linux/arch/arm64/kernel/smp.c

1091 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* SMP initialisation and IPI support
* Based on arch/arm/kernel/smp.c
*
* Copyright (C) 2012 ARM Ltd.
*/
#include <linux/acpi.h>
#include <linux/arm_sdei.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/sched/mm.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <linux/interrupt.h>
#include <linux/cache.h>
#include <linux/profile.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/seq_file.h>
#include <linux/irq.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/percpu.h>
#include <linux/clockchips.h>
#include <linux/completion.h>
#include <linux/of.h>
#include <linux/irq_work.h>
#include <linux/kexec.h>
#include <linux/kvm_host.h>
#include <asm/alternative.h>
#include <asm/atomic.h>
#include <asm/cacheflush.h>
#include <asm/cpu.h>
#include <asm/cputype.h>
#include <asm/cpu_ops.h>
#include <asm/daifflags.h>
#include <asm/kvm_mmu.h>
#include <asm/mmu_context.h>
#include <asm/numa.h>
#include <asm/pgalloc.h>
#include <asm/processor.h>
#include <asm/smp_plat.h>
#include <asm/sections.h>
#include <asm/tlbflush.h>
#include <asm/ptrace.h>
#include <asm/virt.h>
#define CREATE_TRACE_POINTS
#include <trace/events/ipi.h>
DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
/*
* as from 2.5, kernels no longer have an init_tasks structure
* so we need some other way of telling a new secondary core
* where to place its SVC stack
*/
struct secondary_data secondary_data;
/* Number of CPUs which aren't online, but looping in kernel text. */
static int cpus_stuck_in_kernel;
enum ipi_msg_type {
IPI_RESCHEDULE,
IPI_CALL_FUNC,
IPI_CPU_STOP,
IPI_CPU_CRASH_STOP,
IPI_TIMER,
IPI_IRQ_WORK,
IPI_WAKEUP
};
#ifdef CONFIG_HOTPLUG_CPU
static int op_cpu_kill(unsigned int cpu);
#else
static inline int op_cpu_kill(unsigned int cpu)
{
return -ENOSYS;
}
#endif
/*
* Boot a secondary CPU, and assign it the specified idle task.
* This also gives us the initial stack to use for this CPU.
*/
static int boot_secondary(unsigned int cpu, struct task_struct *idle)
{
const struct cpu_operations *ops = get_cpu_ops(cpu);
if (ops->cpu_boot)
return ops->cpu_boot(cpu);
return -EOPNOTSUPP;
}
static DECLARE_COMPLETION(cpu_running);
int __cpu_up(unsigned int cpu, struct task_struct *idle)
{
int ret;
long status;
/*
* We need to tell the secondary core where to find its stack and the
* page tables.
*/
secondary_data.task = idle;
secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
update_cpu_boot_status(CPU_MMU_OFF);
__flush_dcache_area(&secondary_data, sizeof(secondary_data));
/* Now bring the CPU into our world */
ret = boot_secondary(cpu, idle);
if (ret) {
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
return ret;
}
/*
* CPU was successfully started, wait for it to come online or
* time out.
*/
wait_for_completion_timeout(&cpu_running,
msecs_to_jiffies(5000));
if (cpu_online(cpu))
return 0;
pr_crit("CPU%u: failed to come online\n", cpu);
secondary_data.task = NULL;
secondary_data.stack = NULL;
__flush_dcache_area(&secondary_data, sizeof(secondary_data));
status = READ_ONCE(secondary_data.status);
if (status == CPU_MMU_OFF)
status = READ_ONCE(__early_cpu_boot_status);
switch (status & CPU_BOOT_STATUS_MASK) {
default:
pr_err("CPU%u: failed in unknown state : 0x%lx\n",
cpu, status);
cpus_stuck_in_kernel++;
break;
case CPU_KILL_ME:
if (!op_cpu_kill(cpu)) {
pr_crit("CPU%u: died during early boot\n", cpu);
break;
}
pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
/* Fall through */
case CPU_STUCK_IN_KERNEL:
pr_crit("CPU%u: is stuck in kernel\n", cpu);
if (status & CPU_STUCK_REASON_52_BIT_VA)
pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
if (status & CPU_STUCK_REASON_NO_GRAN) {
pr_crit("CPU%u: does not support %luK granule\n",
cpu, PAGE_SIZE / SZ_1K);
}
cpus_stuck_in_kernel++;
break;
case CPU_PANIC_KERNEL:
panic("CPU%u detected unsupported configuration\n", cpu);
}
return -EIO;
}
static void init_gic_priority_masking(void)
{
u32 cpuflags;
if (WARN_ON(!gic_enable_sre()))
return;
cpuflags = read_sysreg(daif);
WARN_ON(!(cpuflags & PSR_I_BIT));
gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
}
/*
* This is the secondary CPU boot entry. We're using this CPUs
* idle thread stack, but a set of temporary page tables.
*/
asmlinkage notrace void secondary_start_kernel(void)
{
u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
struct mm_struct *mm = &init_mm;
const struct cpu_operations *ops;
unsigned int cpu;
cpu = task_cpu(current);
set_my_cpu_offset(per_cpu_offset(cpu));
/*
* All kernel threads share the same mm context; grab a
* reference and switch to it.
*/
mmgrab(mm);
current->active_mm = mm;
/*
* TTBR0 is only used for the identity mapping at this stage. Make it
* point to zero page to avoid speculatively fetching new entries.
*/
cpu_uninstall_idmap();
if (system_uses_irq_prio_masking())
init_gic_priority_masking();
preempt_disable();
trace_hardirqs_off();
/*
* If the system has established the capabilities, make sure
* this CPU ticks all of those. If it doesn't, the CPU will
* fail to come online.
*/
check_local_cpu_capabilities();
ops = get_cpu_ops(cpu);
if (ops->cpu_postboot)
ops->cpu_postboot();
/*
* Log the CPU info before it is marked online and might get read.
*/
cpuinfo_store_cpu();
/*
* Enable GIC and timers.
*/
notify_cpu_starting(cpu);
store_cpu_topology(cpu);
numa_add_cpu(cpu);
/*
* OK, now it's safe to let the boot CPU continue. Wait for
* the CPU migration code to notice that the CPU is online
* before we continue.
*/
pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
cpu, (unsigned long)mpidr,
read_cpuid_id());
update_cpu_boot_status(CPU_BOOT_SUCCESS);
set_cpu_online(cpu, true);
complete(&cpu_running);
local_daif_restore(DAIF_PROCCTX);
/*
* OK, it's off to the idle thread for us
*/
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
#ifdef CONFIG_HOTPLUG_CPU
static int op_cpu_disable(unsigned int cpu)
{
const struct cpu_operations *ops = get_cpu_ops(cpu);
/*
* If we don't have a cpu_die method, abort before we reach the point
* of no return. CPU0 may not have an cpu_ops, so test for it.
*/
if (!ops || !ops->cpu_die)
return -EOPNOTSUPP;
/*
* We may need to abort a hot unplug for some other mechanism-specific
* reason.
*/
if (ops->cpu_disable)
return ops->cpu_disable(cpu);
return 0;
}
/*
* __cpu_disable runs on the processor to be shutdown.
*/
int __cpu_disable(void)
{
unsigned int cpu = smp_processor_id();
int ret;
ret = op_cpu_disable(cpu);
if (ret)
return ret;
remove_cpu_topology(cpu);
numa_remove_cpu(cpu);
/*
* Take this CPU offline. Once we clear this, we can't return,
* and we must not schedule until we're ready to give up the cpu.
*/
set_cpu_online(cpu, false);
/*
* OK - migrate IRQs away from this CPU
*/
irq_migrate_all_off_this_cpu();
return 0;
}
static int op_cpu_kill(unsigned int cpu)
{
const struct cpu_operations *ops = get_cpu_ops(cpu);
/*
* If we have no means of synchronising with the dying CPU, then assume
* that it is really dead. We can only wait for an arbitrary length of
* time and hope that it's dead, so let's skip the wait and just hope.
*/
if (!ops->cpu_kill)
return 0;
return ops->cpu_kill(cpu);
}
/*
* called on the thread which is asking for a CPU to be shutdown -
* waits until shutdown has completed, or it is timed out.
*/
void __cpu_die(unsigned int cpu)
{
int err;
if (!cpu_wait_death(cpu, 5)) {
pr_crit("CPU%u: cpu didn't die\n", cpu);
return;
}
pr_notice("CPU%u: shutdown\n", cpu);
/*
* Now that the dying CPU is beyond the point of no return w.r.t.
* in-kernel synchronisation, try to get the firwmare to help us to
* verify that it has really left the kernel before we consider
* clobbering anything it might still be using.
*/
err = op_cpu_kill(cpu);
if (err)
pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
}
/*
* Called from the idle thread for the CPU which has been shutdown.
*
*/
void cpu_die(void)
{
unsigned int cpu = smp_processor_id();
const struct cpu_operations *ops = get_cpu_ops(cpu);
idle_task_exit();
local_daif_mask();
/* Tell __cpu_die() that this CPU is now safe to dispose of */
(void)cpu_report_death();
/*
* Actually shutdown the CPU. This must never fail. The specific hotplug
* mechanism must perform all required cache maintenance to ensure that
* no dirty lines are lost in the process of shutting down the CPU.
*/
ops->cpu_die(cpu);
BUG();
}
#endif
static void __cpu_try_die(int cpu)
{
#ifdef CONFIG_HOTPLUG_CPU
const struct cpu_operations *ops = get_cpu_ops(cpu);
if (ops && ops->cpu_die)
ops->cpu_die(cpu);
#endif
}
/*
* Kill the calling secondary CPU, early in bringup before it is turned
* online.
*/
void cpu_die_early(void)
{
int cpu = smp_processor_id();
pr_crit("CPU%d: will not boot\n", cpu);
/* Mark this CPU absent */
set_cpu_present(cpu, 0);
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
update_cpu_boot_status(CPU_KILL_ME);
__cpu_try_die(cpu);
}
update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
cpu_park_loop();
}
static void __init hyp_mode_check(void)
{
if (is_hyp_mode_available())
pr_info("CPU: All CPU(s) started at EL2\n");
else if (is_hyp_mode_mismatched())
WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
"CPU: CPUs started in inconsistent modes");
else
pr_info("CPU: All CPU(s) started at EL1\n");
if (IS_ENABLED(CONFIG_KVM))
kvm_compute_layout();
}
void __init smp_cpus_done(unsigned int max_cpus)
{
pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
setup_cpu_features();
hyp_mode_check();
apply_alternatives_all();
mark_linear_text_alias_ro();
}
void __init smp_prepare_boot_cpu(void)
{
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
cpuinfo_store_boot_cpu();
/*
* We now know enough about the boot CPU to apply the
* alternatives that cannot wait until interrupt handling
* and/or scheduling is enabled.
*/
apply_boot_alternatives();
/* Conditionally switch to GIC PMR for interrupt masking */
if (system_uses_irq_prio_masking())
init_gic_priority_masking();
}
static u64 __init of_get_cpu_mpidr(struct device_node *dn)
{
const __be32 *cell;
u64 hwid;
/*
* A cpu node with missing "reg" property is
* considered invalid to build a cpu_logical_map
* entry.
*/
cell = of_get_property(dn, "reg", NULL);
if (!cell) {
pr_err("%pOF: missing reg property\n", dn);
return INVALID_HWID;
}
hwid = of_read_number(cell, of_n_addr_cells(dn));
/*
* Non affinity bits must be set to 0 in the DT
*/
if (hwid & ~MPIDR_HWID_BITMASK) {
pr_err("%pOF: invalid reg property\n", dn);
return INVALID_HWID;
}
return hwid;
}
/*
* Duplicate MPIDRs are a recipe for disaster. Scan all initialized
* entries and check for duplicates. If any is found just ignore the
* cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
* matching valid MPIDR values.
*/
static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
{
unsigned int i;
for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
if (cpu_logical_map(i) == hwid)
return true;
return false;
}
/*
* Initialize cpu operations for a logical cpu and
* set it in the possible mask on success
*/
static int __init smp_cpu_setup(int cpu)
{
const struct cpu_operations *ops;
if (init_cpu_ops(cpu))
return -ENODEV;
ops = get_cpu_ops(cpu);
if (ops->cpu_init(cpu))
return -ENODEV;
set_cpu_possible(cpu, true);
return 0;
}
static bool bootcpu_valid __initdata;
static unsigned int cpu_count = 1;
#ifdef CONFIG_ACPI
static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
{
return &cpu_madt_gicc[cpu];
}
/*
* acpi_map_gic_cpu_interface - parse processor MADT entry
*
* Carry out sanity checks on MADT processor entry and initialize
* cpu_logical_map on success
*/
static void __init
acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
{
u64 hwid = processor->arm_mpidr;
if (!(processor->flags & ACPI_MADT_ENABLED)) {
pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
return;
}
if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
return;
}
if (is_mpidr_duplicate(cpu_count, hwid)) {
pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
return;
}
/* Check if GICC structure of boot CPU is available in the MADT */
if (cpu_logical_map(0) == hwid) {
if (bootcpu_valid) {
pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
hwid);
return;
}
bootcpu_valid = true;
cpu_madt_gicc[0] = *processor;
return;
}
if (cpu_count >= NR_CPUS)
return;
/* map the logical cpu id to cpu MPIDR */
cpu_logical_map(cpu_count) = hwid;
cpu_madt_gicc[cpu_count] = *processor;
/*
* Set-up the ACPI parking protocol cpu entries
* while initializing the cpu_logical_map to
* avoid parsing MADT entries multiple times for
* nothing (ie a valid cpu_logical_map entry should
* contain a valid parking protocol data set to
* initialize the cpu if the parking protocol is
* the only available enable method).
*/
acpi_set_mailbox_entry(cpu_count, processor);
cpu_count++;
}
static int __init
acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
const unsigned long end)
{
struct acpi_madt_generic_interrupt *processor;
processor = (struct acpi_madt_generic_interrupt *)header;
if (BAD_MADT_GICC_ENTRY(processor, end))
return -EINVAL;
acpi_table_print_madt_entry(&header->common);
acpi_map_gic_cpu_interface(processor);
return 0;
}
static void __init acpi_parse_and_init_cpus(void)
{
int i;
/*
* do a walk of MADT to determine how many CPUs
* we have including disabled CPUs, and get information
* we need for SMP init.
*/
acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
acpi_parse_gic_cpu_interface, 0);
/*
* In ACPI, SMP and CPU NUMA information is provided in separate
* static tables, namely the MADT and the SRAT.
*
* Thus, it is simpler to first create the cpu logical map through
* an MADT walk and then map the logical cpus to their node ids
* as separate steps.
*/
acpi_map_cpus_to_nodes();
for (i = 0; i < nr_cpu_ids; i++)
early_map_cpu_to_node(i, acpi_numa_get_nid(i));
}
#else
#define acpi_parse_and_init_cpus(...) do { } while (0)
#endif
/*
* Enumerate the possible CPU set from the device tree and build the
* cpu logical map array containing MPIDR values related to logical
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
*/
static void __init of_parse_and_init_cpus(void)
{
struct device_node *dn;
for_each_of_cpu_node(dn) {
u64 hwid = of_get_cpu_mpidr(dn);
if (hwid == INVALID_HWID)
goto next;
if (is_mpidr_duplicate(cpu_count, hwid)) {
pr_err("%pOF: duplicate cpu reg properties in the DT\n",
dn);
goto next;
}
/*
* The numbering scheme requires that the boot CPU
* must be assigned logical id 0. Record it so that
* the logical map built from DT is validated and can
* be used.
*/
if (hwid == cpu_logical_map(0)) {
if (bootcpu_valid) {
pr_err("%pOF: duplicate boot cpu reg property in DT\n",
dn);
goto next;
}
bootcpu_valid = true;
early_map_cpu_to_node(0, of_node_to_nid(dn));
/*
* cpu_logical_map has already been
* initialized and the boot cpu doesn't need
* the enable-method so continue without
* incrementing cpu.
*/
continue;
}
if (cpu_count >= NR_CPUS)
goto next;
pr_debug("cpu logical map 0x%llx\n", hwid);
cpu_logical_map(cpu_count) = hwid;
early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
next:
cpu_count++;
}
}
/*
* Enumerate the possible CPU set from the device tree or ACPI and build the
* cpu logical map array containing MPIDR values related to logical
* cpus. Assumes that cpu_logical_map(0) has already been initialized.
*/
void __init smp_init_cpus(void)
{
int i;
if (acpi_disabled)
of_parse_and_init_cpus();
else
acpi_parse_and_init_cpus();
if (cpu_count > nr_cpu_ids)
pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
cpu_count, nr_cpu_ids);
if (!bootcpu_valid) {
pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
return;
}
/*
* We need to set the cpu_logical_map entries before enabling
* the cpus so that cpu processor description entries (DT cpu nodes
* and ACPI MADT entries) can be retrieved by matching the cpu hwid
* with entries in cpu_logical_map while initializing the cpus.
* If the cpu set-up fails, invalidate the cpu_logical_map entry.
*/
for (i = 1; i < nr_cpu_ids; i++) {
if (cpu_logical_map(i) != INVALID_HWID) {
if (smp_cpu_setup(i))
cpu_logical_map(i) = INVALID_HWID;
}
}
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
const struct cpu_operations *ops;
int err;
unsigned int cpu;
unsigned int this_cpu;
init_cpu_topology();
this_cpu = smp_processor_id();
store_cpu_topology(this_cpu);
numa_store_cpu_info(this_cpu);
numa_add_cpu(this_cpu);
/*
* If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
* secondary CPUs present.
*/
if (max_cpus == 0)
return;
/*
* Initialise the present map (which describes the set of CPUs
* actually populated at the present time) and release the
* secondaries from the bootloader.
*/
for_each_possible_cpu(cpu) {
per_cpu(cpu_number, cpu) = cpu;
if (cpu == smp_processor_id())
continue;
ops = get_cpu_ops(cpu);
if (!ops)
continue;
err = ops->cpu_prepare(cpu);
if (err)
continue;
set_cpu_present(cpu, true);
numa_store_cpu_info(cpu);
}
}
void (*__smp_cross_call)(const struct cpumask *, unsigned int);
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
{
__smp_cross_call = fn;
}
static const char *ipi_types[NR_IPI] __tracepoint_string = {
#define S(x,s) [x] = s
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
S(IPI_CALL_FUNC, "Function call interrupts"),
S(IPI_CPU_STOP, "CPU stop interrupts"),
S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
S(IPI_TIMER, "Timer broadcast interrupts"),
S(IPI_IRQ_WORK, "IRQ work interrupts"),
S(IPI_WAKEUP, "CPU wake-up interrupts"),
};
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
{
trace_ipi_raise(target, ipi_types[ipinr]);
__smp_cross_call(target, ipinr);
}
void show_ipi_list(struct seq_file *p, int prec)
{
unsigned int cpu, i;
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
prec >= 4 ? " " : "");
for_each_online_cpu(cpu)
seq_printf(p, "%10u ",
__get_irq_stat(cpu, ipi_irqs[i]));
seq_printf(p, " %s\n", ipi_types[i]);
}
}
u64 smp_irq_stat_cpu(unsigned int cpu)
{
u64 sum = 0;
int i;
for (i = 0; i < NR_IPI; i++)
sum += __get_irq_stat(cpu, ipi_irqs[i]);
return sum;
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_CALL_FUNC);
}
void arch_send_call_function_single_ipi(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
}
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_WAKEUP);
}
#endif
#ifdef CONFIG_IRQ_WORK
void arch_irq_work_raise(void)
{
if (__smp_cross_call)
smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
}
#endif
static void local_cpu_stop(void)
{
set_cpu_online(smp_processor_id(), false);
local_daif_mask();
sdei_mask_local_cpu();
cpu_park_loop();
}
/*
* We need to implement panic_smp_self_stop() for parallel panic() calls, so
* that cpu_online_mask gets correctly updated and smp_send_stop() can skip
* CPUs that have already stopped themselves.
*/
void panic_smp_self_stop(void)
{
local_cpu_stop();
}
#ifdef CONFIG_KEXEC_CORE
static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
#endif
static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
{
#ifdef CONFIG_KEXEC_CORE
crash_save_cpu(regs, cpu);
atomic_dec(&waiting_for_crash_ipi);
local_irq_disable();
sdei_mask_local_cpu();
if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
__cpu_try_die(cpu);
/* just in case */
cpu_park_loop();
#endif
}
/*
* Main handler for inter-processor interrupts
*/
void handle_IPI(int ipinr, struct pt_regs *regs)
{
unsigned int cpu = smp_processor_id();
struct pt_regs *old_regs = set_irq_regs(regs);
if ((unsigned)ipinr < NR_IPI) {
trace_ipi_entry_rcuidle(ipi_types[ipinr]);
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
}
switch (ipinr) {
case IPI_RESCHEDULE:
scheduler_ipi();
break;
case IPI_CALL_FUNC:
irq_enter();
generic_smp_call_function_interrupt();
irq_exit();
break;
case IPI_CPU_STOP:
irq_enter();
local_cpu_stop();
irq_exit();
break;
case IPI_CPU_CRASH_STOP:
if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
irq_enter();
ipi_cpu_crash_stop(cpu, regs);
unreachable();
}
break;
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
case IPI_TIMER:
irq_enter();
tick_receive_broadcast();
irq_exit();
break;
#endif
#ifdef CONFIG_IRQ_WORK
case IPI_IRQ_WORK:
irq_enter();
irq_work_run();
irq_exit();
break;
#endif
#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
case IPI_WAKEUP:
WARN_ONCE(!acpi_parking_protocol_valid(cpu),
"CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
cpu);
break;
#endif
default:
pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
break;
}
if ((unsigned)ipinr < NR_IPI)
trace_ipi_exit_rcuidle(ipi_types[ipinr]);
set_irq_regs(old_regs);
}
void smp_send_reschedule(int cpu)
{
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
}
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
void tick_broadcast(const struct cpumask *mask)
{
smp_cross_call(mask, IPI_TIMER);
}
#endif
/*
* The number of CPUs online, not counting this CPU (which may not be
* fully online and so not counted in num_online_cpus()).
*/
static inline unsigned int num_other_online_cpus(void)
{
unsigned int this_cpu_online = cpu_online(smp_processor_id());
return num_online_cpus() - this_cpu_online;
}
void smp_send_stop(void)
{
unsigned long timeout;
if (num_other_online_cpus()) {
cpumask_t mask;
cpumask_copy(&mask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &mask);
if (system_state <= SYSTEM_RUNNING)
pr_crit("SMP: stopping secondary CPUs\n");
smp_cross_call(&mask, IPI_CPU_STOP);
}
/* Wait up to one second for other CPUs to stop */
timeout = USEC_PER_SEC;
while (num_other_online_cpus() && timeout--)
udelay(1);
if (num_other_online_cpus())
pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
cpumask_pr_args(cpu_online_mask));
sdei_mask_local_cpu();
}
#ifdef CONFIG_KEXEC_CORE
void crash_smp_send_stop(void)
{
static int cpus_stopped;
cpumask_t mask;
unsigned long timeout;
/*
* This function can be called twice in panic path, but obviously
* we execute this only once.
*/
if (cpus_stopped)
return;
cpus_stopped = 1;
/*
* If this cpu is the only one alive at this point in time, online or
* not, there are no stop messages to be sent around, so just back out.
*/
if (num_other_online_cpus() == 0) {
sdei_mask_local_cpu();
return;
}
cpumask_copy(&mask, cpu_online_mask);
cpumask_clear_cpu(smp_processor_id(), &mask);
atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
pr_crit("SMP: stopping secondary CPUs\n");
smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
/* Wait up to one second for other CPUs to stop */
timeout = USEC_PER_SEC;
while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
udelay(1);
if (atomic_read(&waiting_for_crash_ipi) > 0)
pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
cpumask_pr_args(&mask));
sdei_mask_local_cpu();
}
bool smp_crash_stop_failed(void)
{
return (atomic_read(&waiting_for_crash_ipi) > 0);
}
#endif
/*
* not supported here
*/
int setup_profiling_timer(unsigned int multiplier)
{
return -EINVAL;
}
static bool have_cpu_die(void)
{
#ifdef CONFIG_HOTPLUG_CPU
int any_cpu = raw_smp_processor_id();
const struct cpu_operations *ops = get_cpu_ops(any_cpu);
if (ops && ops->cpu_die)
return true;
#endif
return false;
}
bool cpus_are_stuck_in_kernel(void)
{
bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
return !!cpus_stuck_in_kernel || smp_spin_tables;
}