linux/sound/firewire/tascam/tascam-transaction.c

401 lines
10 KiB
C

/*
* tascam-transaction.c - a part of driver for TASCAM FireWire series
*
* Copyright (c) 2015 Takashi Sakamoto
*
* Licensed under the terms of the GNU General Public License, version 2.
*/
#include "tascam.h"
/*
* When return minus value, given argument is not MIDI status.
* When return 0, given argument is a beginning of system exclusive.
* When return the others, given argument is MIDI data.
*/
static inline int calculate_message_bytes(u8 status)
{
switch (status) {
case 0xf6: /* Tune request. */
case 0xf8: /* Timing clock. */
case 0xfa: /* Start. */
case 0xfb: /* Continue. */
case 0xfc: /* Stop. */
case 0xfe: /* Active sensing. */
case 0xff: /* System reset. */
return 1;
case 0xf1: /* MIDI time code quarter frame. */
case 0xf3: /* Song select. */
return 2;
case 0xf2: /* Song position pointer. */
return 3;
case 0xf0: /* Exclusive. */
return 0;
case 0xf7: /* End of exclusive. */
break;
case 0xf4: /* Undefined. */
case 0xf5: /* Undefined. */
case 0xf9: /* Undefined. */
case 0xfd: /* Undefined. */
break;
default:
switch (status & 0xf0) {
case 0x80: /* Note on. */
case 0x90: /* Note off. */
case 0xa0: /* Polyphonic key pressure. */
case 0xb0: /* Control change and Mode change. */
case 0xe0: /* Pitch bend change. */
return 3;
case 0xc0: /* Program change. */
case 0xd0: /* Channel pressure. */
return 2;
default:
break;
}
break;
}
return -EINVAL;
}
static int fill_message(struct snd_fw_async_midi_port *port,
struct snd_rawmidi_substream *substream)
{
int i, len, consume;
u8 *label, *msg;
u8 status;
/* The first byte is used for label, the rest for MIDI bytes. */
label = port->buf;
msg = port->buf + 1;
consume = snd_rawmidi_transmit_peek(substream, msg, 3);
if (consume == 0)
return 0;
/* On exclusive message. */
if (port->on_sysex) {
/* Seek the end of exclusives. */
for (i = 0; i < consume; ++i) {
if (msg[i] == 0xf7) {
port->on_sysex = false;
break;
}
}
/* At the end of exclusive message, use label 0x07. */
if (!port->on_sysex) {
consume = i + 1;
*label = (substream->number << 4) | 0x07;
/* During exclusive message, use label 0x04. */
} else if (consume == 3) {
*label = (substream->number << 4) | 0x04;
/* We need to fill whole 3 bytes. Go to next change. */
} else {
return 0;
}
len = consume;
} else {
/* The beginning of exclusives. */
if (msg[0] == 0xf0) {
/* Transfer it in next chance in another condition. */
port->on_sysex = true;
return 0;
} else {
/* On running-status. */
if ((msg[0] & 0x80) != 0x80)
status = port->running_status;
else
status = msg[0];
/* Calculate consume bytes. */
len = calculate_message_bytes(status);
if (len <= 0)
return 0;
/* On running-status. */
if ((msg[0] & 0x80) != 0x80) {
/* Enough MIDI bytes were not retrieved. */
if (consume < len - 1)
return 0;
consume = len - 1;
msg[2] = msg[1];
msg[1] = msg[0];
msg[0] = port->running_status;
} else {
/* Enough MIDI bytes were not retrieved. */
if (consume < len)
return 0;
consume = len;
port->running_status = msg[0];
}
}
*label = (substream->number << 4) | (msg[0] >> 4);
}
if (len > 0 && len < 3)
memset(msg + len, 0, 3 - len);
return consume;
}
static void async_midi_port_callback(struct fw_card *card, int rcode,
void *data, size_t length,
void *callback_data)
{
struct snd_fw_async_midi_port *port = callback_data;
struct snd_rawmidi_substream *substream = READ_ONCE(port->substream);
/* This port is closed. */
if (substream == NULL)
return;
if (rcode == RCODE_COMPLETE)
snd_rawmidi_transmit_ack(substream, port->consume_bytes);
else if (!rcode_is_permanent_error(rcode))
/* To start next transaction immediately for recovery. */
port->next_ktime = 0;
else
/* Don't continue processing. */
port->error = true;
port->idling = true;
if (!snd_rawmidi_transmit_empty(substream))
schedule_work(&port->work);
}
static void midi_port_work(struct work_struct *work)
{
struct snd_fw_async_midi_port *port =
container_of(work, struct snd_fw_async_midi_port, work);
struct snd_rawmidi_substream *substream = READ_ONCE(port->substream);
int generation;
/* Under transacting or error state. */
if (!port->idling || port->error)
return;
/* Nothing to do. */
if (substream == NULL || snd_rawmidi_transmit_empty(substream))
return;
/* Do it in next chance. */
if (ktime_after(port->next_ktime, ktime_get())) {
schedule_work(&port->work);
return;
}
/*
* Fill the buffer. The callee must use snd_rawmidi_transmit_peek().
* Later, snd_rawmidi_transmit_ack() is called.
*/
memset(port->buf, 0, 4);
port->consume_bytes = fill_message(port, substream);
if (port->consume_bytes <= 0) {
/* Do it in next chance, immediately. */
if (port->consume_bytes == 0) {
port->next_ktime = 0;
schedule_work(&port->work);
} else {
/* Fatal error. */
port->error = true;
}
return;
}
/* Set interval to next transaction. */
port->next_ktime = ktime_add_ns(ktime_get(),
port->consume_bytes * 8 * NSEC_PER_SEC / 31250);
/* Start this transaction. */
port->idling = false;
/*
* In Linux FireWire core, when generation is updated with memory
* barrier, node id has already been updated. In this module, After
* this smp_rmb(), load/store instructions to memory are completed.
* Thus, both of generation and node id are available with recent
* values. This is a light-serialization solution to handle bus reset
* events on IEEE 1394 bus.
*/
generation = port->parent->generation;
smp_rmb();
fw_send_request(port->parent->card, &port->transaction,
TCODE_WRITE_QUADLET_REQUEST,
port->parent->node_id, generation,
port->parent->max_speed,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_RX_QUAD,
port->buf, 4, async_midi_port_callback,
port);
}
void snd_fw_async_midi_port_init(struct snd_fw_async_midi_port *port)
{
port->idling = true;
port->error = false;
port->running_status = 0;
port->on_sysex = false;
}
static void handle_midi_tx(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, unsigned long long offset,
void *data, size_t length, void *callback_data)
{
struct snd_tscm *tscm = callback_data;
u32 *buf = (u32 *)data;
unsigned int messages;
unsigned int i;
unsigned int port;
struct snd_rawmidi_substream *substream;
u8 *b;
int bytes;
if (offset != tscm->async_handler.offset)
goto end;
messages = length / 8;
for (i = 0; i < messages; i++) {
b = (u8 *)(buf + i * 2);
port = b[0] >> 4;
/* TODO: support virtual MIDI ports. */
if (port >= tscm->spec->midi_capture_ports)
goto end;
/* Assume the message length. */
bytes = calculate_message_bytes(b[1]);
/* On MIDI data or exclusives. */
if (bytes <= 0) {
/* Seek the end of exclusives. */
for (bytes = 1; bytes < 4; bytes++) {
if (b[bytes] == 0xf7)
break;
}
if (bytes == 4)
bytes = 3;
}
substream = READ_ONCE(tscm->tx_midi_substreams[port]);
if (substream != NULL)
snd_rawmidi_receive(substream, b + 1, bytes);
}
end:
fw_send_response(card, request, RCODE_COMPLETE);
}
int snd_tscm_transaction_register(struct snd_tscm *tscm)
{
static const struct fw_address_region resp_register_region = {
.start = 0xffffe0000000ull,
.end = 0xffffe000ffffull,
};
unsigned int i;
int err;
/*
* Usually, two quadlets are transferred by one transaction. The first
* quadlet has MIDI messages, the rest includes timestamp.
* Sometimes, 8 set of the data is transferred by a block transaction.
*/
tscm->async_handler.length = 8 * 8;
tscm->async_handler.address_callback = handle_midi_tx;
tscm->async_handler.callback_data = tscm;
err = fw_core_add_address_handler(&tscm->async_handler,
&resp_register_region);
if (err < 0)
return err;
err = snd_tscm_transaction_reregister(tscm);
if (err < 0)
goto error;
for (i = 0; i < TSCM_MIDI_OUT_PORT_MAX; i++) {
tscm->out_ports[i].parent = fw_parent_device(tscm->unit);
tscm->out_ports[i].next_ktime = 0;
INIT_WORK(&tscm->out_ports[i].work, midi_port_work);
}
return err;
error:
fw_core_remove_address_handler(&tscm->async_handler);
tscm->async_handler.callback_data = NULL;
return err;
}
/* At bus reset, these registers are cleared. */
int snd_tscm_transaction_reregister(struct snd_tscm *tscm)
{
struct fw_device *device = fw_parent_device(tscm->unit);
__be32 reg;
int err;
/* Register messaging address. Block transaction is not allowed. */
reg = cpu_to_be32((device->card->node_id << 16) |
(tscm->async_handler.offset >> 32));
err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
&reg, sizeof(reg), 0);
if (err < 0)
return err;
reg = cpu_to_be32(tscm->async_handler.offset);
err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
&reg, sizeof(reg), 0);
if (err < 0)
return err;
/* Turn on messaging. */
reg = cpu_to_be32(0x00000001);
err = snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
&reg, sizeof(reg), 0);
if (err < 0)
return err;
/* Turn on FireWire LED. */
reg = cpu_to_be32(0x0001008e);
return snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
&reg, sizeof(reg), 0);
}
void snd_tscm_transaction_unregister(struct snd_tscm *tscm)
{
__be32 reg;
if (tscm->async_handler.callback_data == NULL)
return;
/* Turn off FireWire LED. */
reg = cpu_to_be32(0x0000008e);
snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_LED_POWER,
&reg, sizeof(reg), 0);
/* Turn off messaging. */
reg = cpu_to_be32(0x00000000);
snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ON,
&reg, sizeof(reg), 0);
/* Unregister the address. */
snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_HI,
&reg, sizeof(reg), 0);
snd_fw_transaction(tscm->unit, TCODE_WRITE_QUADLET_REQUEST,
TSCM_ADDR_BASE + TSCM_OFFSET_MIDI_TX_ADDR_LO,
&reg, sizeof(reg), 0);
fw_core_remove_address_handler(&tscm->async_handler);
tscm->async_handler.callback_data = NULL;
}