret;
/* test 'dst != src' case */
ret = __test_skcipher(tfm, enc, template, tcount, true, 0);
if (ret)
return ret;
/* test unaligned buffers, check with one byte offset */
ret = __test_skcipher(tfm, enc, template, tcount, true, 1);
if (ret)
return ret;
alignmask = crypto_tfm_alg_alignmask(&tfm->base);
if (alignmask) {
/* Check if alignment mask for tfm is correctly set. */
ret = __test_skcipher(tfm, enc, template, tcount, true,
alignmask + 1);
if (ret)
return ret;
}
return 0;
}
static int test_comp(struct crypto_comp *tfm, struct comp_testvec *ctemplate,
struct comp_testvec *dtemplate, int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
unsigned int i;
char result[COMP_BUF_SIZE];
int ret;
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != ctemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, ctemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(result, 0, sizeof (result));
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, result, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(result, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(result, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
return ret;
}
static int test_pcomp(struct crypto_pcomp *tfm,
struct pcomp_testvec *ctemplate,
struct pcomp_testvec *dtemplate, int ctcount,
int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_pcomp_tfm(tfm));
unsigned int i;
char result[COMP_BUF_SIZE];
int res;
for (i = 0; i < ctcount; i++) {
struct comp_request req;
unsigned int produced = 0;
res = crypto_compress_setup(tfm, ctemplate[i].params,
ctemplate[i].paramsize);
if (res) {
pr_err("alg: pcomp: compression setup failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
res = crypto_compress_init(tfm);
if (res) {
pr_err("alg: pcomp: compression init failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
memset(result, 0, sizeof(result));
req.next_in = ctemplate[i].input;
req.avail_in = ctemplate[i].inlen / 2;
req.next_out = result;
req.avail_out = ctemplate[i].outlen / 2;
res = crypto_compress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: compression update failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Add remaining input data */
req.avail_in += (ctemplate[i].inlen + 1) / 2;
res = crypto_compress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: compression update failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Provide remaining output space */
req.avail_out += COMP_BUF_SIZE - ctemplate[i].outlen / 2;
res = crypto_compress_final(tfm, &req);
if (res < 0) {
pr_err("alg: pcomp: compression final failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
produced += res;
if (COMP_BUF_SIZE - req.avail_out != ctemplate[i].outlen) {
pr_err("alg: comp: Compression test %d failed for %s: "
"output len = %d (expected %d)\n", i + 1, algo,
COMP_BUF_SIZE - req.avail_out,
ctemplate[i].outlen);
return -EINVAL;
}
if (produced != ctemplate[i].outlen) {
pr_err("alg: comp: Compression test %d failed for %s: "
"returned len = %u (expected %d)\n", i + 1,
algo, produced, ctemplate[i].outlen);
return -EINVAL;
}
if (memcmp(result, ctemplate[i].output, ctemplate[i].outlen)) {
pr_err("alg: pcomp: Compression test %d failed for "
"%s\n", i + 1, algo);
hexdump(result, ctemplate[i].outlen);
return -EINVAL;
}
}
for (i = 0; i < dtcount; i++) {
struct comp_request req;
unsigned int produced = 0;
res = crypto_decompress_setup(tfm, dtemplate[i].params,
dtemplate[i].paramsize);
if (res) {
pr_err("alg: pcomp: decompression setup failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
res = crypto_decompress_init(tfm);
if (res) {
pr_err("alg: pcomp: decompression init failed on test "
"%d for %s: error=%d\n", i + 1, algo, res);
return res;
}
memset(result, 0, sizeof(result));
req.next_in = dtemplate[i].input;
req.avail_in = dtemplate[i].inlen / 2;
req.next_out = result;
req.avail_out = dtemplate[i].outlen / 2;
res = crypto_decompress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression update failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Add remaining input data */
req.avail_in += (dtemplate[i].inlen + 1) / 2;
res = crypto_decompress_update(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression update failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
/* Provide remaining output space */
req.avail_out += COMP_BUF_SIZE - dtemplate[i].outlen / 2;
res = crypto_decompress_final(tfm, &req);
if (res < 0 && (res != -EAGAIN || req.avail_in)) {
pr_err("alg: pcomp: decompression final failed on "
"test %d for %s: error=%d\n", i + 1, algo, res);
return res;
}
if (res > 0)
produced += res;
if (COMP_BUF_SIZE - req.avail_out != dtemplate[i].outlen) {
pr_err("alg: comp: Decompression test %d failed for "
"%s: output len = %d (expected %d)\n", i + 1,
algo, COMP_BUF_SIZE - req.avail_out,
dtemplate[i].outlen);
return -EINVAL;
}
if (produced != dtemplate[i].outlen) {
pr_err("alg: comp: Decompression test %d failed for "
"%s: returned len = %u (expected %d)\n", i + 1,
algo, produced, dtemplate[i].outlen);
return -EINVAL;
}
if (memcmp(result, dtemplate[i].output, dtemplate[i].outlen)) {
pr_err("alg: pcomp: Decompression test %d failed for "
"%s\n", i + 1, algo);
hexdump(result, dtemplate[i].outlen);
return -EINVAL;
}
}
return 0;
}
static int test_cprng(struct crypto_rng *tfm, struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err < 0) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d)\n", algo,
template[i].rlen);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_aead *tfm;
int err = 0;
tfm = crypto_alloc_aead(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: aead: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.aead.enc.vecs) {
err = test_aead(tfm, ENCRYPT, desc->suite.aead.enc.vecs,
desc->suite.aead.enc.count);
if (err)
goto out;
}
if (!err && desc->suite.aead.dec.vecs)
err = test_aead(tfm, DECRYPT, desc->suite.aead.dec.vecs,
desc->suite.aead.dec.count);
out:
crypto_free_aead(tfm);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_cipher *tfm;
int err = 0;
tfm = crypto_alloc_cipher(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_cipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_cipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_cipher(tfm);
return err;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_skcipher *tfm;
int err = 0;
tfm = crypto_alloc_skcipher(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: skcipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.cipher.enc.vecs) {
err = test_skcipher(tfm, ENCRYPT, desc->suite.cipher.enc.vecs,
desc->suite.cipher.enc.count);
if (err)
goto out;
}
if (desc->suite.cipher.dec.vecs)
err = test_skcipher(tfm, DECRYPT, desc->suite.cipher.dec.vecs,
desc->suite.cipher.dec.count);
out:
crypto_free_skcipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *tfm;
int err;
tfm = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: comp: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_comp(tfm, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(tfm);
return err;
}
static int alg_test_pcomp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_pcomp *tfm;
int err;
tfm = crypto_alloc_pcomp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: pcomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_pcomp(tfm, desc->suite.pcomp.comp.vecs,
desc->suite.pcomp.decomp.vecs,
desc->suite.pcomp.comp.count,
desc->suite.pcomp.decomp.count);
crypto_free_pcomp(tfm);
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_ahash *tfm;
int err;
tfm = crypto_alloc_ahash(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: hash: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, true);
if (!err)
err = test_hash(tfm, desc->suite.hash.vecs,
desc->suite.hash.count, false);
crypto_free_ahash(tfm);
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
u32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
goto out;
tfm = crypto_alloc_shash(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
err = PTR_ERR(tfm);
goto out;
}
do {
SHASH_DESC_ON_STACK(shash, tfm);
u32 *ctx = (u32 *)shash_desc_ctx(shash);
shash->tfm = tfm;
shash->flags = 0;
*ctx = le32_to_cpu(420553207);
err = crypto_shash_final(shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != ~420553207) {
printk(KERN_ERR "alg: crc32c: Test failed for %s: "
"%d\n", driver, val);
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
out:
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int drbg_cavs_test(struct drbg_testvec *test, int pr,
const char *driver, u32 type, u32 mask)
{
int ret = -EAGAIN;
struct crypto_rng *drng;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
if (!buf)
return -ENOMEM;
drng = crypto_alloc_rng(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(drng)) {
printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
"%s\n", driver);
kzfree(buf);
return -ENOMEM;
}
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, test->entropy, test->entropylen);
drbg_string_fill(&pers, test->pers, test->perslen);
ret = crypto_drbg_reset_test(drng, &pers, &test_data);
if (ret) {
printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
goto outbuf;
}
drbg_string_fill(&addtl, test->addtla, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entpra, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
drbg_string_fill(&addtl, test->addtlb, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entprb, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
ret = memcmp(test->expected, buf, test->expectedlen);
outbuf:
crypto_free_rng(drng);
kzfree(buf);
return ret;
}
static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
int err = 0;
int pr = 0;
int i = 0;
struct drbg_testvec *template = desc->suite.drbg.vecs;
unsigned int tcount = desc->suite.drbg.count;
if (0 == memcmp(driver, "drbg_pr_", 8))
pr = 1;
for (i = 0; i < tcount; i++) {
err = drbg_cavs_test(&template[i], pr, driver, type, mask);
if (err) {
printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
i, driver);
err = -EINVAL;
break;
}
}
return err;
}
static int do_test_rsa(struct crypto_akcipher *tfm,
struct akcipher_testvec *vecs)
{
struct akcipher_request *req;
void *outbuf_enc = NULL;
void *outbuf_dec = NULL;
struct tcrypt_result result;
unsigned int out_len_max, out_len = 0;
int err = -ENOMEM;
struct scatterlist src, dst, src_tab[2];
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
return err;
init_completion(&result.completion);
if (vecs->public_key_vec)
err = crypto_akcipher_set_pub_key(tfm, vecs->key,
vecs->key_len);
else
err = crypto_akcipher_set_priv_key(tfm, vecs->key,
vecs->key_len);
if (err)
goto free_req;
out_len_max = crypto_akcipher_maxsize(tfm);
outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_enc)
goto free_req;
sg_init_table(src_tab, 2);
sg_set_buf(&src_tab[0], vecs->m, 8);
sg_set_buf(&src_tab[1], vecs->m + 8, vecs->m_size - 8);
sg_init_one(&dst, outbuf_enc, out_len_max);
akcipher_request_set_crypt(req, src_tab, &dst, vecs->m_size,
out_len_max);
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
tcrypt_complete, &result);
/* Run RSA encrypt - c = m^e mod n;*/
err = wait_async_op(&result, crypto_akcipher_encrypt(req));
if (err) {
pr_err("alg: rsa: encrypt test failed. err %d\n", err);
goto free_all;
}
if (req->dst_len != vecs->c_size) {
pr_err("alg: rsa: encrypt test failed. Invalid output len\n");
err = -EINVAL;
goto free_all;
}
/* verify that encrypted message is equal to expected */
if (memcmp(vecs->c, sg_virt(req->dst), vecs->c_size)) {
pr_err("alg: rsa: encrypt test failed. Invalid output\n");
err = -EINVAL;
goto free_all;
}
/* Don't invoke decrypt for vectors with public key */
if (vecs->public_key_vec) {
err = 0;
goto free_all;
}
outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_dec) {
err = -ENOMEM;
goto free_all;
}
sg_init_one(&src, vecs->c, vecs->c_size);
sg_init_one(&dst, outbuf_dec, out_len_max);
init_completion(&result.completion);
akcipher_request_set_crypt(req, &src, &dst, vecs->c_size, out_len_max);
/* Run RSA decrypt - m = c^d mod n;*/
err = wait_async_op(&result, crypto_akcipher_decrypt(req));
if (err) {
pr_err("alg: rsa: decrypt test failed. err %d\n", err);
goto free_all;
}
out_len = req->dst_len;
if (out_len != vecs->m_size) {
pr_err("alg: rsa: decrypt test failed. Invalid output len\n");
err = -EINVAL;
goto free_all;
}
/* verify that decrypted message is equal to the original msg */
if (memcmp(vecs->m, outbuf_dec, vecs->m_size)) {
pr_err("alg: rsa: decrypt test failed. Invalid output\n");
err = -EINVAL;
}
free_all:
kfree(outbuf_dec);
kfree(outbuf_enc);
free_req:
akcipher_request_free(req);
return err;
}
static int test_rsa(struct crypto_akcipher *tfm, struct akcipher_testvec *vecs,
unsigned int tcount)
{
int ret, i;
for (i = 0; i < tcount; i++) {
ret = do_test_rsa(tfm, vecs++);
if (ret) {
pr_err("alg: rsa: test failed on vector %d, err=%d\n",
i + 1, ret);
return ret;
}
}
return 0;
}
static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
struct akcipher_testvec *vecs, unsigned int tcount)
{
if (strncmp(alg, "rsa", 3) == 0)
return test_rsa(tfm, vecs, tcount);
return 0;
}
static int alg_test_akcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_akcipher *tfm;
int err = 0;
tfm = crypto_alloc_akcipher(driver, type | CRYPTO_ALG_INTERNAL, mask);
if (IS_ERR(tfm)) {
pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.akcipher.vecs)
err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
desc->suite.akcipher.count);
crypto_free_akcipher(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
.alg = "__cbc-cast5-avx",
.test = alg_test_null,
}, {
.alg = "__cbc-cast6-avx",
.test = alg_test_null,
}, {
.alg = "__cbc-serpent-avx",
.test = alg_test_null,
}, {
.alg = "__cbc-serpent-avx2",
.test = alg_test_null,
}, {
.alg = "__cbc-serpent-sse2",
.test = alg_test_null,
}, {
.alg = "__cbc-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-aes-aesni",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "__driver-cbc-camellia-aesni",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-camellia-aesni-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-cast5-avx",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-cast6-avx",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-serpent-avx",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-serpent-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-serpent-sse2",
.test = alg_test_null,
}, {
.alg = "__driver-cbc-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-aes-aesni",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "__driver-ecb-camellia-aesni",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-camellia-aesni-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-cast5-avx",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-cast6-avx",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-serpent-avx",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-serpent-avx2",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-serpent-sse2",
.test = alg_test_null,
}, {
.alg = "__driver-ecb-twofish-avx",
.test = alg_test_null,
}, {
.alg = "__driver-gcm-aes-aesni",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "__ghash-pclmulqdqni",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ansi_cprng",
.test = alg_test_cprng,
.fips_allowed = 1,
.suite = {
.cprng = {
.vecs = ansi_cprng_aes_tv_template,
.count = ANSI_CPRNG_AES_TEST_VECTORS
}
}
}, {
.alg = "authenc(hmac(md5),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = hmac_md5_ecb_cipher_null_enc_tv_template,
.count = HMAC_MD5_ECB_CIPHER_NULL_ENC_TEST_VECTORS
},
.dec = {
.vecs = hmac_md5_ecb_cipher_null_dec_tv_template,
.count = HMAC_MD5_ECB_CIPHER_NULL_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA1_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_des_cbc_enc_tv_temp,
.count =
HMAC_SHA1_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA1_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha1),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha1_ecb_cipher_null_enc_tv_temp,
.count =
HMAC_SHA1_ECB_CIPHER_NULL_ENC_TEST_VEC
},
.dec = {
.vecs =
hmac_sha1_ecb_cipher_null_dec_tv_temp,
.count =
HMAC_SHA1_ECB_CIPHER_NULL_DEC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha224),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha224_des_cbc_enc_tv_temp,
.count =
HMAC_SHA224_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha224),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha224_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA224_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA256_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_des_cbc_enc_tv_temp,
.count =
HMAC_SHA256_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha256),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha256_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA256_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha384),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha384_des_cbc_enc_tv_temp,
.count =
HMAC_SHA384_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha384),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha384_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA384_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_aes_cbc_enc_tv_temp,
.count =
HMAC_SHA512_AES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_des_cbc_enc_tv_temp,
.count =
HMAC_SHA512_DES_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "authenc(hmac(sha512),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs =
hmac_sha512_des3_ede_cbc_enc_tv_temp,
.count =
HMAC_SHA512_DES3_EDE_CBC_ENC_TEST_VEC
}
}
}
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_cbc_enc_tv_template,
.count = AES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_cbc_dec_tv_template,
.count = AES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_cbc_enc_tv_template,
.count = ANUBIS_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_cbc_dec_tv_template,
.count = ANUBIS_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_cbc_enc_tv_template,
.count = BF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_cbc_dec_tv_template,
.count = BF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_cbc_enc_tv_template,
.count = CAMELLIA_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_cbc_dec_tv_template,
.count = CAMELLIA_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_cbc_enc_tv_template,
.count = CAST5_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_cbc_dec_tv_template,
.count = CAST5_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_cbc_enc_tv_template,
.count = CAST6_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_cbc_dec_tv_template,
.count = CAST6_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_cbc_enc_tv_template,
.count = DES_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_cbc_dec_tv_template,
.count = DES_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_cbc_enc_tv_template,
.count = DES3_EDE_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_cbc_dec_tv_template,
.count = DES3_EDE_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_cbc_enc_tv_template,
.count = SERPENT_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_cbc_dec_tv_template,
.count = SERPENT_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_cbc_enc_tv_template,
.count = TF_CBC_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_cbc_dec_tv_template,
.count = TF_CBC_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ccm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_enc_tv_template,
.count = AES_CCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_dec_tv_template,
.count = AES_CCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "chacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = chacha20_enc_tv_template,
.count = CHACHA20_ENC_TEST_VECTORS
},
.dec = {
.vecs = chacha20_enc_tv_template,
.count = CHACHA20_ENC_TEST_VECTORS
},
}
}
}, {
.alg = "cmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_cmac128_tv_template,
.count = CMAC_AES_TEST_VECTORS
}
}
}, {
.alg = "cmac(des3_ede)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = des3_ede_cmac64_tv_template,
.count = CMAC_DES3_EDE_TEST_VECTORS
}
}
}, {
.alg = "compress_null",
.test = alg_test_null,
}, {
.alg = "crc32",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = crc32_tv_template,
.count = CRC32_TEST_VECTORS
}
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crc32c_tv_template,
.count = CRC32C_TEST_VECTORS
}
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = crct10dif_tv_template,
.count = CRCT10DIF_TEST_VECTORS
}
}
}, {
.alg = "cryptd(__driver-cbc-aes-aesni)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cryptd(__driver-cbc-camellia-aesni)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-cbc-camellia-aesni-avx2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-cbc-serpent-avx2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-aes-aesni)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cryptd(__driver-ecb-camellia-aesni)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-camellia-aesni-avx2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-cast5-avx)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-cast6-avx)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-serpent-avx)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-serpent-avx2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-serpent-sse2)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-ecb-twofish-avx)",
.test = alg_test_null,
}, {
.alg = "cryptd(__driver-gcm-aes-aesni)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cryptd(__ghash-pclmulqdqni)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_enc_tv_template,
.count = AES_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_dec_tv_template,
.count = AES_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_ctr_enc_tv_template,
.count = BF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_ctr_dec_tv_template,
.count = BF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_ctr_enc_tv_template,
.count = CAMELLIA_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_ctr_dec_tv_template,
.count = CAMELLIA_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_ctr_enc_tv_template,
.count = CAST5_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_ctr_dec_tv_template,
.count = CAST5_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_ctr_enc_tv_template,
.count = CAST6_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_ctr_dec_tv_template,
.count = CAST6_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_ctr_enc_tv_template,
.count = DES_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_ctr_dec_tv_template,
.count = DES_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(des3_ede)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_ctr_enc_tv_template,
.count = DES3_EDE_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_ctr_dec_tv_template,
.count = DES3_EDE_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_ctr_enc_tv_template,
.count = SERPENT_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_ctr_dec_tv_template,
.count = SERPENT_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_ctr_enc_tv_template,
.count = TF_CTR_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_ctr_dec_tv_template,
.count = TF_CTR_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cts_mode_enc_tv_template,
.count = CTS_MODE_ENC_TEST_VECTORS
},
.dec = {
.vecs = cts_mode_dec_tv_template,
.count = CTS_MODE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = deflate_comp_tv_template,
.count = DEFLATE_COMP_TEST_VECTORS
},
.decomp = {
.vecs = deflate_decomp_tv_template,
.count = DEFLATE_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "digest_null",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes128_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes128_tv_template)
}
}
}, {
.alg = "drbg_nopr_ctr_aes192",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes192_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes192_tv_template)
}
}
}, {
.alg = "drbg_nopr_ctr_aes256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_ctr_aes256_tv_template,
.count = ARRAY_SIZE(drbg_nopr_ctr_aes256_tv_template)
}
}
}, {
/*
* There is no need to specifically test the DRBG with every
* backend cipher -- covered by drbg_nopr_hmac_sha256 test
*/
.alg = "drbg_nopr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_hmac_sha256_tv_template,
.count =
ARRAY_SIZE(drbg_nopr_hmac_sha256_tv_template)
}
}
}, {
/* covered by drbg_nopr_hmac_sha256 test */
.alg = "drbg_nopr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_nopr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_nopr_sha256_tv_template,
.count = ARRAY_SIZE(drbg_nopr_sha256_tv_template)
}
}
}, {
/* covered by drbg_nopr_sha256 test */
.alg = "drbg_nopr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_ctr_aes128_tv_template,
.count = ARRAY_SIZE(drbg_pr_ctr_aes128_tv_template)
}
}
}, {
/* covered by drbg_pr_ctr_aes128 test */
.alg = "drbg_pr_ctr_aes192",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes256",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_hmac_sha256_tv_template,
.count = ARRAY_SIZE(drbg_pr_hmac_sha256_tv_template)
}
}
}, {
/* covered by drbg_pr_hmac_sha256 test */
.alg = "drbg_pr_hmac_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_pr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = {
.vecs = drbg_pr_sha256_tv_template,
.count = ARRAY_SIZE(drbg_pr_sha256_tv_template)
}
}
}, {
/* covered by drbg_pr_sha256 test */
.alg = "drbg_pr_sha384",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "ecb(__aes-aesni)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_enc_tv_template,
.count = AES_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_dec_tv_template,
.count = AES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = anubis_enc_tv_template,
.count = ANUBIS_ENC_TEST_VECTORS
},
.dec = {
.vecs = anubis_dec_tv_template,
.count = ANUBIS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(arc4)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = arc4_enc_tv_template,
.count = ARC4_ENC_TEST_VECTORS
},
.dec = {
.vecs = arc4_dec_tv_template,
.count = ARC4_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = bf_enc_tv_template,
.count = BF_ENC_TEST_VECTORS
},
.dec = {
.vecs = bf_dec_tv_template,
.count = BF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_enc_tv_template,
.count = CAMELLIA_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_dec_tv_template,
.count = CAMELLIA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast5_enc_tv_template,
.count = CAST5_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast5_dec_tv_template,
.count = CAST5_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_enc_tv_template,
.count = CAST6_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_dec_tv_template,
.count = CAST6_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(cipher_null)",
.test = alg_test_null,
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = des_enc_tv_template,
.count = DES_ENC_TEST_VECTORS
},
.dec = {
.vecs = des_dec_tv_template,
.count = DES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = des3_ede_enc_tv_template,
.count = DES3_EDE_ENC_TEST_VECTORS
},
.dec = {
.vecs = des3_ede_dec_tv_template,
.count = DES3_EDE_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = fcrypt_pcbc_enc_tv_template,
.count = 1
},
.dec = {
.vecs = fcrypt_pcbc_dec_tv_template,
.count = 1
}
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = khazad_enc_tv_template,
.count = KHAZAD_ENC_TEST_VECTORS
},
.dec = {
.vecs = khazad_dec_tv_template,
.count = KHAZAD_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = seed_enc_tv_template,
.count = SEED_ENC_TEST_VECTORS
},
.dec = {
.vecs = seed_dec_tv_template,
.count = SEED_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_enc_tv_template,
.count = SERPENT_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_dec_tv_template,
.count = SERPENT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tea_enc_tv_template,
.count = TEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = tea_dec_tv_template,
.count = TEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(tnepres)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tnepres_enc_tv_template,
.count = TNEPRES_ENC_TEST_VECTORS
},
.dec = {
.vecs = tnepres_dec_tv_template,
.count = TNEPRES_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_enc_tv_template,
.count = TF_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_dec_tv_template,
.count = TF_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xeta_enc_tv_template,
.count = XETA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xeta_dec_tv_template,
.count = XETA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = xtea_enc_tv_template,
.count = XTEA_ENC_TEST_VECTORS
},
.dec = {
.vecs = xtea_dec_tv_template,
.count = XTEA_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "gcm(aes)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_enc_tv_template,
.count = AES_GCM_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_dec_tv_template,
.count = AES_GCM_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = ghash_tv_template,
.count = GHASH_TEST_VECTORS
}
}
}, {
.alg = "hmac(crc32)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = bfin_crc_tv_template,
.count = BFIN_CRC_TEST_VECTORS
}
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_md5_tv_template,
.count = HMAC_MD5_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd128)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd128_tv_template,
.count = HMAC_RMD128_TEST_VECTORS
}
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = hmac_rmd160_tv_template,
.count = HMAC_RMD160_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha1_tv_template,
.count = HMAC_SHA1_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha224_tv_template,
.count = HMAC_SHA224_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha256_tv_template,
.count = HMAC_SHA256_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha384_tv_template,
.count = HMAC_SHA384_TEST_VECTORS
}
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = hmac_sha512_tv_template,
.count = HMAC_SHA512_TEST_VECTORS
}
}
}, {
.alg = "jitterentropy_rng",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "kw(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_kw_enc_tv_template,
.count = ARRAY_SIZE(aes_kw_enc_tv_template)
},
.dec = {
.vecs = aes_kw_dec_tv_template,
.count = ARRAY_SIZE(aes_kw_dec_tv_template)
}
}
}
}, {
.alg = "lrw(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = aes_lrw_enc_tv_template,
.count = AES_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_lrw_dec_tv_template,
.count = AES_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_lrw_enc_tv_template,
.count = CAMELLIA_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_lrw_dec_tv_template,
.count = CAMELLIA_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_lrw_enc_tv_template,
.count = CAST6_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_lrw_dec_tv_template,
.count = CAST6_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_lrw_enc_tv_template,
.count = SERPENT_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_lrw_dec_tv_template,
.count = SERPENT_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lrw(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_lrw_enc_tv_template,
.count = TF_LRW_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_lrw_dec_tv_template,
.count = TF_LRW_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "lz4",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lz4_comp_tv_template,
.count = LZ4_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lz4_decomp_tv_template,
.count = LZ4_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "lz4hc",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lz4hc_comp_tv_template,
.count = LZ4HC_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lz4hc_decomp_tv_template,
.count = LZ4HC_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = {
.vecs = lzo_comp_tv_template,
.count = LZO_COMP_TEST_VECTORS
},
.decomp = {
.vecs = lzo_decomp_tv_template,
.count = LZO_DECOMP_TEST_VECTORS
}
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md4_tv_template,
.count = MD4_TEST_VECTORS
}
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = md5_tv_template,
.count = MD5_TEST_VECTORS
}
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = michael_mic_tv_template,
.count = MICHAEL_MIC_TEST_VECTORS
}
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ofb_enc_tv_template,
.count = AES_OFB_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ofb_dec_tv_template,
.count = AES_OFB_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = fcrypt_pcbc_enc_tv_template,
.count = FCRYPT_ENC_TEST_VECTORS
},
.dec = {
.vecs = fcrypt_pcbc_dec_tv_template,
.count = FCRYPT_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "poly1305",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = poly1305_tv_template,
.count = POLY1305_TEST_VECTORS
}
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ctr_rfc3686_enc_tv_template,
.count = AES_CTR_3686_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ctr_rfc3686_dec_tv_template,
.count = AES_CTR_3686_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4106(gcm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_rfc4106_enc_tv_template,
.count = AES_GCM_4106_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_rfc4106_dec_tv_template,
.count = AES_GCM_4106_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
.enc = {
.vecs = aes_ccm_rfc4309_enc_tv_template,
.count = AES_CCM_4309_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ccm_rfc4309_dec_tv_template,
.count = AES_CCM_4309_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "rfc4543(gcm(aes))",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = aes_gcm_rfc4543_enc_tv_template,
.count = AES_GCM_4543_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_gcm_rfc4543_dec_tv_template,
.count = AES_GCM_4543_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rfc7539(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = rfc7539_enc_tv_template,
.count = RFC7539_ENC_TEST_VECTORS
},
.dec = {
.vecs = rfc7539_dec_tv_template,
.count = RFC7539_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rfc7539esp(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
.enc = {
.vecs = rfc7539esp_enc_tv_template,
.count = RFC7539ESP_ENC_TEST_VECTORS
},
.dec = {
.vecs = rfc7539esp_dec_tv_template,
.count = RFC7539ESP_DEC_TEST_VECTORS
},
}
}
}, {
.alg = "rmd128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd128_tv_template,
.count = RMD128_TEST_VECTORS
}
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd160_tv_template,
.count = RMD160_TEST_VECTORS
}
}
}, {
.alg = "rmd256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd256_tv_template,
.count = RMD256_TEST_VECTORS
}
}
}, {
.alg = "rmd320",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = rmd320_tv_template,
.count = RMD320_TEST_VECTORS
}
}
}, {
.alg = "rsa",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = {
.vecs = rsa_tv_template,
.count = RSA_TEST_VECTORS
}
}
}, {
.alg = "salsa20",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = salsa20_stream_enc_tv_template,
.count = SALSA20_STREAM_ENC_TEST_VECTORS
}
}
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha1_tv_template,
.count = SHA1_TEST_VECTORS
}
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha224_tv_template,
.count = SHA224_TEST_VECTORS
}
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha256_tv_template,
.count = SHA256_TEST_VECTORS
}
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha384_tv_template,
.count = SHA384_TEST_VECTORS
}
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = {
.vecs = sha512_tv_template,
.count = SHA512_TEST_VECTORS
}
}
}, {
.alg = "tgr128",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr128_tv_template,
.count = TGR128_TEST_VECTORS
}
}
}, {
.alg = "tgr160",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr160_tv_template,
.count = TGR160_TEST_VECTORS
}
}
}, {
.alg = "tgr192",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = tgr192_tv_template,
.count = TGR192_TEST_VECTORS
}
}
}, {
.alg = "vmac(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_vmac128_tv_template,
.count = VMAC_AES_TEST_VECTORS
}
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp256_tv_template,
.count = WP256_TEST_VECTORS
}
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp384_tv_template,
.count = WP384_TEST_VECTORS
}
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = wp512_tv_template,
.count = WP512_TEST_VECTORS
}
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = {
.vecs = aes_xcbc128_tv_template,
.count = XCBC_AES_TEST_VECTORS
}
}
}, {
.alg = "xts(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_xts_enc_tv_template,
.count = AES_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_xts_dec_tv_template,
.count = AES_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = camellia_xts_enc_tv_template,
.count = CAMELLIA_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = camellia_xts_dec_tv_template,
.count = CAMELLIA_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = cast6_xts_enc_tv_template,
.count = CAST6_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = cast6_xts_dec_tv_template,
.count = CAST6_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = serpent_xts_enc_tv_template,
.count = SERPENT_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = serpent_xts_dec_tv_template,
.count = SERPENT_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "xts(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.enc = {
.vecs = tf_xts_enc_tv_template,
.count = TF_XTS_ENC_TEST_VECTORS
},
.dec = {
.vecs = tf_xts_dec_tv_template,
.count = TF_XTS_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "zlib",
.test = alg_test_pcomp,
.fips_allowed = 1,
.suite = {
.pcomp = {
.comp = {
.vecs = zlib_comp_tv_template,
.count = ZLIB_COMP_TEST_VECTORS
},
.decomp = {
.vecs = zlib_decomp_tv_template,
.count = ZLIB_DECOMP_TEST_VECTORS
}
}
}
}
};
static bool alg_test_descs_checked;
static void alg_test_descs_check_order(void)
{
int i;
/* only check once */
if (alg_test_descs_checked)
return;
alg_test_descs_checked = true;
for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
int diff = strcmp(alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
if (WARN_ON(diff > 0)) {
pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
}
if (WARN_ON(diff == 0)) {
pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
alg_test_descs[i].alg);
}
}
}
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
alg_test_descs_check_order();
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) ||
(j >= 0 && !alg_test_descs[j].fips_allowed)))
goto non_fips_alg;
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (fips_enabled && rc)
panic("%s: %s alg self test failed in fips mode!\n", driver, alg);
if (fips_enabled && !rc)
pr_info("alg: self-tests for %s (%s) passed\n", driver, alg);
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
return 0;
non_fips_alg:
return -EINVAL;
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);