mirror of https://gitee.com/openkylin/linux.git
3360 lines
88 KiB
C
3360 lines
88 KiB
C
/*
|
|
* Copyright © 2006-2016 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include "intel_dpio_phy.h"
|
|
#include "intel_dpll_mgr.h"
|
|
#include "intel_drv.h"
|
|
|
|
/**
|
|
* DOC: Display PLLs
|
|
*
|
|
* Display PLLs used for driving outputs vary by platform. While some have
|
|
* per-pipe or per-encoder dedicated PLLs, others allow the use of any PLL
|
|
* from a pool. In the latter scenario, it is possible that multiple pipes
|
|
* share a PLL if their configurations match.
|
|
*
|
|
* This file provides an abstraction over display PLLs. The function
|
|
* intel_shared_dpll_init() initializes the PLLs for the given platform. The
|
|
* users of a PLL are tracked and that tracking is integrated with the atomic
|
|
* modest interface. During an atomic operation, a PLL can be requested for a
|
|
* given CRTC and encoder configuration by calling intel_get_shared_dpll() and
|
|
* a previously used PLL can be released with intel_release_shared_dpll().
|
|
* Changes to the users are first staged in the atomic state, and then made
|
|
* effective by calling intel_shared_dpll_swap_state() during the atomic
|
|
* commit phase.
|
|
*/
|
|
|
|
static void
|
|
intel_atomic_duplicate_dpll_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll_state *shared_dpll)
|
|
{
|
|
enum intel_dpll_id i;
|
|
|
|
/* Copy shared dpll state */
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
|
|
|
|
shared_dpll[i] = pll->state;
|
|
}
|
|
}
|
|
|
|
static struct intel_shared_dpll_state *
|
|
intel_atomic_get_shared_dpll_state(struct drm_atomic_state *s)
|
|
{
|
|
struct intel_atomic_state *state = to_intel_atomic_state(s);
|
|
|
|
WARN_ON(!drm_modeset_is_locked(&s->dev->mode_config.connection_mutex));
|
|
|
|
if (!state->dpll_set) {
|
|
state->dpll_set = true;
|
|
|
|
intel_atomic_duplicate_dpll_state(to_i915(s->dev),
|
|
state->shared_dpll);
|
|
}
|
|
|
|
return state->shared_dpll;
|
|
}
|
|
|
|
/**
|
|
* intel_get_shared_dpll_by_id - get a DPLL given its id
|
|
* @dev_priv: i915 device instance
|
|
* @id: pll id
|
|
*
|
|
* Returns:
|
|
* A pointer to the DPLL with @id
|
|
*/
|
|
struct intel_shared_dpll *
|
|
intel_get_shared_dpll_by_id(struct drm_i915_private *dev_priv,
|
|
enum intel_dpll_id id)
|
|
{
|
|
return &dev_priv->shared_dplls[id];
|
|
}
|
|
|
|
/**
|
|
* intel_get_shared_dpll_id - get the id of a DPLL
|
|
* @dev_priv: i915 device instance
|
|
* @pll: the DPLL
|
|
*
|
|
* Returns:
|
|
* The id of @pll
|
|
*/
|
|
enum intel_dpll_id
|
|
intel_get_shared_dpll_id(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
if (WARN_ON(pll < dev_priv->shared_dplls||
|
|
pll > &dev_priv->shared_dplls[dev_priv->num_shared_dpll]))
|
|
return -1;
|
|
|
|
return (enum intel_dpll_id) (pll - dev_priv->shared_dplls);
|
|
}
|
|
|
|
/* For ILK+ */
|
|
void assert_shared_dpll(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
bool state)
|
|
{
|
|
bool cur_state;
|
|
struct intel_dpll_hw_state hw_state;
|
|
|
|
if (WARN(!pll, "asserting DPLL %s with no DPLL\n", onoff(state)))
|
|
return;
|
|
|
|
cur_state = pll->info->funcs->get_hw_state(dev_priv, pll, &hw_state);
|
|
I915_STATE_WARN(cur_state != state,
|
|
"%s assertion failure (expected %s, current %s)\n",
|
|
pll->info->name, onoff(state), onoff(cur_state));
|
|
}
|
|
|
|
/**
|
|
* intel_prepare_shared_dpll - call a dpll's prepare hook
|
|
* @crtc_state: CRTC, and its state, which has a shared dpll
|
|
*
|
|
* This calls the PLL's prepare hook if it has one and if the PLL is not
|
|
* already enabled. The prepare hook is platform specific.
|
|
*/
|
|
void intel_prepare_shared_dpll(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
|
|
|
|
if (WARN_ON(pll == NULL))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->dpll_lock);
|
|
WARN_ON(!pll->state.crtc_mask);
|
|
if (!pll->active_mask) {
|
|
DRM_DEBUG_DRIVER("setting up %s\n", pll->info->name);
|
|
WARN_ON(pll->on);
|
|
assert_shared_dpll_disabled(dev_priv, pll);
|
|
|
|
pll->info->funcs->prepare(dev_priv, pll);
|
|
}
|
|
mutex_unlock(&dev_priv->dpll_lock);
|
|
}
|
|
|
|
/**
|
|
* intel_enable_shared_dpll - enable a CRTC's shared DPLL
|
|
* @crtc_state: CRTC, and its state, which has a shared DPLL
|
|
*
|
|
* Enable the shared DPLL used by @crtc.
|
|
*/
|
|
void intel_enable_shared_dpll(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
|
|
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
|
|
unsigned int old_mask;
|
|
|
|
if (WARN_ON(pll == NULL))
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->dpll_lock);
|
|
old_mask = pll->active_mask;
|
|
|
|
if (WARN_ON(!(pll->state.crtc_mask & crtc_mask)) ||
|
|
WARN_ON(pll->active_mask & crtc_mask))
|
|
goto out;
|
|
|
|
pll->active_mask |= crtc_mask;
|
|
|
|
DRM_DEBUG_KMS("enable %s (active %x, on? %d) for crtc %d\n",
|
|
pll->info->name, pll->active_mask, pll->on,
|
|
crtc->base.base.id);
|
|
|
|
if (old_mask) {
|
|
WARN_ON(!pll->on);
|
|
assert_shared_dpll_enabled(dev_priv, pll);
|
|
goto out;
|
|
}
|
|
WARN_ON(pll->on);
|
|
|
|
DRM_DEBUG_KMS("enabling %s\n", pll->info->name);
|
|
pll->info->funcs->enable(dev_priv, pll);
|
|
pll->on = true;
|
|
|
|
out:
|
|
mutex_unlock(&dev_priv->dpll_lock);
|
|
}
|
|
|
|
/**
|
|
* intel_disable_shared_dpll - disable a CRTC's shared DPLL
|
|
* @crtc_state: CRTC, and its state, which has a shared DPLL
|
|
*
|
|
* Disable the shared DPLL used by @crtc.
|
|
*/
|
|
void intel_disable_shared_dpll(const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll = crtc_state->shared_dpll;
|
|
unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
|
|
|
|
/* PCH only available on ILK+ */
|
|
if (INTEL_GEN(dev_priv) < 5)
|
|
return;
|
|
|
|
if (pll == NULL)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->dpll_lock);
|
|
if (WARN_ON(!(pll->active_mask & crtc_mask)))
|
|
goto out;
|
|
|
|
DRM_DEBUG_KMS("disable %s (active %x, on? %d) for crtc %d\n",
|
|
pll->info->name, pll->active_mask, pll->on,
|
|
crtc->base.base.id);
|
|
|
|
assert_shared_dpll_enabled(dev_priv, pll);
|
|
WARN_ON(!pll->on);
|
|
|
|
pll->active_mask &= ~crtc_mask;
|
|
if (pll->active_mask)
|
|
goto out;
|
|
|
|
DRM_DEBUG_KMS("disabling %s\n", pll->info->name);
|
|
pll->info->funcs->disable(dev_priv, pll);
|
|
pll->on = false;
|
|
|
|
out:
|
|
mutex_unlock(&dev_priv->dpll_lock);
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
intel_find_shared_dpll(struct intel_crtc_state *crtc_state,
|
|
enum intel_dpll_id range_min,
|
|
enum intel_dpll_id range_max)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll, *unused_pll = NULL;
|
|
struct intel_shared_dpll_state *shared_dpll;
|
|
enum intel_dpll_id i;
|
|
|
|
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
|
|
|
|
for (i = range_min; i <= range_max; i++) {
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
/* Only want to check enabled timings first */
|
|
if (shared_dpll[i].crtc_mask == 0) {
|
|
if (!unused_pll)
|
|
unused_pll = pll;
|
|
continue;
|
|
}
|
|
|
|
if (memcmp(&crtc_state->dpll_hw_state,
|
|
&shared_dpll[i].hw_state,
|
|
sizeof(crtc_state->dpll_hw_state)) == 0) {
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] sharing existing %s (crtc mask 0x%08x, active %x)\n",
|
|
crtc->base.base.id, crtc->base.name,
|
|
pll->info->name,
|
|
shared_dpll[i].crtc_mask,
|
|
pll->active_mask);
|
|
return pll;
|
|
}
|
|
}
|
|
|
|
/* Ok no matching timings, maybe there's a free one? */
|
|
if (unused_pll) {
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] allocated %s\n",
|
|
crtc->base.base.id, crtc->base.name,
|
|
unused_pll->info->name);
|
|
return unused_pll;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
intel_reference_shared_dpll(struct intel_shared_dpll *pll,
|
|
struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_shared_dpll_state *shared_dpll;
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
|
|
|
|
if (shared_dpll[id].crtc_mask == 0)
|
|
shared_dpll[id].hw_state =
|
|
crtc_state->dpll_hw_state;
|
|
|
|
crtc_state->shared_dpll = pll;
|
|
DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->info->name,
|
|
pipe_name(crtc->pipe));
|
|
|
|
shared_dpll[id].crtc_mask |= 1 << crtc->pipe;
|
|
}
|
|
|
|
/**
|
|
* intel_shared_dpll_swap_state - make atomic DPLL configuration effective
|
|
* @state: atomic state
|
|
*
|
|
* This is the dpll version of drm_atomic_helper_swap_state() since the
|
|
* helper does not handle driver-specific global state.
|
|
*
|
|
* For consistency with atomic helpers this function does a complete swap,
|
|
* i.e. it also puts the current state into @state, even though there is no
|
|
* need for that at this moment.
|
|
*/
|
|
void intel_shared_dpll_swap_state(struct drm_atomic_state *state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(state->dev);
|
|
struct intel_shared_dpll_state *shared_dpll;
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
if (!to_intel_atomic_state(state)->dpll_set)
|
|
return;
|
|
|
|
shared_dpll = to_intel_atomic_state(state)->shared_dpll;
|
|
for (i = 0; i < dev_priv->num_shared_dpll; i++) {
|
|
struct intel_shared_dpll_state tmp;
|
|
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
tmp = pll->state;
|
|
pll->state = shared_dpll[i];
|
|
shared_dpll[i] = tmp;
|
|
}
|
|
}
|
|
|
|
static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
u32 val;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
val = I915_READ(PCH_DPLL(id));
|
|
hw_state->dpll = val;
|
|
hw_state->fp0 = I915_READ(PCH_FP0(id));
|
|
hw_state->fp1 = I915_READ(PCH_FP1(id));
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return val & DPLL_VCO_ENABLE;
|
|
}
|
|
|
|
static void ibx_pch_dpll_prepare(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
I915_WRITE(PCH_FP0(id), pll->state.hw_state.fp0);
|
|
I915_WRITE(PCH_FP1(id), pll->state.hw_state.fp1);
|
|
}
|
|
|
|
static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
|
|
{
|
|
u32 val;
|
|
bool enabled;
|
|
|
|
I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
|
|
|
|
val = I915_READ(PCH_DREF_CONTROL);
|
|
enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
|
|
DREF_SUPERSPREAD_SOURCE_MASK));
|
|
I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
|
|
}
|
|
|
|
static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
/* PCH refclock must be enabled first */
|
|
ibx_assert_pch_refclk_enabled(dev_priv);
|
|
|
|
I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
|
|
|
|
/* Wait for the clocks to stabilize. */
|
|
POSTING_READ(PCH_DPLL(id));
|
|
udelay(150);
|
|
|
|
/* The pixel multiplier can only be updated once the
|
|
* DPLL is enabled and the clocks are stable.
|
|
*
|
|
* So write it again.
|
|
*/
|
|
I915_WRITE(PCH_DPLL(id), pll->state.hw_state.dpll);
|
|
POSTING_READ(PCH_DPLL(id));
|
|
udelay(200);
|
|
}
|
|
|
|
static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
I915_WRITE(PCH_DPLL(id), 0);
|
|
POSTING_READ(PCH_DPLL(id));
|
|
udelay(200);
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
ibx_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id i;
|
|
|
|
if (HAS_PCH_IBX(dev_priv)) {
|
|
/* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
|
|
i = (enum intel_dpll_id) crtc->pipe;
|
|
pll = &dev_priv->shared_dplls[i];
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
|
|
crtc->base.base.id, crtc->base.name,
|
|
pll->info->name);
|
|
} else {
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_PCH_PLL_A,
|
|
DPLL_ID_PCH_PLL_B);
|
|
}
|
|
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
/* reference the pll */
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static void ibx_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
|
|
"fp0: 0x%x, fp1: 0x%x\n",
|
|
hw_state->dpll,
|
|
hw_state->dpll_md,
|
|
hw_state->fp0,
|
|
hw_state->fp1);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs ibx_pch_dpll_funcs = {
|
|
.prepare = ibx_pch_dpll_prepare,
|
|
.enable = ibx_pch_dpll_enable,
|
|
.disable = ibx_pch_dpll_disable,
|
|
.get_hw_state = ibx_pch_dpll_get_hw_state,
|
|
};
|
|
|
|
static void hsw_ddi_wrpll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
I915_WRITE(WRPLL_CTL(id), pll->state.hw_state.wrpll);
|
|
POSTING_READ(WRPLL_CTL(id));
|
|
udelay(20);
|
|
}
|
|
|
|
static void hsw_ddi_spll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
I915_WRITE(SPLL_CTL, pll->state.hw_state.spll);
|
|
POSTING_READ(SPLL_CTL);
|
|
udelay(20);
|
|
}
|
|
|
|
static void hsw_ddi_wrpll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
u32 val;
|
|
|
|
val = I915_READ(WRPLL_CTL(id));
|
|
I915_WRITE(WRPLL_CTL(id), val & ~WRPLL_PLL_ENABLE);
|
|
POSTING_READ(WRPLL_CTL(id));
|
|
}
|
|
|
|
static void hsw_ddi_spll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(SPLL_CTL);
|
|
I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
|
|
POSTING_READ(SPLL_CTL);
|
|
}
|
|
|
|
static bool hsw_ddi_wrpll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
u32 val;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
val = I915_READ(WRPLL_CTL(id));
|
|
hw_state->wrpll = val;
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return val & WRPLL_PLL_ENABLE;
|
|
}
|
|
|
|
static bool hsw_ddi_spll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
u32 val;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
val = I915_READ(SPLL_CTL);
|
|
hw_state->spll = val;
|
|
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return val & SPLL_PLL_ENABLE;
|
|
}
|
|
|
|
#define LC_FREQ 2700
|
|
#define LC_FREQ_2K U64_C(LC_FREQ * 2000)
|
|
|
|
#define P_MIN 2
|
|
#define P_MAX 64
|
|
#define P_INC 2
|
|
|
|
/* Constraints for PLL good behavior */
|
|
#define REF_MIN 48
|
|
#define REF_MAX 400
|
|
#define VCO_MIN 2400
|
|
#define VCO_MAX 4800
|
|
|
|
struct hsw_wrpll_rnp {
|
|
unsigned p, n2, r2;
|
|
};
|
|
|
|
static unsigned hsw_wrpll_get_budget_for_freq(int clock)
|
|
{
|
|
unsigned budget;
|
|
|
|
switch (clock) {
|
|
case 25175000:
|
|
case 25200000:
|
|
case 27000000:
|
|
case 27027000:
|
|
case 37762500:
|
|
case 37800000:
|
|
case 40500000:
|
|
case 40541000:
|
|
case 54000000:
|
|
case 54054000:
|
|
case 59341000:
|
|
case 59400000:
|
|
case 72000000:
|
|
case 74176000:
|
|
case 74250000:
|
|
case 81000000:
|
|
case 81081000:
|
|
case 89012000:
|
|
case 89100000:
|
|
case 108000000:
|
|
case 108108000:
|
|
case 111264000:
|
|
case 111375000:
|
|
case 148352000:
|
|
case 148500000:
|
|
case 162000000:
|
|
case 162162000:
|
|
case 222525000:
|
|
case 222750000:
|
|
case 296703000:
|
|
case 297000000:
|
|
budget = 0;
|
|
break;
|
|
case 233500000:
|
|
case 245250000:
|
|
case 247750000:
|
|
case 253250000:
|
|
case 298000000:
|
|
budget = 1500;
|
|
break;
|
|
case 169128000:
|
|
case 169500000:
|
|
case 179500000:
|
|
case 202000000:
|
|
budget = 2000;
|
|
break;
|
|
case 256250000:
|
|
case 262500000:
|
|
case 270000000:
|
|
case 272500000:
|
|
case 273750000:
|
|
case 280750000:
|
|
case 281250000:
|
|
case 286000000:
|
|
case 291750000:
|
|
budget = 4000;
|
|
break;
|
|
case 267250000:
|
|
case 268500000:
|
|
budget = 5000;
|
|
break;
|
|
default:
|
|
budget = 1000;
|
|
break;
|
|
}
|
|
|
|
return budget;
|
|
}
|
|
|
|
static void hsw_wrpll_update_rnp(u64 freq2k, unsigned int budget,
|
|
unsigned int r2, unsigned int n2,
|
|
unsigned int p,
|
|
struct hsw_wrpll_rnp *best)
|
|
{
|
|
u64 a, b, c, d, diff, diff_best;
|
|
|
|
/* No best (r,n,p) yet */
|
|
if (best->p == 0) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
|
|
* freq2k.
|
|
*
|
|
* delta = 1e6 *
|
|
* abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
|
|
* freq2k;
|
|
*
|
|
* and we would like delta <= budget.
|
|
*
|
|
* If the discrepancy is above the PPM-based budget, always prefer to
|
|
* improve upon the previous solution. However, if you're within the
|
|
* budget, try to maximize Ref * VCO, that is N / (P * R^2).
|
|
*/
|
|
a = freq2k * budget * p * r2;
|
|
b = freq2k * budget * best->p * best->r2;
|
|
diff = abs_diff(freq2k * p * r2, LC_FREQ_2K * n2);
|
|
diff_best = abs_diff(freq2k * best->p * best->r2,
|
|
LC_FREQ_2K * best->n2);
|
|
c = 1000000 * diff;
|
|
d = 1000000 * diff_best;
|
|
|
|
if (a < c && b < d) {
|
|
/* If both are above the budget, pick the closer */
|
|
if (best->p * best->r2 * diff < p * r2 * diff_best) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
}
|
|
} else if (a >= c && b < d) {
|
|
/* If A is below the threshold but B is above it? Update. */
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
} else if (a >= c && b >= d) {
|
|
/* Both are below the limit, so pick the higher n2/(r2*r2) */
|
|
if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
|
|
best->p = p;
|
|
best->n2 = n2;
|
|
best->r2 = r2;
|
|
}
|
|
}
|
|
/* Otherwise a < c && b >= d, do nothing */
|
|
}
|
|
|
|
static void
|
|
hsw_ddi_calculate_wrpll(int clock /* in Hz */,
|
|
unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
|
|
{
|
|
u64 freq2k;
|
|
unsigned p, n2, r2;
|
|
struct hsw_wrpll_rnp best = { 0, 0, 0 };
|
|
unsigned budget;
|
|
|
|
freq2k = clock / 100;
|
|
|
|
budget = hsw_wrpll_get_budget_for_freq(clock);
|
|
|
|
/* Special case handling for 540 pixel clock: bypass WR PLL entirely
|
|
* and directly pass the LC PLL to it. */
|
|
if (freq2k == 5400000) {
|
|
*n2_out = 2;
|
|
*p_out = 1;
|
|
*r2_out = 2;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Ref = LC_FREQ / R, where Ref is the actual reference input seen by
|
|
* the WR PLL.
|
|
*
|
|
* We want R so that REF_MIN <= Ref <= REF_MAX.
|
|
* Injecting R2 = 2 * R gives:
|
|
* REF_MAX * r2 > LC_FREQ * 2 and
|
|
* REF_MIN * r2 < LC_FREQ * 2
|
|
*
|
|
* Which means the desired boundaries for r2 are:
|
|
* LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
|
|
*
|
|
*/
|
|
for (r2 = LC_FREQ * 2 / REF_MAX + 1;
|
|
r2 <= LC_FREQ * 2 / REF_MIN;
|
|
r2++) {
|
|
|
|
/*
|
|
* VCO = N * Ref, that is: VCO = N * LC_FREQ / R
|
|
*
|
|
* Once again we want VCO_MIN <= VCO <= VCO_MAX.
|
|
* Injecting R2 = 2 * R and N2 = 2 * N, we get:
|
|
* VCO_MAX * r2 > n2 * LC_FREQ and
|
|
* VCO_MIN * r2 < n2 * LC_FREQ)
|
|
*
|
|
* Which means the desired boundaries for n2 are:
|
|
* VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
|
|
*/
|
|
for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
|
|
n2 <= VCO_MAX * r2 / LC_FREQ;
|
|
n2++) {
|
|
|
|
for (p = P_MIN; p <= P_MAX; p += P_INC)
|
|
hsw_wrpll_update_rnp(freq2k, budget,
|
|
r2, n2, p, &best);
|
|
}
|
|
}
|
|
|
|
*n2_out = best.n2;
|
|
*p_out = best.p;
|
|
*r2_out = best.r2;
|
|
}
|
|
|
|
static struct intel_shared_dpll *hsw_ddi_hdmi_get_dpll(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
u32 val;
|
|
unsigned int p, n2, r2;
|
|
|
|
hsw_ddi_calculate_wrpll(crtc_state->port_clock * 1000, &r2, &n2, &p);
|
|
|
|
val = WRPLL_PLL_ENABLE | WRPLL_REF_LCPLL |
|
|
WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
|
|
WRPLL_DIVIDER_POST(p);
|
|
|
|
crtc_state->dpll_hw_state.wrpll = val;
|
|
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_WRPLL1, DPLL_ID_WRPLL2);
|
|
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
return pll;
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
hsw_ddi_dp_get_dpll(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id pll_id;
|
|
int clock = crtc_state->port_clock;
|
|
|
|
switch (clock / 2) {
|
|
case 81000:
|
|
pll_id = DPLL_ID_LCPLL_810;
|
|
break;
|
|
case 135000:
|
|
pll_id = DPLL_ID_LCPLL_1350;
|
|
break;
|
|
case 270000:
|
|
pll_id = DPLL_ID_LCPLL_2700;
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Invalid clock for DP: %d\n", clock);
|
|
return NULL;
|
|
}
|
|
|
|
pll = intel_get_shared_dpll_by_id(dev_priv, pll_id);
|
|
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
return pll;
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
hsw_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
|
|
pll = hsw_ddi_hdmi_get_dpll(crtc_state);
|
|
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
|
|
pll = hsw_ddi_dp_get_dpll(crtc_state);
|
|
} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
|
|
if (WARN_ON(crtc_state->port_clock / 2 != 135000))
|
|
return NULL;
|
|
|
|
crtc_state->dpll_hw_state.spll =
|
|
SPLL_PLL_ENABLE | SPLL_FREQ_1350MHz | SPLL_REF_MUXED_SSC;
|
|
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_SPLL, DPLL_ID_SPLL);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static void hsw_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
|
|
hw_state->wrpll, hw_state->spll);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs hsw_ddi_wrpll_funcs = {
|
|
.enable = hsw_ddi_wrpll_enable,
|
|
.disable = hsw_ddi_wrpll_disable,
|
|
.get_hw_state = hsw_ddi_wrpll_get_hw_state,
|
|
};
|
|
|
|
static const struct intel_shared_dpll_funcs hsw_ddi_spll_funcs = {
|
|
.enable = hsw_ddi_spll_enable,
|
|
.disable = hsw_ddi_spll_disable,
|
|
.get_hw_state = hsw_ddi_spll_get_hw_state,
|
|
};
|
|
|
|
static void hsw_ddi_lcpll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
}
|
|
|
|
static void hsw_ddi_lcpll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
}
|
|
|
|
static bool hsw_ddi_lcpll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs hsw_ddi_lcpll_funcs = {
|
|
.enable = hsw_ddi_lcpll_enable,
|
|
.disable = hsw_ddi_lcpll_disable,
|
|
.get_hw_state = hsw_ddi_lcpll_get_hw_state,
|
|
};
|
|
|
|
struct skl_dpll_regs {
|
|
i915_reg_t ctl, cfgcr1, cfgcr2;
|
|
};
|
|
|
|
/* this array is indexed by the *shared* pll id */
|
|
static const struct skl_dpll_regs skl_dpll_regs[4] = {
|
|
{
|
|
/* DPLL 0 */
|
|
.ctl = LCPLL1_CTL,
|
|
/* DPLL 0 doesn't support HDMI mode */
|
|
},
|
|
{
|
|
/* DPLL 1 */
|
|
.ctl = LCPLL2_CTL,
|
|
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL1),
|
|
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL1),
|
|
},
|
|
{
|
|
/* DPLL 2 */
|
|
.ctl = WRPLL_CTL(0),
|
|
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL2),
|
|
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL2),
|
|
},
|
|
{
|
|
/* DPLL 3 */
|
|
.ctl = WRPLL_CTL(1),
|
|
.cfgcr1 = DPLL_CFGCR1(SKL_DPLL3),
|
|
.cfgcr2 = DPLL_CFGCR2(SKL_DPLL3),
|
|
},
|
|
};
|
|
|
|
static void skl_ddi_pll_write_ctrl1(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
u32 val;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
|
|
val &= ~(DPLL_CTRL1_HDMI_MODE(id) |
|
|
DPLL_CTRL1_SSC(id) |
|
|
DPLL_CTRL1_LINK_RATE_MASK(id));
|
|
val |= pll->state.hw_state.ctrl1 << (id * 6);
|
|
|
|
I915_WRITE(DPLL_CTRL1, val);
|
|
POSTING_READ(DPLL_CTRL1);
|
|
}
|
|
|
|
static void skl_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
skl_ddi_pll_write_ctrl1(dev_priv, pll);
|
|
|
|
I915_WRITE(regs[id].cfgcr1, pll->state.hw_state.cfgcr1);
|
|
I915_WRITE(regs[id].cfgcr2, pll->state.hw_state.cfgcr2);
|
|
POSTING_READ(regs[id].cfgcr1);
|
|
POSTING_READ(regs[id].cfgcr2);
|
|
|
|
/* the enable bit is always bit 31 */
|
|
I915_WRITE(regs[id].ctl,
|
|
I915_READ(regs[id].ctl) | LCPLL_PLL_ENABLE);
|
|
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
DPLL_STATUS,
|
|
DPLL_LOCK(id),
|
|
DPLL_LOCK(id),
|
|
5))
|
|
DRM_ERROR("DPLL %d not locked\n", id);
|
|
}
|
|
|
|
static void skl_ddi_dpll0_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
skl_ddi_pll_write_ctrl1(dev_priv, pll);
|
|
}
|
|
|
|
static void skl_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
/* the enable bit is always bit 31 */
|
|
I915_WRITE(regs[id].ctl,
|
|
I915_READ(regs[id].ctl) & ~LCPLL_PLL_ENABLE);
|
|
POSTING_READ(regs[id].ctl);
|
|
}
|
|
|
|
static void skl_ddi_dpll0_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
}
|
|
|
|
static bool skl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
u32 val;
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
bool ret;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
ret = false;
|
|
|
|
val = I915_READ(regs[id].ctl);
|
|
if (!(val & LCPLL_PLL_ENABLE))
|
|
goto out;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
|
|
|
|
/* avoid reading back stale values if HDMI mode is not enabled */
|
|
if (val & DPLL_CTRL1_HDMI_MODE(id)) {
|
|
hw_state->cfgcr1 = I915_READ(regs[id].cfgcr1);
|
|
hw_state->cfgcr2 = I915_READ(regs[id].cfgcr2);
|
|
}
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool skl_ddi_dpll0_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
const struct skl_dpll_regs *regs = skl_dpll_regs;
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
u32 val;
|
|
bool ret;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
ret = false;
|
|
|
|
/* DPLL0 is always enabled since it drives CDCLK */
|
|
val = I915_READ(regs[id].ctl);
|
|
if (WARN_ON(!(val & LCPLL_PLL_ENABLE)))
|
|
goto out;
|
|
|
|
val = I915_READ(DPLL_CTRL1);
|
|
hw_state->ctrl1 = (val >> (id * 6)) & 0x3f;
|
|
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct skl_wrpll_context {
|
|
u64 min_deviation; /* current minimal deviation */
|
|
u64 central_freq; /* chosen central freq */
|
|
u64 dco_freq; /* chosen dco freq */
|
|
unsigned int p; /* chosen divider */
|
|
};
|
|
|
|
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
|
|
ctx->min_deviation = U64_MAX;
|
|
}
|
|
|
|
/* DCO freq must be within +1%/-6% of the DCO central freq */
|
|
#define SKL_DCO_MAX_PDEVIATION 100
|
|
#define SKL_DCO_MAX_NDEVIATION 600
|
|
|
|
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
|
|
u64 central_freq,
|
|
u64 dco_freq,
|
|
unsigned int divider)
|
|
{
|
|
u64 deviation;
|
|
|
|
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
|
|
central_freq);
|
|
|
|
/* positive deviation */
|
|
if (dco_freq >= central_freq) {
|
|
if (deviation < SKL_DCO_MAX_PDEVIATION &&
|
|
deviation < ctx->min_deviation) {
|
|
ctx->min_deviation = deviation;
|
|
ctx->central_freq = central_freq;
|
|
ctx->dco_freq = dco_freq;
|
|
ctx->p = divider;
|
|
}
|
|
/* negative deviation */
|
|
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
|
|
deviation < ctx->min_deviation) {
|
|
ctx->min_deviation = deviation;
|
|
ctx->central_freq = central_freq;
|
|
ctx->dco_freq = dco_freq;
|
|
ctx->p = divider;
|
|
}
|
|
}
|
|
|
|
static void skl_wrpll_get_multipliers(unsigned int p,
|
|
unsigned int *p0 /* out */,
|
|
unsigned int *p1 /* out */,
|
|
unsigned int *p2 /* out */)
|
|
{
|
|
/* even dividers */
|
|
if (p % 2 == 0) {
|
|
unsigned int half = p / 2;
|
|
|
|
if (half == 1 || half == 2 || half == 3 || half == 5) {
|
|
*p0 = 2;
|
|
*p1 = 1;
|
|
*p2 = half;
|
|
} else if (half % 2 == 0) {
|
|
*p0 = 2;
|
|
*p1 = half / 2;
|
|
*p2 = 2;
|
|
} else if (half % 3 == 0) {
|
|
*p0 = 3;
|
|
*p1 = half / 3;
|
|
*p2 = 2;
|
|
} else if (half % 7 == 0) {
|
|
*p0 = 7;
|
|
*p1 = half / 7;
|
|
*p2 = 2;
|
|
}
|
|
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
|
|
*p0 = 3;
|
|
*p1 = 1;
|
|
*p2 = p / 3;
|
|
} else if (p == 5 || p == 7) {
|
|
*p0 = p;
|
|
*p1 = 1;
|
|
*p2 = 1;
|
|
} else if (p == 15) {
|
|
*p0 = 3;
|
|
*p1 = 1;
|
|
*p2 = 5;
|
|
} else if (p == 21) {
|
|
*p0 = 7;
|
|
*p1 = 1;
|
|
*p2 = 3;
|
|
} else if (p == 35) {
|
|
*p0 = 7;
|
|
*p1 = 1;
|
|
*p2 = 5;
|
|
}
|
|
}
|
|
|
|
struct skl_wrpll_params {
|
|
u32 dco_fraction;
|
|
u32 dco_integer;
|
|
u32 qdiv_ratio;
|
|
u32 qdiv_mode;
|
|
u32 kdiv;
|
|
u32 pdiv;
|
|
u32 central_freq;
|
|
};
|
|
|
|
static void skl_wrpll_params_populate(struct skl_wrpll_params *params,
|
|
u64 afe_clock,
|
|
u64 central_freq,
|
|
u32 p0, u32 p1, u32 p2)
|
|
{
|
|
u64 dco_freq;
|
|
|
|
switch (central_freq) {
|
|
case 9600000000ULL:
|
|
params->central_freq = 0;
|
|
break;
|
|
case 9000000000ULL:
|
|
params->central_freq = 1;
|
|
break;
|
|
case 8400000000ULL:
|
|
params->central_freq = 3;
|
|
}
|
|
|
|
switch (p0) {
|
|
case 1:
|
|
params->pdiv = 0;
|
|
break;
|
|
case 2:
|
|
params->pdiv = 1;
|
|
break;
|
|
case 3:
|
|
params->pdiv = 2;
|
|
break;
|
|
case 7:
|
|
params->pdiv = 4;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect PDiv\n");
|
|
}
|
|
|
|
switch (p2) {
|
|
case 5:
|
|
params->kdiv = 0;
|
|
break;
|
|
case 2:
|
|
params->kdiv = 1;
|
|
break;
|
|
case 3:
|
|
params->kdiv = 2;
|
|
break;
|
|
case 1:
|
|
params->kdiv = 3;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect KDiv\n");
|
|
}
|
|
|
|
params->qdiv_ratio = p1;
|
|
params->qdiv_mode = (params->qdiv_ratio == 1) ? 0 : 1;
|
|
|
|
dco_freq = p0 * p1 * p2 * afe_clock;
|
|
|
|
/*
|
|
* Intermediate values are in Hz.
|
|
* Divide by MHz to match bsepc
|
|
*/
|
|
params->dco_integer = div_u64(dco_freq, 24 * MHz(1));
|
|
params->dco_fraction =
|
|
div_u64((div_u64(dco_freq, 24) -
|
|
params->dco_integer * MHz(1)) * 0x8000, MHz(1));
|
|
}
|
|
|
|
static bool
|
|
skl_ddi_calculate_wrpll(int clock /* in Hz */,
|
|
struct skl_wrpll_params *wrpll_params)
|
|
{
|
|
u64 afe_clock = clock * 5; /* AFE Clock is 5x Pixel clock */
|
|
u64 dco_central_freq[3] = { 8400000000ULL,
|
|
9000000000ULL,
|
|
9600000000ULL };
|
|
static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
|
|
24, 28, 30, 32, 36, 40, 42, 44,
|
|
48, 52, 54, 56, 60, 64, 66, 68,
|
|
70, 72, 76, 78, 80, 84, 88, 90,
|
|
92, 96, 98 };
|
|
static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
|
|
static const struct {
|
|
const int *list;
|
|
int n_dividers;
|
|
} dividers[] = {
|
|
{ even_dividers, ARRAY_SIZE(even_dividers) },
|
|
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
|
|
};
|
|
struct skl_wrpll_context ctx;
|
|
unsigned int dco, d, i;
|
|
unsigned int p0, p1, p2;
|
|
|
|
skl_wrpll_context_init(&ctx);
|
|
|
|
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
|
|
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
|
|
for (i = 0; i < dividers[d].n_dividers; i++) {
|
|
unsigned int p = dividers[d].list[i];
|
|
u64 dco_freq = p * afe_clock;
|
|
|
|
skl_wrpll_try_divider(&ctx,
|
|
dco_central_freq[dco],
|
|
dco_freq,
|
|
p);
|
|
/*
|
|
* Skip the remaining dividers if we're sure to
|
|
* have found the definitive divider, we can't
|
|
* improve a 0 deviation.
|
|
*/
|
|
if (ctx.min_deviation == 0)
|
|
goto skip_remaining_dividers;
|
|
}
|
|
}
|
|
|
|
skip_remaining_dividers:
|
|
/*
|
|
* If a solution is found with an even divider, prefer
|
|
* this one.
|
|
*/
|
|
if (d == 0 && ctx.p)
|
|
break;
|
|
}
|
|
|
|
if (!ctx.p) {
|
|
DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* gcc incorrectly analyses that these can be used without being
|
|
* initialized. To be fair, it's hard to guess.
|
|
*/
|
|
p0 = p1 = p2 = 0;
|
|
skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
|
|
skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
|
|
p0, p1, p2);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool skl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
|
|
{
|
|
u32 ctrl1, cfgcr1, cfgcr2;
|
|
struct skl_wrpll_params wrpll_params = { 0, };
|
|
|
|
/*
|
|
* See comment in intel_dpll_hw_state to understand why we always use 0
|
|
* as the DPLL id in this function.
|
|
*/
|
|
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
|
|
|
|
ctrl1 |= DPLL_CTRL1_HDMI_MODE(0);
|
|
|
|
if (!skl_ddi_calculate_wrpll(crtc_state->port_clock * 1000,
|
|
&wrpll_params))
|
|
return false;
|
|
|
|
cfgcr1 = DPLL_CFGCR1_FREQ_ENABLE |
|
|
DPLL_CFGCR1_DCO_FRACTION(wrpll_params.dco_fraction) |
|
|
wrpll_params.dco_integer;
|
|
|
|
cfgcr2 = DPLL_CFGCR2_QDIV_RATIO(wrpll_params.qdiv_ratio) |
|
|
DPLL_CFGCR2_QDIV_MODE(wrpll_params.qdiv_mode) |
|
|
DPLL_CFGCR2_KDIV(wrpll_params.kdiv) |
|
|
DPLL_CFGCR2_PDIV(wrpll_params.pdiv) |
|
|
wrpll_params.central_freq;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
|
|
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
|
|
crtc_state->dpll_hw_state.cfgcr2 = cfgcr2;
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
skl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
u32 ctrl1;
|
|
|
|
/*
|
|
* See comment in intel_dpll_hw_state to understand why we always use 0
|
|
* as the DPLL id in this function.
|
|
*/
|
|
ctrl1 = DPLL_CTRL1_OVERRIDE(0);
|
|
switch (crtc_state->port_clock / 2) {
|
|
case 81000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, 0);
|
|
break;
|
|
case 135000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, 0);
|
|
break;
|
|
case 270000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, 0);
|
|
break;
|
|
/* eDP 1.4 rates */
|
|
case 162000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, 0);
|
|
break;
|
|
case 108000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, 0);
|
|
break;
|
|
case 216000:
|
|
ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, 0);
|
|
break;
|
|
}
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.ctrl1 = ctrl1;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
skl_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
bool bret;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
|
|
bret = skl_ddi_hdmi_pll_dividers(crtc_state);
|
|
if (!bret) {
|
|
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
|
|
return NULL;
|
|
}
|
|
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
|
|
bret = skl_ddi_dp_set_dpll_hw_state(crtc_state);
|
|
if (!bret) {
|
|
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
|
|
return NULL;
|
|
}
|
|
} else {
|
|
return NULL;
|
|
}
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_SKL_DPLL0,
|
|
DPLL_ID_SKL_DPLL0);
|
|
else
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_SKL_DPLL1,
|
|
DPLL_ID_SKL_DPLL3);
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static void skl_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: "
|
|
"ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
|
|
hw_state->ctrl1,
|
|
hw_state->cfgcr1,
|
|
hw_state->cfgcr2);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs skl_ddi_pll_funcs = {
|
|
.enable = skl_ddi_pll_enable,
|
|
.disable = skl_ddi_pll_disable,
|
|
.get_hw_state = skl_ddi_pll_get_hw_state,
|
|
};
|
|
|
|
static const struct intel_shared_dpll_funcs skl_ddi_dpll0_funcs = {
|
|
.enable = skl_ddi_dpll0_enable,
|
|
.disable = skl_ddi_dpll0_disable,
|
|
.get_hw_state = skl_ddi_dpll0_get_hw_state,
|
|
};
|
|
|
|
static void bxt_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
u32 temp;
|
|
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
|
|
enum dpio_phy phy;
|
|
enum dpio_channel ch;
|
|
|
|
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
|
|
|
|
/* Non-SSC reference */
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp |= PORT_PLL_REF_SEL;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
|
|
if (IS_GEMINILAKE(dev_priv)) {
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp |= PORT_PLL_POWER_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
|
|
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) &
|
|
PORT_PLL_POWER_STATE), 200))
|
|
DRM_ERROR("Power state not set for PLL:%d\n", port);
|
|
}
|
|
|
|
/* Disable 10 bit clock */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
|
|
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
|
|
|
|
/* Write P1 & P2 */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
|
|
temp &= ~(PORT_PLL_P1_MASK | PORT_PLL_P2_MASK);
|
|
temp |= pll->state.hw_state.ebb0;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_0(phy, ch), temp);
|
|
|
|
/* Write M2 integer */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 0));
|
|
temp &= ~PORT_PLL_M2_MASK;
|
|
temp |= pll->state.hw_state.pll0;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 0), temp);
|
|
|
|
/* Write N */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 1));
|
|
temp &= ~PORT_PLL_N_MASK;
|
|
temp |= pll->state.hw_state.pll1;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 1), temp);
|
|
|
|
/* Write M2 fraction */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 2));
|
|
temp &= ~PORT_PLL_M2_FRAC_MASK;
|
|
temp |= pll->state.hw_state.pll2;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 2), temp);
|
|
|
|
/* Write M2 fraction enable */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 3));
|
|
temp &= ~PORT_PLL_M2_FRAC_ENABLE;
|
|
temp |= pll->state.hw_state.pll3;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 3), temp);
|
|
|
|
/* Write coeff */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 6));
|
|
temp &= ~PORT_PLL_PROP_COEFF_MASK;
|
|
temp &= ~PORT_PLL_INT_COEFF_MASK;
|
|
temp &= ~PORT_PLL_GAIN_CTL_MASK;
|
|
temp |= pll->state.hw_state.pll6;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 6), temp);
|
|
|
|
/* Write calibration val */
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 8));
|
|
temp &= ~PORT_PLL_TARGET_CNT_MASK;
|
|
temp |= pll->state.hw_state.pll8;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 8), temp);
|
|
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 9));
|
|
temp &= ~PORT_PLL_LOCK_THRESHOLD_MASK;
|
|
temp |= pll->state.hw_state.pll9;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 9), temp);
|
|
|
|
temp = I915_READ(BXT_PORT_PLL(phy, ch, 10));
|
|
temp &= ~PORT_PLL_DCO_AMP_OVR_EN_H;
|
|
temp &= ~PORT_PLL_DCO_AMP_MASK;
|
|
temp |= pll->state.hw_state.pll10;
|
|
I915_WRITE(BXT_PORT_PLL(phy, ch, 10), temp);
|
|
|
|
/* Recalibrate with new settings */
|
|
temp = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
|
|
temp |= PORT_PLL_RECALIBRATE;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
|
|
temp &= ~PORT_PLL_10BIT_CLK_ENABLE;
|
|
temp |= pll->state.hw_state.ebb4;
|
|
I915_WRITE(BXT_PORT_PLL_EBB_4(phy, ch), temp);
|
|
|
|
/* Enable PLL */
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp |= PORT_PLL_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
|
|
|
|
if (wait_for_us((I915_READ(BXT_PORT_PLL_ENABLE(port)) & PORT_PLL_LOCK),
|
|
200))
|
|
DRM_ERROR("PLL %d not locked\n", port);
|
|
|
|
if (IS_GEMINILAKE(dev_priv)) {
|
|
temp = I915_READ(BXT_PORT_TX_DW5_LN0(phy, ch));
|
|
temp |= DCC_DELAY_RANGE_2;
|
|
I915_WRITE(BXT_PORT_TX_DW5_GRP(phy, ch), temp);
|
|
}
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers and we pick lanes 0/1 for that.
|
|
*/
|
|
temp = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
|
|
temp &= ~LANE_STAGGER_MASK;
|
|
temp &= ~LANESTAGGER_STRAP_OVRD;
|
|
temp |= pll->state.hw_state.pcsdw12;
|
|
I915_WRITE(BXT_PORT_PCS_DW12_GRP(phy, ch), temp);
|
|
}
|
|
|
|
static void bxt_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
|
|
u32 temp;
|
|
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp &= ~PORT_PLL_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
POSTING_READ(BXT_PORT_PLL_ENABLE(port));
|
|
|
|
if (IS_GEMINILAKE(dev_priv)) {
|
|
temp = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
temp &= ~PORT_PLL_POWER_ENABLE;
|
|
I915_WRITE(BXT_PORT_PLL_ENABLE(port), temp);
|
|
|
|
if (wait_for_us(!(I915_READ(BXT_PORT_PLL_ENABLE(port)) &
|
|
PORT_PLL_POWER_STATE), 200))
|
|
DRM_ERROR("Power state not reset for PLL:%d\n", port);
|
|
}
|
|
}
|
|
|
|
static bool bxt_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
enum port port = (enum port)pll->info->id; /* 1:1 port->PLL mapping */
|
|
intel_wakeref_t wakeref;
|
|
enum dpio_phy phy;
|
|
enum dpio_channel ch;
|
|
u32 val;
|
|
bool ret;
|
|
|
|
bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
ret = false;
|
|
|
|
val = I915_READ(BXT_PORT_PLL_ENABLE(port));
|
|
if (!(val & PORT_PLL_ENABLE))
|
|
goto out;
|
|
|
|
hw_state->ebb0 = I915_READ(BXT_PORT_PLL_EBB_0(phy, ch));
|
|
hw_state->ebb0 &= PORT_PLL_P1_MASK | PORT_PLL_P2_MASK;
|
|
|
|
hw_state->ebb4 = I915_READ(BXT_PORT_PLL_EBB_4(phy, ch));
|
|
hw_state->ebb4 &= PORT_PLL_10BIT_CLK_ENABLE;
|
|
|
|
hw_state->pll0 = I915_READ(BXT_PORT_PLL(phy, ch, 0));
|
|
hw_state->pll0 &= PORT_PLL_M2_MASK;
|
|
|
|
hw_state->pll1 = I915_READ(BXT_PORT_PLL(phy, ch, 1));
|
|
hw_state->pll1 &= PORT_PLL_N_MASK;
|
|
|
|
hw_state->pll2 = I915_READ(BXT_PORT_PLL(phy, ch, 2));
|
|
hw_state->pll2 &= PORT_PLL_M2_FRAC_MASK;
|
|
|
|
hw_state->pll3 = I915_READ(BXT_PORT_PLL(phy, ch, 3));
|
|
hw_state->pll3 &= PORT_PLL_M2_FRAC_ENABLE;
|
|
|
|
hw_state->pll6 = I915_READ(BXT_PORT_PLL(phy, ch, 6));
|
|
hw_state->pll6 &= PORT_PLL_PROP_COEFF_MASK |
|
|
PORT_PLL_INT_COEFF_MASK |
|
|
PORT_PLL_GAIN_CTL_MASK;
|
|
|
|
hw_state->pll8 = I915_READ(BXT_PORT_PLL(phy, ch, 8));
|
|
hw_state->pll8 &= PORT_PLL_TARGET_CNT_MASK;
|
|
|
|
hw_state->pll9 = I915_READ(BXT_PORT_PLL(phy, ch, 9));
|
|
hw_state->pll9 &= PORT_PLL_LOCK_THRESHOLD_MASK;
|
|
|
|
hw_state->pll10 = I915_READ(BXT_PORT_PLL(phy, ch, 10));
|
|
hw_state->pll10 &= PORT_PLL_DCO_AMP_OVR_EN_H |
|
|
PORT_PLL_DCO_AMP_MASK;
|
|
|
|
/*
|
|
* While we write to the group register to program all lanes at once we
|
|
* can read only lane registers. We configure all lanes the same way, so
|
|
* here just read out lanes 0/1 and output a note if lanes 2/3 differ.
|
|
*/
|
|
hw_state->pcsdw12 = I915_READ(BXT_PORT_PCS_DW12_LN01(phy, ch));
|
|
if (I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)) != hw_state->pcsdw12)
|
|
DRM_DEBUG_DRIVER("lane stagger config different for lane 01 (%08x) and 23 (%08x)\n",
|
|
hw_state->pcsdw12,
|
|
I915_READ(BXT_PORT_PCS_DW12_LN23(phy, ch)));
|
|
hw_state->pcsdw12 &= LANE_STAGGER_MASK | LANESTAGGER_STRAP_OVRD;
|
|
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* bxt clock parameters */
|
|
struct bxt_clk_div {
|
|
int clock;
|
|
u32 p1;
|
|
u32 p2;
|
|
u32 m2_int;
|
|
u32 m2_frac;
|
|
bool m2_frac_en;
|
|
u32 n;
|
|
|
|
int vco;
|
|
};
|
|
|
|
/* pre-calculated values for DP linkrates */
|
|
static const struct bxt_clk_div bxt_dp_clk_val[] = {
|
|
{162000, 4, 2, 32, 1677722, 1, 1},
|
|
{270000, 4, 1, 27, 0, 0, 1},
|
|
{540000, 2, 1, 27, 0, 0, 1},
|
|
{216000, 3, 2, 32, 1677722, 1, 1},
|
|
{243000, 4, 1, 24, 1258291, 1, 1},
|
|
{324000, 4, 1, 32, 1677722, 1, 1},
|
|
{432000, 3, 1, 32, 1677722, 1, 1}
|
|
};
|
|
|
|
static bool
|
|
bxt_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state,
|
|
struct bxt_clk_div *clk_div)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct dpll best_clock;
|
|
|
|
/* Calculate HDMI div */
|
|
/*
|
|
* FIXME: tie the following calculation into
|
|
* i9xx_crtc_compute_clock
|
|
*/
|
|
if (!bxt_find_best_dpll(crtc_state, &best_clock)) {
|
|
DRM_DEBUG_DRIVER("no PLL dividers found for clock %d pipe %c\n",
|
|
crtc_state->port_clock,
|
|
pipe_name(crtc->pipe));
|
|
return false;
|
|
}
|
|
|
|
clk_div->p1 = best_clock.p1;
|
|
clk_div->p2 = best_clock.p2;
|
|
WARN_ON(best_clock.m1 != 2);
|
|
clk_div->n = best_clock.n;
|
|
clk_div->m2_int = best_clock.m2 >> 22;
|
|
clk_div->m2_frac = best_clock.m2 & ((1 << 22) - 1);
|
|
clk_div->m2_frac_en = clk_div->m2_frac != 0;
|
|
|
|
clk_div->vco = best_clock.vco;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void bxt_ddi_dp_pll_dividers(struct intel_crtc_state *crtc_state,
|
|
struct bxt_clk_div *clk_div)
|
|
{
|
|
int clock = crtc_state->port_clock;
|
|
int i;
|
|
|
|
*clk_div = bxt_dp_clk_val[0];
|
|
for (i = 0; i < ARRAY_SIZE(bxt_dp_clk_val); ++i) {
|
|
if (bxt_dp_clk_val[i].clock == clock) {
|
|
*clk_div = bxt_dp_clk_val[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
clk_div->vco = clock * 10 / 2 * clk_div->p1 * clk_div->p2;
|
|
}
|
|
|
|
static bool bxt_ddi_set_dpll_hw_state(struct intel_crtc_state *crtc_state,
|
|
const struct bxt_clk_div *clk_div)
|
|
{
|
|
struct intel_dpll_hw_state *dpll_hw_state = &crtc_state->dpll_hw_state;
|
|
int clock = crtc_state->port_clock;
|
|
int vco = clk_div->vco;
|
|
u32 prop_coef, int_coef, gain_ctl, targ_cnt;
|
|
u32 lanestagger;
|
|
|
|
memset(dpll_hw_state, 0, sizeof(*dpll_hw_state));
|
|
|
|
if (vco >= 6200000 && vco <= 6700000) {
|
|
prop_coef = 4;
|
|
int_coef = 9;
|
|
gain_ctl = 3;
|
|
targ_cnt = 8;
|
|
} else if ((vco > 5400000 && vco < 6200000) ||
|
|
(vco >= 4800000 && vco < 5400000)) {
|
|
prop_coef = 5;
|
|
int_coef = 11;
|
|
gain_ctl = 3;
|
|
targ_cnt = 9;
|
|
} else if (vco == 5400000) {
|
|
prop_coef = 3;
|
|
int_coef = 8;
|
|
gain_ctl = 1;
|
|
targ_cnt = 9;
|
|
} else {
|
|
DRM_ERROR("Invalid VCO\n");
|
|
return false;
|
|
}
|
|
|
|
if (clock > 270000)
|
|
lanestagger = 0x18;
|
|
else if (clock > 135000)
|
|
lanestagger = 0x0d;
|
|
else if (clock > 67000)
|
|
lanestagger = 0x07;
|
|
else if (clock > 33000)
|
|
lanestagger = 0x04;
|
|
else
|
|
lanestagger = 0x02;
|
|
|
|
dpll_hw_state->ebb0 = PORT_PLL_P1(clk_div->p1) | PORT_PLL_P2(clk_div->p2);
|
|
dpll_hw_state->pll0 = clk_div->m2_int;
|
|
dpll_hw_state->pll1 = PORT_PLL_N(clk_div->n);
|
|
dpll_hw_state->pll2 = clk_div->m2_frac;
|
|
|
|
if (clk_div->m2_frac_en)
|
|
dpll_hw_state->pll3 = PORT_PLL_M2_FRAC_ENABLE;
|
|
|
|
dpll_hw_state->pll6 = prop_coef | PORT_PLL_INT_COEFF(int_coef);
|
|
dpll_hw_state->pll6 |= PORT_PLL_GAIN_CTL(gain_ctl);
|
|
|
|
dpll_hw_state->pll8 = targ_cnt;
|
|
|
|
dpll_hw_state->pll9 = 5 << PORT_PLL_LOCK_THRESHOLD_SHIFT;
|
|
|
|
dpll_hw_state->pll10 =
|
|
PORT_PLL_DCO_AMP(PORT_PLL_DCO_AMP_DEFAULT)
|
|
| PORT_PLL_DCO_AMP_OVR_EN_H;
|
|
|
|
dpll_hw_state->ebb4 = PORT_PLL_10BIT_CLK_ENABLE;
|
|
|
|
dpll_hw_state->pcsdw12 = LANESTAGGER_STRAP_OVRD | lanestagger;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
bxt_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct bxt_clk_div clk_div = {};
|
|
|
|
bxt_ddi_dp_pll_dividers(crtc_state, &clk_div);
|
|
|
|
return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
|
|
}
|
|
|
|
static bool
|
|
bxt_ddi_hdmi_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct bxt_clk_div clk_div = {};
|
|
|
|
bxt_ddi_hdmi_pll_dividers(crtc_state, &clk_div);
|
|
|
|
return bxt_ddi_set_dpll_hw_state(crtc_state, &clk_div);
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
bxt_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
struct intel_shared_dpll *pll;
|
|
enum intel_dpll_id id;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) &&
|
|
!bxt_ddi_hdmi_set_dpll_hw_state(crtc_state))
|
|
return NULL;
|
|
|
|
if (intel_crtc_has_dp_encoder(crtc_state) &&
|
|
!bxt_ddi_dp_set_dpll_hw_state(crtc_state))
|
|
return NULL;
|
|
|
|
/* 1:1 mapping between ports and PLLs */
|
|
id = (enum intel_dpll_id) encoder->port;
|
|
pll = intel_get_shared_dpll_by_id(dev_priv, id);
|
|
|
|
DRM_DEBUG_KMS("[CRTC:%d:%s] using pre-allocated %s\n",
|
|
crtc->base.base.id, crtc->base.name, pll->info->name);
|
|
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static void bxt_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
|
|
"pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
|
|
"pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
|
|
hw_state->ebb0,
|
|
hw_state->ebb4,
|
|
hw_state->pll0,
|
|
hw_state->pll1,
|
|
hw_state->pll2,
|
|
hw_state->pll3,
|
|
hw_state->pll6,
|
|
hw_state->pll8,
|
|
hw_state->pll9,
|
|
hw_state->pll10,
|
|
hw_state->pcsdw12);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs bxt_ddi_pll_funcs = {
|
|
.enable = bxt_ddi_pll_enable,
|
|
.disable = bxt_ddi_pll_disable,
|
|
.get_hw_state = bxt_ddi_pll_get_hw_state,
|
|
};
|
|
|
|
struct intel_dpll_mgr {
|
|
const struct dpll_info *dpll_info;
|
|
|
|
struct intel_shared_dpll *(*get_dpll)(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder);
|
|
|
|
void (*dump_hw_state)(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state);
|
|
};
|
|
|
|
static const struct dpll_info pch_plls[] = {
|
|
{ "PCH DPLL A", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_A, 0 },
|
|
{ "PCH DPLL B", &ibx_pch_dpll_funcs, DPLL_ID_PCH_PLL_B, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr pch_pll_mgr = {
|
|
.dpll_info = pch_plls,
|
|
.get_dpll = ibx_get_dpll,
|
|
.dump_hw_state = ibx_dump_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info hsw_plls[] = {
|
|
{ "WRPLL 1", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL1, 0 },
|
|
{ "WRPLL 2", &hsw_ddi_wrpll_funcs, DPLL_ID_WRPLL2, 0 },
|
|
{ "SPLL", &hsw_ddi_spll_funcs, DPLL_ID_SPLL, 0 },
|
|
{ "LCPLL 810", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_810, INTEL_DPLL_ALWAYS_ON },
|
|
{ "LCPLL 1350", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_1350, INTEL_DPLL_ALWAYS_ON },
|
|
{ "LCPLL 2700", &hsw_ddi_lcpll_funcs, DPLL_ID_LCPLL_2700, INTEL_DPLL_ALWAYS_ON },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr hsw_pll_mgr = {
|
|
.dpll_info = hsw_plls,
|
|
.get_dpll = hsw_get_dpll,
|
|
.dump_hw_state = hsw_dump_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info skl_plls[] = {
|
|
{ "DPLL 0", &skl_ddi_dpll0_funcs, DPLL_ID_SKL_DPLL0, INTEL_DPLL_ALWAYS_ON },
|
|
{ "DPLL 1", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
|
|
{ "DPLL 2", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
|
|
{ "DPLL 3", &skl_ddi_pll_funcs, DPLL_ID_SKL_DPLL3, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr skl_pll_mgr = {
|
|
.dpll_info = skl_plls,
|
|
.get_dpll = skl_get_dpll,
|
|
.dump_hw_state = skl_dump_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info bxt_plls[] = {
|
|
{ "PORT PLL A", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
|
|
{ "PORT PLL B", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
|
|
{ "PORT PLL C", &bxt_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr bxt_pll_mgr = {
|
|
.dpll_info = bxt_plls,
|
|
.get_dpll = bxt_get_dpll,
|
|
.dump_hw_state = bxt_dump_hw_state,
|
|
};
|
|
|
|
static void cnl_ddi_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
u32 val;
|
|
|
|
/* 1. Enable DPLL power in DPLL_ENABLE. */
|
|
val = I915_READ(CNL_DPLL_ENABLE(id));
|
|
val |= PLL_POWER_ENABLE;
|
|
I915_WRITE(CNL_DPLL_ENABLE(id), val);
|
|
|
|
/* 2. Wait for DPLL power state enabled in DPLL_ENABLE. */
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
CNL_DPLL_ENABLE(id),
|
|
PLL_POWER_STATE,
|
|
PLL_POWER_STATE,
|
|
5))
|
|
DRM_ERROR("PLL %d Power not enabled\n", id);
|
|
|
|
/*
|
|
* 3. Configure DPLL_CFGCR0 to set SSC enable/disable,
|
|
* select DP mode, and set DP link rate.
|
|
*/
|
|
val = pll->state.hw_state.cfgcr0;
|
|
I915_WRITE(CNL_DPLL_CFGCR0(id), val);
|
|
|
|
/* 4. Reab back to ensure writes completed */
|
|
POSTING_READ(CNL_DPLL_CFGCR0(id));
|
|
|
|
/* 3. Configure DPLL_CFGCR0 */
|
|
/* Avoid touch CFGCR1 if HDMI mode is not enabled */
|
|
if (pll->state.hw_state.cfgcr0 & DPLL_CFGCR0_HDMI_MODE) {
|
|
val = pll->state.hw_state.cfgcr1;
|
|
I915_WRITE(CNL_DPLL_CFGCR1(id), val);
|
|
/* 4. Reab back to ensure writes completed */
|
|
POSTING_READ(CNL_DPLL_CFGCR1(id));
|
|
}
|
|
|
|
/*
|
|
* 5. If the frequency will result in a change to the voltage
|
|
* requirement, follow the Display Voltage Frequency Switching
|
|
* Sequence Before Frequency Change
|
|
*
|
|
* Note: DVFS is actually handled via the cdclk code paths,
|
|
* hence we do nothing here.
|
|
*/
|
|
|
|
/* 6. Enable DPLL in DPLL_ENABLE. */
|
|
val = I915_READ(CNL_DPLL_ENABLE(id));
|
|
val |= PLL_ENABLE;
|
|
I915_WRITE(CNL_DPLL_ENABLE(id), val);
|
|
|
|
/* 7. Wait for PLL lock status in DPLL_ENABLE. */
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
CNL_DPLL_ENABLE(id),
|
|
PLL_LOCK,
|
|
PLL_LOCK,
|
|
5))
|
|
DRM_ERROR("PLL %d not locked\n", id);
|
|
|
|
/*
|
|
* 8. If the frequency will result in a change to the voltage
|
|
* requirement, follow the Display Voltage Frequency Switching
|
|
* Sequence After Frequency Change
|
|
*
|
|
* Note: DVFS is actually handled via the cdclk code paths,
|
|
* hence we do nothing here.
|
|
*/
|
|
|
|
/*
|
|
* 9. turn on the clock for the DDI and map the DPLL to the DDI
|
|
* Done at intel_ddi_clk_select
|
|
*/
|
|
}
|
|
|
|
static void cnl_ddi_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
u32 val;
|
|
|
|
/*
|
|
* 1. Configure DPCLKA_CFGCR0 to turn off the clock for the DDI.
|
|
* Done at intel_ddi_post_disable
|
|
*/
|
|
|
|
/*
|
|
* 2. If the frequency will result in a change to the voltage
|
|
* requirement, follow the Display Voltage Frequency Switching
|
|
* Sequence Before Frequency Change
|
|
*
|
|
* Note: DVFS is actually handled via the cdclk code paths,
|
|
* hence we do nothing here.
|
|
*/
|
|
|
|
/* 3. Disable DPLL through DPLL_ENABLE. */
|
|
val = I915_READ(CNL_DPLL_ENABLE(id));
|
|
val &= ~PLL_ENABLE;
|
|
I915_WRITE(CNL_DPLL_ENABLE(id), val);
|
|
|
|
/* 4. Wait for PLL not locked status in DPLL_ENABLE. */
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
CNL_DPLL_ENABLE(id),
|
|
PLL_LOCK,
|
|
0,
|
|
5))
|
|
DRM_ERROR("PLL %d locked\n", id);
|
|
|
|
/*
|
|
* 5. If the frequency will result in a change to the voltage
|
|
* requirement, follow the Display Voltage Frequency Switching
|
|
* Sequence After Frequency Change
|
|
*
|
|
* Note: DVFS is actually handled via the cdclk code paths,
|
|
* hence we do nothing here.
|
|
*/
|
|
|
|
/* 6. Disable DPLL power in DPLL_ENABLE. */
|
|
val = I915_READ(CNL_DPLL_ENABLE(id));
|
|
val &= ~PLL_POWER_ENABLE;
|
|
I915_WRITE(CNL_DPLL_ENABLE(id), val);
|
|
|
|
/* 7. Wait for DPLL power state disabled in DPLL_ENABLE. */
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
CNL_DPLL_ENABLE(id),
|
|
PLL_POWER_STATE,
|
|
0,
|
|
5))
|
|
DRM_ERROR("PLL %d Power not disabled\n", id);
|
|
}
|
|
|
|
static bool cnl_ddi_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
u32 val;
|
|
bool ret;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
ret = false;
|
|
|
|
val = I915_READ(CNL_DPLL_ENABLE(id));
|
|
if (!(val & PLL_ENABLE))
|
|
goto out;
|
|
|
|
val = I915_READ(CNL_DPLL_CFGCR0(id));
|
|
hw_state->cfgcr0 = val;
|
|
|
|
/* avoid reading back stale values if HDMI mode is not enabled */
|
|
if (val & DPLL_CFGCR0_HDMI_MODE) {
|
|
hw_state->cfgcr1 = I915_READ(CNL_DPLL_CFGCR1(id));
|
|
}
|
|
ret = true;
|
|
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cnl_wrpll_get_multipliers(int bestdiv, int *pdiv,
|
|
int *qdiv, int *kdiv)
|
|
{
|
|
/* even dividers */
|
|
if (bestdiv % 2 == 0) {
|
|
if (bestdiv == 2) {
|
|
*pdiv = 2;
|
|
*qdiv = 1;
|
|
*kdiv = 1;
|
|
} else if (bestdiv % 4 == 0) {
|
|
*pdiv = 2;
|
|
*qdiv = bestdiv / 4;
|
|
*kdiv = 2;
|
|
} else if (bestdiv % 6 == 0) {
|
|
*pdiv = 3;
|
|
*qdiv = bestdiv / 6;
|
|
*kdiv = 2;
|
|
} else if (bestdiv % 5 == 0) {
|
|
*pdiv = 5;
|
|
*qdiv = bestdiv / 10;
|
|
*kdiv = 2;
|
|
} else if (bestdiv % 14 == 0) {
|
|
*pdiv = 7;
|
|
*qdiv = bestdiv / 14;
|
|
*kdiv = 2;
|
|
}
|
|
} else {
|
|
if (bestdiv == 3 || bestdiv == 5 || bestdiv == 7) {
|
|
*pdiv = bestdiv;
|
|
*qdiv = 1;
|
|
*kdiv = 1;
|
|
} else { /* 9, 15, 21 */
|
|
*pdiv = bestdiv / 3;
|
|
*qdiv = 1;
|
|
*kdiv = 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void cnl_wrpll_params_populate(struct skl_wrpll_params *params,
|
|
u32 dco_freq, u32 ref_freq,
|
|
int pdiv, int qdiv, int kdiv)
|
|
{
|
|
u32 dco;
|
|
|
|
switch (kdiv) {
|
|
case 1:
|
|
params->kdiv = 1;
|
|
break;
|
|
case 2:
|
|
params->kdiv = 2;
|
|
break;
|
|
case 3:
|
|
params->kdiv = 4;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect KDiv\n");
|
|
}
|
|
|
|
switch (pdiv) {
|
|
case 2:
|
|
params->pdiv = 1;
|
|
break;
|
|
case 3:
|
|
params->pdiv = 2;
|
|
break;
|
|
case 5:
|
|
params->pdiv = 4;
|
|
break;
|
|
case 7:
|
|
params->pdiv = 8;
|
|
break;
|
|
default:
|
|
WARN(1, "Incorrect PDiv\n");
|
|
}
|
|
|
|
WARN_ON(kdiv != 2 && qdiv != 1);
|
|
|
|
params->qdiv_ratio = qdiv;
|
|
params->qdiv_mode = (qdiv == 1) ? 0 : 1;
|
|
|
|
dco = div_u64((u64)dco_freq << 15, ref_freq);
|
|
|
|
params->dco_integer = dco >> 15;
|
|
params->dco_fraction = dco & 0x7fff;
|
|
}
|
|
|
|
int cnl_hdmi_pll_ref_clock(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ref_clock = dev_priv->cdclk.hw.ref;
|
|
|
|
/*
|
|
* For ICL+, the spec states: if reference frequency is 38.4,
|
|
* use 19.2 because the DPLL automatically divides that by 2.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) >= 11 && ref_clock == 38400)
|
|
ref_clock = 19200;
|
|
|
|
return ref_clock;
|
|
}
|
|
|
|
static bool
|
|
cnl_ddi_calculate_wrpll(struct intel_crtc_state *crtc_state,
|
|
struct skl_wrpll_params *wrpll_params)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
u32 afe_clock = crtc_state->port_clock * 5;
|
|
u32 ref_clock;
|
|
u32 dco_min = 7998000;
|
|
u32 dco_max = 10000000;
|
|
u32 dco_mid = (dco_min + dco_max) / 2;
|
|
static const int dividers[] = { 2, 4, 6, 8, 10, 12, 14, 16,
|
|
18, 20, 24, 28, 30, 32, 36, 40,
|
|
42, 44, 48, 50, 52, 54, 56, 60,
|
|
64, 66, 68, 70, 72, 76, 78, 80,
|
|
84, 88, 90, 92, 96, 98, 100, 102,
|
|
3, 5, 7, 9, 15, 21 };
|
|
u32 dco, best_dco = 0, dco_centrality = 0;
|
|
u32 best_dco_centrality = U32_MAX; /* Spec meaning of 999999 MHz */
|
|
int d, best_div = 0, pdiv = 0, qdiv = 0, kdiv = 0;
|
|
|
|
for (d = 0; d < ARRAY_SIZE(dividers); d++) {
|
|
dco = afe_clock * dividers[d];
|
|
|
|
if ((dco <= dco_max) && (dco >= dco_min)) {
|
|
dco_centrality = abs(dco - dco_mid);
|
|
|
|
if (dco_centrality < best_dco_centrality) {
|
|
best_dco_centrality = dco_centrality;
|
|
best_div = dividers[d];
|
|
best_dco = dco;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_div == 0)
|
|
return false;
|
|
|
|
cnl_wrpll_get_multipliers(best_div, &pdiv, &qdiv, &kdiv);
|
|
|
|
ref_clock = cnl_hdmi_pll_ref_clock(dev_priv);
|
|
|
|
cnl_wrpll_params_populate(wrpll_params, best_dco, ref_clock,
|
|
pdiv, qdiv, kdiv);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool cnl_ddi_hdmi_pll_dividers(struct intel_crtc_state *crtc_state)
|
|
{
|
|
u32 cfgcr0, cfgcr1;
|
|
struct skl_wrpll_params wrpll_params = { 0, };
|
|
|
|
cfgcr0 = DPLL_CFGCR0_HDMI_MODE;
|
|
|
|
if (!cnl_ddi_calculate_wrpll(crtc_state, &wrpll_params))
|
|
return false;
|
|
|
|
cfgcr0 |= DPLL_CFGCR0_DCO_FRACTION(wrpll_params.dco_fraction) |
|
|
wrpll_params.dco_integer;
|
|
|
|
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(wrpll_params.qdiv_ratio) |
|
|
DPLL_CFGCR1_QDIV_MODE(wrpll_params.qdiv_mode) |
|
|
DPLL_CFGCR1_KDIV(wrpll_params.kdiv) |
|
|
DPLL_CFGCR1_PDIV(wrpll_params.pdiv) |
|
|
DPLL_CFGCR1_CENTRAL_FREQ;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
|
|
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
cnl_ddi_dp_set_dpll_hw_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
u32 cfgcr0;
|
|
|
|
cfgcr0 = DPLL_CFGCR0_SSC_ENABLE;
|
|
|
|
switch (crtc_state->port_clock / 2) {
|
|
case 81000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_810;
|
|
break;
|
|
case 135000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1350;
|
|
break;
|
|
case 270000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2700;
|
|
break;
|
|
/* eDP 1.4 rates */
|
|
case 162000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1620;
|
|
break;
|
|
case 108000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_1080;
|
|
break;
|
|
case 216000:
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_2160;
|
|
break;
|
|
case 324000:
|
|
/* Some SKUs may require elevated I/O voltage to support this */
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_3240;
|
|
break;
|
|
case 405000:
|
|
/* Some SKUs may require elevated I/O voltage to support this */
|
|
cfgcr0 |= DPLL_CFGCR0_LINK_RATE_4050;
|
|
break;
|
|
}
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
cnl_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct intel_shared_dpll *pll;
|
|
bool bret;
|
|
|
|
if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
|
|
bret = cnl_ddi_hdmi_pll_dividers(crtc_state);
|
|
if (!bret) {
|
|
DRM_DEBUG_KMS("Could not get HDMI pll dividers.\n");
|
|
return NULL;
|
|
}
|
|
} else if (intel_crtc_has_dp_encoder(crtc_state)) {
|
|
bret = cnl_ddi_dp_set_dpll_hw_state(crtc_state);
|
|
if (!bret) {
|
|
DRM_DEBUG_KMS("Could not set DP dpll HW state.\n");
|
|
return NULL;
|
|
}
|
|
} else {
|
|
DRM_DEBUG_KMS("Skip DPLL setup for output_types 0x%x\n",
|
|
crtc_state->output_types);
|
|
return NULL;
|
|
}
|
|
|
|
pll = intel_find_shared_dpll(crtc_state,
|
|
DPLL_ID_SKL_DPLL0,
|
|
DPLL_ID_SKL_DPLL2);
|
|
if (!pll) {
|
|
DRM_DEBUG_KMS("No PLL selected\n");
|
|
return NULL;
|
|
}
|
|
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static void cnl_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: "
|
|
"cfgcr0: 0x%x, cfgcr1: 0x%x\n",
|
|
hw_state->cfgcr0,
|
|
hw_state->cfgcr1);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs cnl_ddi_pll_funcs = {
|
|
.enable = cnl_ddi_pll_enable,
|
|
.disable = cnl_ddi_pll_disable,
|
|
.get_hw_state = cnl_ddi_pll_get_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info cnl_plls[] = {
|
|
{ "DPLL 0", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL0, 0 },
|
|
{ "DPLL 1", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL1, 0 },
|
|
{ "DPLL 2", &cnl_ddi_pll_funcs, DPLL_ID_SKL_DPLL2, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr cnl_pll_mgr = {
|
|
.dpll_info = cnl_plls,
|
|
.get_dpll = cnl_get_dpll,
|
|
.dump_hw_state = cnl_dump_hw_state,
|
|
};
|
|
|
|
struct icl_combo_pll_params {
|
|
int clock;
|
|
struct skl_wrpll_params wrpll;
|
|
};
|
|
|
|
/*
|
|
* These values alrea already adjusted: they're the bits we write to the
|
|
* registers, not the logical values.
|
|
*/
|
|
static const struct icl_combo_pll_params icl_dp_combo_pll_24MHz_values[] = {
|
|
{ 540000,
|
|
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [0]: 5.4 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 270000,
|
|
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [1]: 2.7 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 162000,
|
|
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [2]: 1.62 */
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 324000,
|
|
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [3]: 3.24 */
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 216000,
|
|
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [4]: 2.16 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
|
|
{ 432000,
|
|
{ .dco_integer = 0x168, .dco_fraction = 0x0000, /* [5]: 4.32 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 648000,
|
|
{ .dco_integer = 0x195, .dco_fraction = 0x0000, /* [6]: 6.48 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 810000,
|
|
{ .dco_integer = 0x151, .dco_fraction = 0x4000, /* [7]: 8.1 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
};
|
|
|
|
|
|
/* Also used for 38.4 MHz values. */
|
|
static const struct icl_combo_pll_params icl_dp_combo_pll_19_2MHz_values[] = {
|
|
{ 540000,
|
|
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [0]: 5.4 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 270000,
|
|
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [1]: 2.7 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 162000,
|
|
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [2]: 1.62 */
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 324000,
|
|
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [3]: 3.24 */
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 216000,
|
|
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [4]: 2.16 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 1, .qdiv_ratio = 2, }, },
|
|
{ 432000,
|
|
{ .dco_integer = 0x1C2, .dco_fraction = 0x0000, /* [5]: 4.32 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 2, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 648000,
|
|
{ .dco_integer = 0x1FA, .dco_fraction = 0x2000, /* [6]: 6.48 */
|
|
.pdiv = 0x2 /* 3 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
{ 810000,
|
|
{ .dco_integer = 0x1A5, .dco_fraction = 0x7000, /* [7]: 8.1 */
|
|
.pdiv = 0x1 /* 2 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0, }, },
|
|
};
|
|
|
|
static const struct skl_wrpll_params icl_tbt_pll_24MHz_values = {
|
|
.dco_integer = 0x151, .dco_fraction = 0x4000,
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
|
|
};
|
|
|
|
static const struct skl_wrpll_params icl_tbt_pll_19_2MHz_values = {
|
|
.dco_integer = 0x1A5, .dco_fraction = 0x7000,
|
|
.pdiv = 0x4 /* 5 */, .kdiv = 1, .qdiv_mode = 0, .qdiv_ratio = 0,
|
|
};
|
|
|
|
static bool icl_calc_dp_combo_pll(struct intel_crtc_state *crtc_state,
|
|
struct skl_wrpll_params *pll_params)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
const struct icl_combo_pll_params *params =
|
|
dev_priv->cdclk.hw.ref == 24000 ?
|
|
icl_dp_combo_pll_24MHz_values :
|
|
icl_dp_combo_pll_19_2MHz_values;
|
|
int clock = crtc_state->port_clock;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(icl_dp_combo_pll_24MHz_values); i++) {
|
|
if (clock == params[i].clock) {
|
|
*pll_params = params[i].wrpll;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
MISSING_CASE(clock);
|
|
return false;
|
|
}
|
|
|
|
static bool icl_calc_tbt_pll(struct intel_crtc_state *crtc_state,
|
|
struct skl_wrpll_params *pll_params)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
|
|
*pll_params = dev_priv->cdclk.hw.ref == 24000 ?
|
|
icl_tbt_pll_24MHz_values : icl_tbt_pll_19_2MHz_values;
|
|
return true;
|
|
}
|
|
|
|
static bool icl_calc_dpll_state(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
u32 cfgcr0, cfgcr1;
|
|
struct skl_wrpll_params pll_params = { 0 };
|
|
bool ret;
|
|
|
|
if (intel_port_is_tc(dev_priv, encoder->port))
|
|
ret = icl_calc_tbt_pll(crtc_state, &pll_params);
|
|
else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
|
|
intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI))
|
|
ret = cnl_ddi_calculate_wrpll(crtc_state, &pll_params);
|
|
else
|
|
ret = icl_calc_dp_combo_pll(crtc_state, &pll_params);
|
|
|
|
if (!ret)
|
|
return false;
|
|
|
|
cfgcr0 = DPLL_CFGCR0_DCO_FRACTION(pll_params.dco_fraction) |
|
|
pll_params.dco_integer;
|
|
|
|
cfgcr1 = DPLL_CFGCR1_QDIV_RATIO(pll_params.qdiv_ratio) |
|
|
DPLL_CFGCR1_QDIV_MODE(pll_params.qdiv_mode) |
|
|
DPLL_CFGCR1_KDIV(pll_params.kdiv) |
|
|
DPLL_CFGCR1_PDIV(pll_params.pdiv) |
|
|
DPLL_CFGCR1_CENTRAL_FREQ_8400;
|
|
|
|
memset(&crtc_state->dpll_hw_state, 0,
|
|
sizeof(crtc_state->dpll_hw_state));
|
|
|
|
crtc_state->dpll_hw_state.cfgcr0 = cfgcr0;
|
|
crtc_state->dpll_hw_state.cfgcr1 = cfgcr1;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static enum tc_port icl_pll_id_to_tc_port(enum intel_dpll_id id)
|
|
{
|
|
return id - DPLL_ID_ICL_MGPLL1;
|
|
}
|
|
|
|
enum intel_dpll_id icl_tc_port_to_pll_id(enum tc_port tc_port)
|
|
{
|
|
return tc_port + DPLL_ID_ICL_MGPLL1;
|
|
}
|
|
|
|
static bool icl_mg_pll_find_divisors(int clock_khz, bool is_dp, bool use_ssc,
|
|
u32 *target_dco_khz,
|
|
struct intel_dpll_hw_state *state)
|
|
{
|
|
u32 dco_min_freq, dco_max_freq;
|
|
int div1_vals[] = {7, 5, 3, 2};
|
|
unsigned int i;
|
|
int div2;
|
|
|
|
dco_min_freq = is_dp ? 8100000 : use_ssc ? 8000000 : 7992000;
|
|
dco_max_freq = is_dp ? 8100000 : 10000000;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(div1_vals); i++) {
|
|
int div1 = div1_vals[i];
|
|
|
|
for (div2 = 10; div2 > 0; div2--) {
|
|
int dco = div1 * div2 * clock_khz * 5;
|
|
int a_divratio, tlinedrv, inputsel;
|
|
u32 hsdiv;
|
|
|
|
if (dco < dco_min_freq || dco > dco_max_freq)
|
|
continue;
|
|
|
|
if (div2 >= 2) {
|
|
a_divratio = is_dp ? 10 : 5;
|
|
tlinedrv = 2;
|
|
} else {
|
|
a_divratio = 5;
|
|
tlinedrv = 0;
|
|
}
|
|
inputsel = is_dp ? 0 : 1;
|
|
|
|
switch (div1) {
|
|
default:
|
|
MISSING_CASE(div1);
|
|
/* fall through */
|
|
case 2:
|
|
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_2;
|
|
break;
|
|
case 3:
|
|
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_3;
|
|
break;
|
|
case 5:
|
|
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_5;
|
|
break;
|
|
case 7:
|
|
hsdiv = MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_7;
|
|
break;
|
|
}
|
|
|
|
*target_dco_khz = dco;
|
|
|
|
state->mg_refclkin_ctl = MG_REFCLKIN_CTL_OD_2_MUX(1);
|
|
|
|
state->mg_clktop2_coreclkctl1 =
|
|
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO(a_divratio);
|
|
|
|
state->mg_clktop2_hsclkctl =
|
|
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL(tlinedrv) |
|
|
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL(inputsel) |
|
|
hsdiv |
|
|
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO(div2);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The specification for this function uses real numbers, so the math had to be
|
|
* adapted to integer-only calculation, that's why it looks so different.
|
|
*/
|
|
static bool icl_calc_mg_pll_state(struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_dpll_hw_state *pll_state = &crtc_state->dpll_hw_state;
|
|
int refclk_khz = dev_priv->cdclk.hw.ref;
|
|
int clock = crtc_state->port_clock;
|
|
u32 dco_khz, m1div, m2div_int, m2div_rem, m2div_frac;
|
|
u32 iref_ndiv, iref_trim, iref_pulse_w;
|
|
u32 prop_coeff, int_coeff;
|
|
u32 tdc_targetcnt, feedfwgain;
|
|
u64 ssc_stepsize, ssc_steplen, ssc_steplog;
|
|
u64 tmp;
|
|
bool use_ssc = false;
|
|
bool is_dp = !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI);
|
|
|
|
memset(pll_state, 0, sizeof(*pll_state));
|
|
|
|
if (!icl_mg_pll_find_divisors(clock, is_dp, use_ssc, &dco_khz,
|
|
pll_state)) {
|
|
DRM_DEBUG_KMS("Failed to find divisors for clock %d\n", clock);
|
|
return false;
|
|
}
|
|
|
|
m1div = 2;
|
|
m2div_int = dco_khz / (refclk_khz * m1div);
|
|
if (m2div_int > 255) {
|
|
m1div = 4;
|
|
m2div_int = dco_khz / (refclk_khz * m1div);
|
|
if (m2div_int > 255) {
|
|
DRM_DEBUG_KMS("Failed to find mdiv for clock %d\n",
|
|
clock);
|
|
return false;
|
|
}
|
|
}
|
|
m2div_rem = dco_khz % (refclk_khz * m1div);
|
|
|
|
tmp = (u64)m2div_rem * (1 << 22);
|
|
do_div(tmp, refclk_khz * m1div);
|
|
m2div_frac = tmp;
|
|
|
|
switch (refclk_khz) {
|
|
case 19200:
|
|
iref_ndiv = 1;
|
|
iref_trim = 28;
|
|
iref_pulse_w = 1;
|
|
break;
|
|
case 24000:
|
|
iref_ndiv = 1;
|
|
iref_trim = 25;
|
|
iref_pulse_w = 2;
|
|
break;
|
|
case 38400:
|
|
iref_ndiv = 2;
|
|
iref_trim = 28;
|
|
iref_pulse_w = 1;
|
|
break;
|
|
default:
|
|
MISSING_CASE(refclk_khz);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* tdc_res = 0.000003
|
|
* tdc_targetcnt = int(2 / (tdc_res * 8 * 50 * 1.1) / refclk_mhz + 0.5)
|
|
*
|
|
* The multiplication by 1000 is due to refclk MHz to KHz conversion. It
|
|
* was supposed to be a division, but we rearranged the operations of
|
|
* the formula to avoid early divisions so we don't multiply the
|
|
* rounding errors.
|
|
*
|
|
* 0.000003 * 8 * 50 * 1.1 = 0.00132, also known as 132 / 100000, which
|
|
* we also rearrange to work with integers.
|
|
*
|
|
* The 0.5 transformed to 5 results in a multiplication by 10 and the
|
|
* last division by 10.
|
|
*/
|
|
tdc_targetcnt = (2 * 1000 * 100000 * 10 / (132 * refclk_khz) + 5) / 10;
|
|
|
|
/*
|
|
* Here we divide dco_khz by 10 in order to allow the dividend to fit in
|
|
* 32 bits. That's not a problem since we round the division down
|
|
* anyway.
|
|
*/
|
|
feedfwgain = (use_ssc || m2div_rem > 0) ?
|
|
m1div * 1000000 * 100 / (dco_khz * 3 / 10) : 0;
|
|
|
|
if (dco_khz >= 9000000) {
|
|
prop_coeff = 5;
|
|
int_coeff = 10;
|
|
} else {
|
|
prop_coeff = 4;
|
|
int_coeff = 8;
|
|
}
|
|
|
|
if (use_ssc) {
|
|
tmp = mul_u32_u32(dco_khz, 47 * 32);
|
|
do_div(tmp, refclk_khz * m1div * 10000);
|
|
ssc_stepsize = tmp;
|
|
|
|
tmp = mul_u32_u32(dco_khz, 1000);
|
|
ssc_steplen = DIV_ROUND_UP_ULL(tmp, 32 * 2 * 32);
|
|
} else {
|
|
ssc_stepsize = 0;
|
|
ssc_steplen = 0;
|
|
}
|
|
ssc_steplog = 4;
|
|
|
|
pll_state->mg_pll_div0 = (m2div_rem > 0 ? MG_PLL_DIV0_FRACNEN_H : 0) |
|
|
MG_PLL_DIV0_FBDIV_FRAC(m2div_frac) |
|
|
MG_PLL_DIV0_FBDIV_INT(m2div_int);
|
|
|
|
pll_state->mg_pll_div1 = MG_PLL_DIV1_IREF_NDIVRATIO(iref_ndiv) |
|
|
MG_PLL_DIV1_DITHER_DIV_2 |
|
|
MG_PLL_DIV1_NDIVRATIO(1) |
|
|
MG_PLL_DIV1_FBPREDIV(m1div);
|
|
|
|
pll_state->mg_pll_lf = MG_PLL_LF_TDCTARGETCNT(tdc_targetcnt) |
|
|
MG_PLL_LF_AFCCNTSEL_512 |
|
|
MG_PLL_LF_GAINCTRL(1) |
|
|
MG_PLL_LF_INT_COEFF(int_coeff) |
|
|
MG_PLL_LF_PROP_COEFF(prop_coeff);
|
|
|
|
pll_state->mg_pll_frac_lock = MG_PLL_FRAC_LOCK_TRUELOCK_CRIT_32 |
|
|
MG_PLL_FRAC_LOCK_EARLYLOCK_CRIT_32 |
|
|
MG_PLL_FRAC_LOCK_LOCKTHRESH(10) |
|
|
MG_PLL_FRAC_LOCK_DCODITHEREN |
|
|
MG_PLL_FRAC_LOCK_FEEDFWRDGAIN(feedfwgain);
|
|
if (use_ssc || m2div_rem > 0)
|
|
pll_state->mg_pll_frac_lock |= MG_PLL_FRAC_LOCK_FEEDFWRDCAL_EN;
|
|
|
|
pll_state->mg_pll_ssc = (use_ssc ? MG_PLL_SSC_EN : 0) |
|
|
MG_PLL_SSC_TYPE(2) |
|
|
MG_PLL_SSC_STEPLENGTH(ssc_steplen) |
|
|
MG_PLL_SSC_STEPNUM(ssc_steplog) |
|
|
MG_PLL_SSC_FLLEN |
|
|
MG_PLL_SSC_STEPSIZE(ssc_stepsize);
|
|
|
|
pll_state->mg_pll_tdc_coldst_bias = MG_PLL_TDC_COLDST_COLDSTART |
|
|
MG_PLL_TDC_COLDST_IREFINT_EN |
|
|
MG_PLL_TDC_COLDST_REFBIAS_START_PULSE_W(iref_pulse_w) |
|
|
MG_PLL_TDC_TDCOVCCORR_EN |
|
|
MG_PLL_TDC_TDCSEL(3);
|
|
|
|
pll_state->mg_pll_bias = MG_PLL_BIAS_BIAS_GB_SEL(3) |
|
|
MG_PLL_BIAS_INIT_DCOAMP(0x3F) |
|
|
MG_PLL_BIAS_BIAS_BONUS(10) |
|
|
MG_PLL_BIAS_BIASCAL_EN |
|
|
MG_PLL_BIAS_CTRIM(12) |
|
|
MG_PLL_BIAS_VREF_RDAC(4) |
|
|
MG_PLL_BIAS_IREFTRIM(iref_trim);
|
|
|
|
if (refclk_khz == 38400) {
|
|
pll_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
|
|
pll_state->mg_pll_bias_mask = 0;
|
|
} else {
|
|
pll_state->mg_pll_tdc_coldst_bias_mask = -1U;
|
|
pll_state->mg_pll_bias_mask = -1U;
|
|
}
|
|
|
|
pll_state->mg_pll_tdc_coldst_bias &= pll_state->mg_pll_tdc_coldst_bias_mask;
|
|
pll_state->mg_pll_bias &= pll_state->mg_pll_bias_mask;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct intel_shared_dpll *
|
|
icl_get_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_shared_dpll *pll;
|
|
enum port port = encoder->port;
|
|
enum intel_dpll_id min, max;
|
|
bool ret;
|
|
|
|
if (intel_port_is_combophy(dev_priv, port)) {
|
|
min = DPLL_ID_ICL_DPLL0;
|
|
max = DPLL_ID_ICL_DPLL1;
|
|
ret = icl_calc_dpll_state(crtc_state, encoder);
|
|
} else if (intel_port_is_tc(dev_priv, port)) {
|
|
if (encoder->type == INTEL_OUTPUT_DP_MST) {
|
|
struct intel_dp_mst_encoder *mst_encoder;
|
|
|
|
mst_encoder = enc_to_mst(&encoder->base);
|
|
intel_dig_port = mst_encoder->primary;
|
|
} else {
|
|
intel_dig_port = enc_to_dig_port(&encoder->base);
|
|
}
|
|
|
|
if (intel_dig_port->tc_type == TC_PORT_TBT) {
|
|
min = DPLL_ID_ICL_TBTPLL;
|
|
max = min;
|
|
ret = icl_calc_dpll_state(crtc_state, encoder);
|
|
} else {
|
|
enum tc_port tc_port;
|
|
|
|
tc_port = intel_port_to_tc(dev_priv, port);
|
|
min = icl_tc_port_to_pll_id(tc_port);
|
|
max = min;
|
|
ret = icl_calc_mg_pll_state(crtc_state);
|
|
}
|
|
} else {
|
|
MISSING_CASE(port);
|
|
return NULL;
|
|
}
|
|
|
|
if (!ret) {
|
|
DRM_DEBUG_KMS("Could not calculate PLL state.\n");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
pll = intel_find_shared_dpll(crtc_state, min, max);
|
|
if (!pll) {
|
|
DRM_DEBUG_KMS("No PLL selected\n");
|
|
return NULL;
|
|
}
|
|
|
|
intel_reference_shared_dpll(pll, crtc_state);
|
|
|
|
return pll;
|
|
}
|
|
|
|
static bool mg_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
enum tc_port tc_port = icl_pll_id_to_tc_port(id);
|
|
intel_wakeref_t wakeref;
|
|
bool ret = false;
|
|
u32 val;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
val = I915_READ(MG_PLL_ENABLE(tc_port));
|
|
if (!(val & PLL_ENABLE))
|
|
goto out;
|
|
|
|
hw_state->mg_refclkin_ctl = I915_READ(MG_REFCLKIN_CTL(tc_port));
|
|
hw_state->mg_refclkin_ctl &= MG_REFCLKIN_CTL_OD_2_MUX_MASK;
|
|
|
|
hw_state->mg_clktop2_coreclkctl1 =
|
|
I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
|
|
hw_state->mg_clktop2_coreclkctl1 &=
|
|
MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
|
|
|
|
hw_state->mg_clktop2_hsclkctl =
|
|
I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
|
|
hw_state->mg_clktop2_hsclkctl &=
|
|
MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK;
|
|
|
|
hw_state->mg_pll_div0 = I915_READ(MG_PLL_DIV0(tc_port));
|
|
hw_state->mg_pll_div1 = I915_READ(MG_PLL_DIV1(tc_port));
|
|
hw_state->mg_pll_lf = I915_READ(MG_PLL_LF(tc_port));
|
|
hw_state->mg_pll_frac_lock = I915_READ(MG_PLL_FRAC_LOCK(tc_port));
|
|
hw_state->mg_pll_ssc = I915_READ(MG_PLL_SSC(tc_port));
|
|
|
|
hw_state->mg_pll_bias = I915_READ(MG_PLL_BIAS(tc_port));
|
|
hw_state->mg_pll_tdc_coldst_bias =
|
|
I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
|
|
|
|
if (dev_priv->cdclk.hw.ref == 38400) {
|
|
hw_state->mg_pll_tdc_coldst_bias_mask = MG_PLL_TDC_COLDST_COLDSTART;
|
|
hw_state->mg_pll_bias_mask = 0;
|
|
} else {
|
|
hw_state->mg_pll_tdc_coldst_bias_mask = -1U;
|
|
hw_state->mg_pll_bias_mask = -1U;
|
|
}
|
|
|
|
hw_state->mg_pll_tdc_coldst_bias &= hw_state->mg_pll_tdc_coldst_bias_mask;
|
|
hw_state->mg_pll_bias &= hw_state->mg_pll_bias_mask;
|
|
|
|
ret = true;
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
static bool icl_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state,
|
|
i915_reg_t enable_reg)
|
|
{
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
intel_wakeref_t wakeref;
|
|
bool ret = false;
|
|
u32 val;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
POWER_DOMAIN_DISPLAY_CORE);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
val = I915_READ(enable_reg);
|
|
if (!(val & PLL_ENABLE))
|
|
goto out;
|
|
|
|
hw_state->cfgcr0 = I915_READ(ICL_DPLL_CFGCR0(id));
|
|
hw_state->cfgcr1 = I915_READ(ICL_DPLL_CFGCR1(id));
|
|
|
|
ret = true;
|
|
out:
|
|
intel_display_power_put(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
static bool combo_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
return icl_pll_get_hw_state(dev_priv, pll, hw_state,
|
|
CNL_DPLL_ENABLE(pll->info->id));
|
|
}
|
|
|
|
static bool tbt_pll_get_hw_state(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
return icl_pll_get_hw_state(dev_priv, pll, hw_state, TBT_PLL_ENABLE);
|
|
}
|
|
|
|
static void icl_dpll_write(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
|
|
const enum intel_dpll_id id = pll->info->id;
|
|
|
|
I915_WRITE(ICL_DPLL_CFGCR0(id), hw_state->cfgcr0);
|
|
I915_WRITE(ICL_DPLL_CFGCR1(id), hw_state->cfgcr1);
|
|
POSTING_READ(ICL_DPLL_CFGCR1(id));
|
|
}
|
|
|
|
static void icl_mg_pll_write(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
struct intel_dpll_hw_state *hw_state = &pll->state.hw_state;
|
|
enum tc_port tc_port = icl_pll_id_to_tc_port(pll->info->id);
|
|
u32 val;
|
|
|
|
/*
|
|
* Some of the following registers have reserved fields, so program
|
|
* these with RMW based on a mask. The mask can be fixed or generated
|
|
* during the calc/readout phase if the mask depends on some other HW
|
|
* state like refclk, see icl_calc_mg_pll_state().
|
|
*/
|
|
val = I915_READ(MG_REFCLKIN_CTL(tc_port));
|
|
val &= ~MG_REFCLKIN_CTL_OD_2_MUX_MASK;
|
|
val |= hw_state->mg_refclkin_ctl;
|
|
I915_WRITE(MG_REFCLKIN_CTL(tc_port), val);
|
|
|
|
val = I915_READ(MG_CLKTOP2_CORECLKCTL1(tc_port));
|
|
val &= ~MG_CLKTOP2_CORECLKCTL1_A_DIVRATIO_MASK;
|
|
val |= hw_state->mg_clktop2_coreclkctl1;
|
|
I915_WRITE(MG_CLKTOP2_CORECLKCTL1(tc_port), val);
|
|
|
|
val = I915_READ(MG_CLKTOP2_HSCLKCTL(tc_port));
|
|
val &= ~(MG_CLKTOP2_HSCLKCTL_TLINEDRV_CLKSEL_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_CORE_INPUTSEL_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_HSDIV_RATIO_MASK |
|
|
MG_CLKTOP2_HSCLKCTL_DSDIV_RATIO_MASK);
|
|
val |= hw_state->mg_clktop2_hsclkctl;
|
|
I915_WRITE(MG_CLKTOP2_HSCLKCTL(tc_port), val);
|
|
|
|
I915_WRITE(MG_PLL_DIV0(tc_port), hw_state->mg_pll_div0);
|
|
I915_WRITE(MG_PLL_DIV1(tc_port), hw_state->mg_pll_div1);
|
|
I915_WRITE(MG_PLL_LF(tc_port), hw_state->mg_pll_lf);
|
|
I915_WRITE(MG_PLL_FRAC_LOCK(tc_port), hw_state->mg_pll_frac_lock);
|
|
I915_WRITE(MG_PLL_SSC(tc_port), hw_state->mg_pll_ssc);
|
|
|
|
val = I915_READ(MG_PLL_BIAS(tc_port));
|
|
val &= ~hw_state->mg_pll_bias_mask;
|
|
val |= hw_state->mg_pll_bias;
|
|
I915_WRITE(MG_PLL_BIAS(tc_port), val);
|
|
|
|
val = I915_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
|
|
val &= ~hw_state->mg_pll_tdc_coldst_bias_mask;
|
|
val |= hw_state->mg_pll_tdc_coldst_bias;
|
|
I915_WRITE(MG_PLL_TDC_COLDST_BIAS(tc_port), val);
|
|
|
|
POSTING_READ(MG_PLL_TDC_COLDST_BIAS(tc_port));
|
|
}
|
|
|
|
static void icl_pll_power_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
i915_reg_t enable_reg)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(enable_reg);
|
|
val |= PLL_POWER_ENABLE;
|
|
I915_WRITE(enable_reg, val);
|
|
|
|
/*
|
|
* The spec says we need to "wait" but it also says it should be
|
|
* immediate.
|
|
*/
|
|
if (intel_wait_for_register(&dev_priv->uncore, enable_reg,
|
|
PLL_POWER_STATE, PLL_POWER_STATE, 1))
|
|
DRM_ERROR("PLL %d Power not enabled\n", pll->info->id);
|
|
}
|
|
|
|
static void icl_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
i915_reg_t enable_reg)
|
|
{
|
|
u32 val;
|
|
|
|
val = I915_READ(enable_reg);
|
|
val |= PLL_ENABLE;
|
|
I915_WRITE(enable_reg, val);
|
|
|
|
/* Timeout is actually 600us. */
|
|
if (intel_wait_for_register(&dev_priv->uncore, enable_reg,
|
|
PLL_LOCK, PLL_LOCK, 1))
|
|
DRM_ERROR("PLL %d not locked\n", pll->info->id);
|
|
}
|
|
|
|
static void combo_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
i915_reg_t enable_reg = CNL_DPLL_ENABLE(pll->info->id);
|
|
|
|
icl_pll_power_enable(dev_priv, pll, enable_reg);
|
|
|
|
icl_dpll_write(dev_priv, pll);
|
|
|
|
/*
|
|
* DVFS pre sequence would be here, but in our driver the cdclk code
|
|
* paths should already be setting the appropriate voltage, hence we do
|
|
* nothing here.
|
|
*/
|
|
|
|
icl_pll_enable(dev_priv, pll, enable_reg);
|
|
|
|
/* DVFS post sequence would be here. See the comment above. */
|
|
}
|
|
|
|
static void tbt_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
icl_pll_power_enable(dev_priv, pll, TBT_PLL_ENABLE);
|
|
|
|
icl_dpll_write(dev_priv, pll);
|
|
|
|
/*
|
|
* DVFS pre sequence would be here, but in our driver the cdclk code
|
|
* paths should already be setting the appropriate voltage, hence we do
|
|
* nothing here.
|
|
*/
|
|
|
|
icl_pll_enable(dev_priv, pll, TBT_PLL_ENABLE);
|
|
|
|
/* DVFS post sequence would be here. See the comment above. */
|
|
}
|
|
|
|
static void mg_pll_enable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
i915_reg_t enable_reg =
|
|
MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
|
|
|
|
icl_pll_power_enable(dev_priv, pll, enable_reg);
|
|
|
|
icl_mg_pll_write(dev_priv, pll);
|
|
|
|
/*
|
|
* DVFS pre sequence would be here, but in our driver the cdclk code
|
|
* paths should already be setting the appropriate voltage, hence we do
|
|
* nothing here.
|
|
*/
|
|
|
|
icl_pll_enable(dev_priv, pll, enable_reg);
|
|
|
|
/* DVFS post sequence would be here. See the comment above. */
|
|
}
|
|
|
|
static void icl_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll,
|
|
i915_reg_t enable_reg)
|
|
{
|
|
u32 val;
|
|
|
|
/* The first steps are done by intel_ddi_post_disable(). */
|
|
|
|
/*
|
|
* DVFS pre sequence would be here, but in our driver the cdclk code
|
|
* paths should already be setting the appropriate voltage, hence we do
|
|
* nothign here.
|
|
*/
|
|
|
|
val = I915_READ(enable_reg);
|
|
val &= ~PLL_ENABLE;
|
|
I915_WRITE(enable_reg, val);
|
|
|
|
/* Timeout is actually 1us. */
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
enable_reg, PLL_LOCK, 0, 1))
|
|
DRM_ERROR("PLL %d locked\n", pll->info->id);
|
|
|
|
/* DVFS post sequence would be here. See the comment above. */
|
|
|
|
val = I915_READ(enable_reg);
|
|
val &= ~PLL_POWER_ENABLE;
|
|
I915_WRITE(enable_reg, val);
|
|
|
|
/*
|
|
* The spec says we need to "wait" but it also says it should be
|
|
* immediate.
|
|
*/
|
|
if (intel_wait_for_register(&dev_priv->uncore,
|
|
enable_reg, PLL_POWER_STATE, 0, 1))
|
|
DRM_ERROR("PLL %d Power not disabled\n", pll->info->id);
|
|
}
|
|
|
|
static void combo_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
icl_pll_disable(dev_priv, pll, CNL_DPLL_ENABLE(pll->info->id));
|
|
}
|
|
|
|
static void tbt_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
icl_pll_disable(dev_priv, pll, TBT_PLL_ENABLE);
|
|
}
|
|
|
|
static void mg_pll_disable(struct drm_i915_private *dev_priv,
|
|
struct intel_shared_dpll *pll)
|
|
{
|
|
i915_reg_t enable_reg =
|
|
MG_PLL_ENABLE(icl_pll_id_to_tc_port(pll->info->id));
|
|
|
|
icl_pll_disable(dev_priv, pll, enable_reg);
|
|
}
|
|
|
|
static void icl_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
DRM_DEBUG_KMS("dpll_hw_state: cfgcr0: 0x%x, cfgcr1: 0x%x, "
|
|
"mg_refclkin_ctl: 0x%x, hg_clktop2_coreclkctl1: 0x%x, "
|
|
"mg_clktop2_hsclkctl: 0x%x, mg_pll_div0: 0x%x, "
|
|
"mg_pll_div2: 0x%x, mg_pll_lf: 0x%x, "
|
|
"mg_pll_frac_lock: 0x%x, mg_pll_ssc: 0x%x, "
|
|
"mg_pll_bias: 0x%x, mg_pll_tdc_coldst_bias: 0x%x\n",
|
|
hw_state->cfgcr0, hw_state->cfgcr1,
|
|
hw_state->mg_refclkin_ctl,
|
|
hw_state->mg_clktop2_coreclkctl1,
|
|
hw_state->mg_clktop2_hsclkctl,
|
|
hw_state->mg_pll_div0,
|
|
hw_state->mg_pll_div1,
|
|
hw_state->mg_pll_lf,
|
|
hw_state->mg_pll_frac_lock,
|
|
hw_state->mg_pll_ssc,
|
|
hw_state->mg_pll_bias,
|
|
hw_state->mg_pll_tdc_coldst_bias);
|
|
}
|
|
|
|
static const struct intel_shared_dpll_funcs combo_pll_funcs = {
|
|
.enable = combo_pll_enable,
|
|
.disable = combo_pll_disable,
|
|
.get_hw_state = combo_pll_get_hw_state,
|
|
};
|
|
|
|
static const struct intel_shared_dpll_funcs tbt_pll_funcs = {
|
|
.enable = tbt_pll_enable,
|
|
.disable = tbt_pll_disable,
|
|
.get_hw_state = tbt_pll_get_hw_state,
|
|
};
|
|
|
|
static const struct intel_shared_dpll_funcs mg_pll_funcs = {
|
|
.enable = mg_pll_enable,
|
|
.disable = mg_pll_disable,
|
|
.get_hw_state = mg_pll_get_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info icl_plls[] = {
|
|
{ "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
|
|
{ "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
|
|
{ "TBT PLL", &tbt_pll_funcs, DPLL_ID_ICL_TBTPLL, 0 },
|
|
{ "MG PLL 1", &mg_pll_funcs, DPLL_ID_ICL_MGPLL1, 0 },
|
|
{ "MG PLL 2", &mg_pll_funcs, DPLL_ID_ICL_MGPLL2, 0 },
|
|
{ "MG PLL 3", &mg_pll_funcs, DPLL_ID_ICL_MGPLL3, 0 },
|
|
{ "MG PLL 4", &mg_pll_funcs, DPLL_ID_ICL_MGPLL4, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr icl_pll_mgr = {
|
|
.dpll_info = icl_plls,
|
|
.get_dpll = icl_get_dpll,
|
|
.dump_hw_state = icl_dump_hw_state,
|
|
};
|
|
|
|
static const struct dpll_info ehl_plls[] = {
|
|
{ "DPLL 0", &combo_pll_funcs, DPLL_ID_ICL_DPLL0, 0 },
|
|
{ "DPLL 1", &combo_pll_funcs, DPLL_ID_ICL_DPLL1, 0 },
|
|
{ },
|
|
};
|
|
|
|
static const struct intel_dpll_mgr ehl_pll_mgr = {
|
|
.dpll_info = ehl_plls,
|
|
.get_dpll = icl_get_dpll,
|
|
.dump_hw_state = icl_dump_hw_state,
|
|
};
|
|
|
|
/**
|
|
* intel_shared_dpll_init - Initialize shared DPLLs
|
|
* @dev: drm device
|
|
*
|
|
* Initialize shared DPLLs for @dev.
|
|
*/
|
|
void intel_shared_dpll_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
const struct intel_dpll_mgr *dpll_mgr = NULL;
|
|
const struct dpll_info *dpll_info;
|
|
int i;
|
|
|
|
if (IS_ELKHARTLAKE(dev_priv))
|
|
dpll_mgr = &ehl_pll_mgr;
|
|
else if (INTEL_GEN(dev_priv) >= 11)
|
|
dpll_mgr = &icl_pll_mgr;
|
|
else if (IS_CANNONLAKE(dev_priv))
|
|
dpll_mgr = &cnl_pll_mgr;
|
|
else if (IS_GEN9_BC(dev_priv))
|
|
dpll_mgr = &skl_pll_mgr;
|
|
else if (IS_GEN9_LP(dev_priv))
|
|
dpll_mgr = &bxt_pll_mgr;
|
|
else if (HAS_DDI(dev_priv))
|
|
dpll_mgr = &hsw_pll_mgr;
|
|
else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
|
|
dpll_mgr = &pch_pll_mgr;
|
|
|
|
if (!dpll_mgr) {
|
|
dev_priv->num_shared_dpll = 0;
|
|
return;
|
|
}
|
|
|
|
dpll_info = dpll_mgr->dpll_info;
|
|
|
|
for (i = 0; dpll_info[i].name; i++) {
|
|
WARN_ON(i != dpll_info[i].id);
|
|
dev_priv->shared_dplls[i].info = &dpll_info[i];
|
|
}
|
|
|
|
dev_priv->dpll_mgr = dpll_mgr;
|
|
dev_priv->num_shared_dpll = i;
|
|
mutex_init(&dev_priv->dpll_lock);
|
|
|
|
BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
|
|
}
|
|
|
|
/**
|
|
* intel_get_shared_dpll - get a shared DPLL for CRTC and encoder combination
|
|
* @crtc_state: atomic state for the crtc
|
|
* @encoder: encoder
|
|
*
|
|
* Find an appropriate DPLL for the given CRTC and encoder combination. A
|
|
* reference from the @crtc_state to the returned pll is registered in the
|
|
* atomic state. That configuration is made effective by calling
|
|
* intel_shared_dpll_swap_state(). The reference should be released by calling
|
|
* intel_release_shared_dpll().
|
|
*
|
|
* Returns:
|
|
* A shared DPLL to be used by @crtc_state and @encoder.
|
|
*/
|
|
struct intel_shared_dpll *
|
|
intel_get_shared_dpll(struct intel_crtc_state *crtc_state,
|
|
struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
|
|
const struct intel_dpll_mgr *dpll_mgr = dev_priv->dpll_mgr;
|
|
|
|
if (WARN_ON(!dpll_mgr))
|
|
return NULL;
|
|
|
|
return dpll_mgr->get_dpll(crtc_state, encoder);
|
|
}
|
|
|
|
/**
|
|
* intel_release_shared_dpll - end use of DPLL by CRTC in atomic state
|
|
* @dpll: dpll in use by @crtc
|
|
* @crtc: crtc
|
|
* @state: atomic state
|
|
*
|
|
* This function releases the reference from @crtc to @dpll from the
|
|
* atomic @state. The new configuration is made effective by calling
|
|
* intel_shared_dpll_swap_state().
|
|
*/
|
|
void intel_release_shared_dpll(struct intel_shared_dpll *dpll,
|
|
struct intel_crtc *crtc,
|
|
struct drm_atomic_state *state)
|
|
{
|
|
struct intel_shared_dpll_state *shared_dpll_state;
|
|
|
|
shared_dpll_state = intel_atomic_get_shared_dpll_state(state);
|
|
shared_dpll_state[dpll->info->id].crtc_mask &= ~(1 << crtc->pipe);
|
|
}
|
|
|
|
/**
|
|
* intel_shared_dpll_dump_hw_state - write hw_state to dmesg
|
|
* @dev_priv: i915 drm device
|
|
* @hw_state: hw state to be written to the log
|
|
*
|
|
* Write the relevant values in @hw_state to dmesg using DRM_DEBUG_KMS.
|
|
*/
|
|
void intel_dpll_dump_hw_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_dpll_hw_state *hw_state)
|
|
{
|
|
if (dev_priv->dpll_mgr) {
|
|
dev_priv->dpll_mgr->dump_hw_state(dev_priv, hw_state);
|
|
} else {
|
|
/* fallback for platforms that don't use the shared dpll
|
|
* infrastructure
|
|
*/
|
|
DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
|
|
"fp0: 0x%x, fp1: 0x%x\n",
|
|
hw_state->dpll,
|
|
hw_state->dpll_md,
|
|
hw_state->fp0,
|
|
hw_state->fp1);
|
|
}
|
|
}
|